
OpenMP

OpenMP

Table of Contents

1. Introduction
1. What is OpenMP?
2. History
3. Goals of OpenMP

2. OpenMP Programming Model
3. OpenMP Directives

1. Fortran Directive Format
2. C/C++ Directive Format
3. Directive Scoping
4. PARALLEL Construct
5. Work-Sharing Constructs

1. DO / for Directive
2. SECTIONS Directive
3. SINGLE Directive

6. Combined Parallel Work-Sharing Constructs
1. PARALLEL DO / parallel for Directive
2. PARALLEL SECTIONS Directive

7. Synchronization Constructs
1. MASTER Directive
2. CRITICAL Directive
3. BARRIER Directive
4. ATOMIC Directive
5. FLUSH Directive
6. ORDERED Directive

8. THREADPRIVATE Directive
9. Data Scope Attribute Clauses

1. PRIVATE Clause
2. SHARED Clause
3. DEFAULT Clause
4. FIRSTPRIVATE Clause
5. LASTPRIVATE Clause
6. COPYIN Clause
7. REDUCTION Clause

10. Clauses / Directives Summary
11. Directive Binding and Nesting Rules

4. Run-Time Library Routines

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (1 of 59) [2003-11-4 8:59:46]

http://www.llnl.gov/computing/tutorials/openMP/#Introduction
http://www.llnl.gov/computing/tutorials/openMP/#Introduction
http://www.llnl.gov/computing/tutorials/openMP/#History
http://www.llnl.gov/computing/tutorials/openMP/#Goals
http://www.llnl.gov/computing/tutorials/openMP/#ProgrammingModel
http://www.llnl.gov/computing/tutorials/openMP/#Directives
http://www.llnl.gov/computing/tutorials/openMP/#Directives
http://www.llnl.gov/computing/tutorials/openMP/#CFormat
http://www.llnl.gov/computing/tutorials/openMP/#Scoping
http://www.llnl.gov/computing/tutorials/openMP/#ParallelRegion
http://www.llnl.gov/computing/tutorials/openMP/#WorkSharing
http://www.llnl.gov/computing/tutorials/openMP/#DO
http://www.llnl.gov/computing/tutorials/openMP/#SECTIONS
http://www.llnl.gov/computing/tutorials/openMP/#SINGLE
http://www.llnl.gov/computing/tutorials/openMP/#Combined
http://www.llnl.gov/computing/tutorials/openMP/#PARALLELDO
http://www.llnl.gov/computing/tutorials/openMP/#PARALLELSECTIONS
http://www.llnl.gov/computing/tutorials/openMP/#Synchronization
http://www.llnl.gov/computing/tutorials/openMP/#MASTER
http://www.llnl.gov/computing/tutorials/openMP/#CRITICAL
http://www.llnl.gov/computing/tutorials/openMP/#BARRIER
http://www.llnl.gov/computing/tutorials/openMP/#ATOMIC
http://www.llnl.gov/computing/tutorials/openMP/#FLUSH
http://www.llnl.gov/computing/tutorials/openMP/#ORDERED
http://www.llnl.gov/computing/tutorials/openMP/#THREADPRIVATE
http://www.llnl.gov/computing/tutorials/openMP/#Clauses
http://www.llnl.gov/computing/tutorials/openMP/#PRIVATE
http://www.llnl.gov/computing/tutorials/openMP/#SHARED
http://www.llnl.gov/computing/tutorials/openMP/#DEFAULT
http://www.llnl.gov/computing/tutorials/openMP/#FIRSTPRIVATE
http://www.llnl.gov/computing/tutorials/openMP/#LASTPRIVATE
http://www.llnl.gov/computing/tutorials/openMP/#COPYIN
http://www.llnl.gov/computing/tutorials/openMP/#REDUCTION
http://www.llnl.gov/computing/tutorials/openMP/#ClausesDirectives
http://www.llnl.gov/computing/tutorials/openMP/#BindingNesting
http://www.llnl.gov/computing/tutorials/openMP/#RunTimeLibrary

OpenMP

1. OMP_SET_NUM_THREADS
2. OMP_GET_NUM_THREADS
3. OMP_GET_MAX_THREADS
4. OMP_GET_THREAD_NUM
5. OMP_GET_NUM_PROCS
6. OMP_IN_PARALLEL
7. OMP_SET_DYNAMIC
8. OMP_GET_DYNAMIC
9. OMP_SET_NESTED

10. OMP_GET_NESTED
11. OMP_INIT_LOCK
12. OMP_DESTROY_LOCK
13. OMP_SET_LOCK
14. OMP_UNSET_LOCK
15. OMP_TEST_LOCK

5. Environment Variables
6. LLNL Specific Information and Recommendations
7. References and More Information
8. Exercise

Introduction

What is OpenMP?

 OpenMP Is:

● An Application Program Interface (API) that may be used to explicitly direct multi-threaded, shared memory
parallelism

● Comprised of three primary API components:
❍ Compiler Directives
❍ Runtime Library Routines
❍ Environment Variables

● Portable:
❍ The API is specified for C/C++ and Fortran
❍ Multiple platforms have been implemented including most Unix platforms and Windows NT

● Standardized:
❍ Jointly defined and endorsed by a group of major computer hardware and software vendors
❍ Expected to become an ANSI standard later

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (2 of 59) [2003-11-4 8:59:46]

http://www.llnl.gov/computing/tutorials/openMP/#OMP_SET_NUM_THREADS
http://www.llnl.gov/computing/tutorials/openMP/#OMP_GET_NUM_THREADS
http://www.llnl.gov/computing/tutorials/openMP/#OMP_GET_MAX_THREADS
http://www.llnl.gov/computing/tutorials/openMP/#OMP_GET_THREAD_NUM
http://www.llnl.gov/computing/tutorials/openMP/#OMP_GET_NUM_PROCS
http://www.llnl.gov/computing/tutorials/openMP/#OMP_IN_PARALLEL
http://www.llnl.gov/computing/tutorials/openMP/#OMP_SET_DYNAMIC
http://www.llnl.gov/computing/tutorials/openMP/#OMP_GET_DYNAMIC
http://www.llnl.gov/computing/tutorials/openMP/#OMP_SET_NESTED
http://www.llnl.gov/computing/tutorials/openMP/#OMP_GET_NESTED
http://www.llnl.gov/computing/tutorials/openMP/#OMP_INIT_LOCK
http://www.llnl.gov/computing/tutorials/openMP/#OMP_DESTROY_LOCK
http://www.llnl.gov/computing/tutorials/openMP/#OMP_SET_LOCK
http://www.llnl.gov/computing/tutorials/openMP/#OMP_UNSET_LOCK
http://www.llnl.gov/computing/tutorials/openMP/#OMP_TEST_LOCK
http://www.llnl.gov/computing/tutorials/openMP/#EnvironmentVariables
http://www.llnl.gov/computing/tutorials/openMP/#LLNL
http://www.llnl.gov/computing/tutorials/openMP/#References
http://www.llnl.gov/computing/tutorials/openMP/exercise.html

OpenMP

● What does OpenMP stand for?
Open specifications for Multi Processing via collaborative work with interested parties from the
hardware and software industry, government and academia

 OpenMP Is Not:

● Meant for distributed memory parallel systems (by itself)

● Necessarily implemented identically by all vendors

● Guaranteed to make the most efficient use of shared memory (currently there are no data locality constructs)

History

 Ancient History

● In the early 90's, vendors of shared-memory machines supplied similar, directive-based, Fortran programming
extensions:

❍ The user would augment a serial Fortran program with directives specifying which loops were to be
parallelized

❍ The compiler would be responsible for automatically parallelizing such loops across the SMP
processors

● Implementations were all functionally similar, but were diverging (as usual)

● First attempt at a standard was the draft for ANSI X3H5 in 1994. It was never adopted, largely due to waning
interest as distributed memory machines became popular.

 Recent History

● The OpenMP standard specification started in the spring of 1997, taking over where ANSI X3H5 had left off,
as newer shared memory machine architectures started to become prevalent.

● Partners in the OpenMP standard specification included:
(Disclaimer: all partner names derived from the OpenMP web site)

OpenMP Architecture Review Board (open to new members)

❍ Compaq / Digital
❍ Hewlett-Packard Company
❍ Intel Corporation
❍ International Business Machines (IBM)
❍ Kuck & Associates, Inc. (KAI)

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (3 of 59) [2003-11-4 8:59:46]

http://www.openmp.org/

OpenMP

❍ Silicon Graphics, Inc.
❍ Sun Microsystems, Inc.
❍ U.S. Department of Energy ASCI program

Endorsing software vendors:

❍ Absoft Corporation
❍ Edinburgh Portable Compilers
❍ GENIAS Software GmBH
❍ Myrias Computer Technologies, Inc.
❍ The Portland Group, Inc. (PGI)

Endorsing application developers:

❍ ADINA R&D, Inc.
❍ ANSYS, Inc.
❍ Dash Associates
❍ Fluent, Inc.
❍ ILOG CPLEX Division
❍ Livermore Software Technology Corporation (LSTC)
❍ MECALOG SARL
❍ Oxford Molecular Group PLC
❍ The Numerical Algorithms Group Ltd.(NAG)

 Release History

● October 1997: Fortran version 1.0

● Late 1998: C/C++ version 1.0

● June 2000: Fortran version 2.0

● April 2002: C/C++ version 2.0

● Visit the OpenMP website at http://www.openmp.org/ for more information, including API specifications,
FAQ, presentations, discussions, media releases, calendar and membership application.

Goals of OpenMP

 Standardization:

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (4 of 59) [2003-11-4 8:59:46]

http://www.openmp.org/

OpenMP

● Provide a standard among a variety of shared memory architectures/platforms

 Lean and Mean:

● Establish a simple and limited set of directives for programming shared memory machines. Significant
parallelism can be implemented by using just 3 or 4 directives.

 Ease of Use:

● Provide capability to incrementally parallelize a serial program, unlike message-passing libraries which
typically require an all or nothing approach

● Provide the capability to implement both coarse-grain and fine-grain parallelism

 Portability:

● Supports Fortran (77, 90, and 95), C, and C++

● Public forum for API and membership

OpenMP Programming Model

 Thread Based Parallelism:

● A shared memory process can consist of multiple threads. OpenMP is based upon the existence of multiple
threads in the shared memory programming paradigm.

 Explicit Parallelism:

● OpenMP is an explicit (not automatic) programming model, offering the programmer full control over
parallelization.

 Fork - Join Model:

● OpenMP uses the fork-join model of parallel execution:

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (5 of 59) [2003-11-4 8:59:46]

OpenMP

● All OpenMP programs begin as a single process: the master thread. The master thread executes sequentially
until the first parallel region construct is encountered.

● FORK: the master thread then creates a team of parallel threads

● The statements in the program that are enclosed by the parallel region construct are then executed in parallel
among the various team threads

● JOIN: When the team threads complete the statements in the parallel region construct, they synchronize and
terminate, leaving only the master thread

 Compiler Directive Based:

● Virtually all of OpenMP parallelism is specified through the use of compiler directives which are imbedded in
C/C++ or Fortran source code.

 Nested Parallelism Support:

● The API provides for the placement of parallel constructs inside of other parallel constructs.

● Implementations may or may not support this feature.

 Dynamic Threads:

● The API provides for dynamically altering the number of threads which may used to execute different parallel
regions.

● Implementations may or may not support this feature.

Example OpenMP Code Structure

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (6 of 59) [2003-11-4 8:59:46]

OpenMP

 Fortran - General Code Structure

 PROGRAM HELLO

 INTEGER VAR1, VAR2, VAR3

 Serial code
 .
 .
 .

 Beginning of parallel section. Fork a team of threads.
 Specify variable scoping

!$OMP PARALLEL PRIVATE(VAR1, VAR2) SHARED(VAR3)

 Parallel section executed by all threads
 .
 .
 .

 All threads join master thread and disband

!$OMP END PARALLEL

 Resume serial code
 .
 .
 .

 END

 C / C++ - General Code Structure

#include <omp.h>

main () {

int var1, var2, var3;

Serial code
 .
 .
 .

Beginning of parallel section. Fork a team of threads.
Specify variable scoping

#pragma omp parallel private(var1, var2) shared(var3)
 {

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (7 of 59) [2003-11-4 8:59:46]

OpenMP

 Parallel section executed by all threads
 .
 .
 .

 All threads join master thread and disband

 }

Resume serial code
 .
 .
 .

}

OpenMP Directives

Fortran Directives Format

 Format:

sentinel directive-name [clause ...]

All Fortran OpenMP directives
must begin with a sentinel. The
accepted sentinels depend upon the
type of Fortran source. Possible
sentinels are:

 !$OMP
 C$OMP
 *$OMP

A valid OpenMP directive.
Must appear after the
sentinel and before any
clauses.

Optional. Clauses can be in
any order, and repeated as
necessary unless otherwise
restricted.

 Example:

!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(BETA,PI)

 Fixed Form Source:

● !$OMP C$OMP *$OMP are accepted sentinels and must start in column 1

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (8 of 59) [2003-11-4 8:59:46]

OpenMP

● All Fortran fixed form rules for line length, white space, continuation and comment columns apply for the
entire directive line

● Initial directive lines must have a space/zero in column 6.

● Continuation lines must have a non-space/zero in column 6.

 Free Form Source:

● !$OMP is the only accepted sentinel. Can appear in any column, but must be preceded by white space only.

● All Fortran free form rules for line length, white space, continuation and comment columns apply for the
entire directive line

● Initial directive lines must have a space after the sentinel.

● Continuation lines must have an ampersand as the last non-blank character in a line. The following line must
begin with a sentinel and then the continuation directives.

 General Rules:

● Comments can not appear on the same line as a directive

● Fortran compilers which are OpenMP enabled generally include a command line option which instructs the
compiler to activate and interpret all OpenMP directives.

● Several Fortran OpenMP directives come in pairs and have the form:

!$OMP directive

 [structured block of code]

!$OMP end directive

OpenMP Directives

C / C++ Directives Format

 Format:

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (9 of 59) [2003-11-4 8:59:46]

OpenMP

#pragma omp
directive-name [clause, ...] newline

Required for all OpenMP
C/C++ directives.

A valid OpenMP
directive. Must
appear after the
pragma and before
any clauses.

Optional. Clauses
can be in any
order, and repeated
as necessary unless
otherwise
restricted.

Required. Proceeds
the structured
block which is
enclosed by this
directive.

 Example:

#pragma omp parallel default(shared) private(beta,pi)

 General Rules:

● Directives follow conventions of the C/C++ standards for compiler directives

● Case sensitive

● Only one directive-name may be specified per directive (true with Fortran also)

● Each directive applies to at most one succeeding statement, which must be a structured block.

● Long directive lines can be "continued" on succeeding lines by escaping the newline character with a
backslash ("\") at the end of a directive line.

OpenMP Directives

Directive Scoping

 Static (Lexical) Extent:

● The code textually enclosed between the beginning and the end of a structured block following a directive.

● The static extent of a directives does not span multiple routines or code files

 Orphaned Directive:

● An OpenMP directive that appears independently from another enclosing directive is said to be an orphaned

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (10 of 59) [2003-11-4 8:59:46]

OpenMP

directive. It exists outside of another directive's static (lexical) extent.

● Will span routines and possibly code files

 Dynamic Extent:

● The dynamic extent of a directive includes both its static (lexical) extent and the extents of its orphaned
directives.

 Example:

 PROGRAM TEST
 ...
!$OMP PARALLEL
 ...
!$OMP DO
 DO I=...
 ...
 CALL SUB1
 ...
 ENDDO
 ...
 CALL SUB2
 ...
!$OMP END PARALLEL

 SUBROUTINE SUB1
 ...
!$OMP CRITICAL
 ...
!$OMP END CRITICAL
 END

 SUBROUTINE SUB2
 ...
!$OMP SECTIONS
 ...
!$OMP END SECTIONS
 ...
 END

STATIC EXTENT
The DO directive occurs within an enclosing

parallel region

ORPHANED DIRECTIVES
The CRITICAL and SECTIONS directives
occur outside an enclosing parallel region

DYNAMIC EXTENT

 Why Is This Important?

● OpenMP specifies a number of scoping rules on how directives may associate (bind) and nest within each
other

● Illegal and/or incorrect programs may result if the OpenMP binding and nesting rules are ignored

● See Directive Binding and Nesting Rules for specific details

OpenMP Directives

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (11 of 59) [2003-11-4 8:59:46]

http://www.llnl.gov/computing/tutorials/openMP/#BindingNesting

OpenMP

PARALLEL Region Construct

 Purpose:

● A parallel region is a block of code that will be executed by multiple threads. This is the fundamental
OpenMP parallel construct.

 Format:

Fortran

!$OMP PARALLEL [clause ...]
 IF (scalar_logical_expression)
 PRIVATE (list)
 SHARED (list)
 DEFAULT (PRIVATE | SHARED | NONE)
 FIRSTPRIVATE (list)
 REDUCTION (operator: list)
 COPYIN (list)

 block

!$OMP END PARALLEL

C/C++

#pragma omp parallel [clause ...] newline
 if (scalar_expression)
 private (list)
 shared (list)
 default (shared | none)
 firstprivate (list)
 reduction (operator: list)
 copyin (list)

 structured_block

 Notes:

● When a thread reaches a PARALLEL directive, it creates a team of threads and becomes the master of the
team. The master is a member of that team and has thread number 0 within that team.

● Starting from the beginning of this parallel region, the code is duplicated and all threads will execute that
code.

● There is an implied barrier at the end of a parallel section. Only the master thread continues execution past
this point.

 How Many Threads?

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (12 of 59) [2003-11-4 8:59:46]

OpenMP

● The number of threads in a parallel region is determined by the following factors, in order of precedence:

1. Use of the omp_set_num_threads() library function

2. Setting of the OMP_NUM_THREADS environment variable

3. Implementation default

● Threads are numbered from 0 (master thread) to N-1

 Dynamic Threads:

● By default, a program with multiple parallel regions will use the same number of threads to execute each
region. This behavior can be changed to allow the run-time system to dynamically adjust the number of
threads that are created for a given parallel section. The two methods available for enabling dynamic threads
are:

1. Use of the omp_set_dynamic() library function

2. Setting of the OMP_DYNAMIC environment variable

 Nested Parallel Regions:

● A parallel region nested within another parallel region results in the creation of a new team, consisting of one
thread, by default.

● Implementations may allow more than one thread in nested parallel regions

 Clauses:

● IF clause: If present, it must evaluate to .TRUE. (Fortran) or non-zero (C/C++) in order for a team of threads
to be created. Otherwise, the region is executed serially by the master thread.

● The remaining clauses are described in detail later, in the Data Scope Attribute Clauses section.

 Restrictions:

● A parallel region must be a structured block that does not span multiple routines or code files

● Unsynchronized Fortran I/O to the same unit by multiple threads has unspecified behavior

● It is illegal to branch into or out of a parallel region

● Only a single IF clause is permitted

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (13 of 59) [2003-11-4 8:59:46]

http://www.llnl.gov/computing/tutorials/openMP/#Clauses

OpenMP

Example: Parallel Region

● Simple "Hello World" program
❍ Every thread executes all code enclosed in the parallel section
❍ OpenMP library routines are used to obtain thread identifiers and total number of threads

 Fortran - Parallel Region Example

 PROGRAM HELLO

 INTEGER NTHREADS, TID, OMP_GET_NUM_THREADS,
 + OMP_GET_THREAD_NUM

C Fork a team of threads giving them their own copies of variables
!$OMP PARALLEL PRIVATE(NTHREADS, TID)

C Obtain and print thread id
 TID = OMP_GET_THREAD_NUM()
 PRINT *, 'Hello World from thread = ', TID

C Only master thread does this
 IF (TID .EQ. 0) THEN
 NTHREADS = OMP_GET_NUM_THREADS()
 PRINT *, 'Number of threads = ', NTHREADS
 END IF

C All threads join master thread and disband
!$OMP END PARALLEL

 END

 C / C++ - Parallel Region Example

#include <omp.h>

main () {

int nthreads, tid;

/* Fork a team of threads giving them their own copies of variables */
#pragma omp parallel private(nthreads, tid)
 {

 /* Obtain and print thread id */
 tid = omp_get_thread_num();
 printf("Hello World from thread = %d\n", tid);

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (14 of 59) [2003-11-4 8:59:46]

OpenMP

 /* Only master thread does this */
 if (tid == 0)
 {
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d\n", nthreads);
 }

 } /* All threads join master thread and terminate */

}

OpenMP Directives

Work-Sharing Constructs

● A work-sharing construct divides the execution of the enclosed code region among the members of the team
that encounter it.

● Work-sharing constructs do not launch new threads

● There is no implied barrier upon entry to a work-sharing construct, however there is an implied barrier at the
end of a work sharing construct.

 Types of Work-Sharing Constructs:

DO / for - shares iterations of a
loop across the team. Represents a
type of "data parallelism".

SECTIONS - breaks work into
separate, discrete sections. Each
section is executed by a thread.
Can be used to implement a type
of "functional parallelism".

SINGLE - serializes a section of
code

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (15 of 59) [2003-11-4 8:59:46]

OpenMP

 Restrictions:

● A work-sharing construct must be enclosed dynamically within a parallel region in order for the directive to
execute in parallel.

● Work-sharing constructs must be encountered by all members of a team or none at all

● Successive work-sharing constructs must be encountered in the same order by all members of a team

OpenMP Directives

Work-Sharing Constructs
DO / for Directive

 Purpose:

● The DO / for directive specifies that the iterations of the loop immediately following it must be executed in
parallel by the team. This assumes a parallel region has already been initiated, otherwise it executes in serial
on a single processor.

 Format:

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (16 of 59) [2003-11-4 8:59:46]

OpenMP

Fortran

!$OMP DO [clause ...]
 SCHEDULE (type [,chunk])
 ORDERED
 PRIVATE (list)
 FIRSTPRIVATE (list)
 LASTPRIVATE (list)
 SHARED (list)
 REDUCTION (operator | intrinsic : list)

 do_loop

!$OMP END DO [NOWAIT]

C/C++

#pragma omp for [clause ...] newline
 schedule (type [,chunk])
 ordered
 private (list)
 firstprivate (list)
 lastprivate (list)
 shared (list)
 reduction (operator: list)
 nowait

 for_loop

 Clauses:

● SCHEDULE clause: Describes how iterations of the loop are divided among the threads in the team. For
both C/C++ and Fortran:

STATIC:
Loop iterations are divided into pieces of size chunk and then staticly assigned to threads. If chunk is
not specified, the iterations are evenly (if possible) divided contiguously among the threads.

DYNAMIC:
Loop iterations are divided into pieces of size chunk, and dynamically scheduled among the threads;
when a thread finishes one chunk, it is dynamically assigned another. The default chunk size is 1.

GUIDED:
The chunk size is exponentially reduced with each dispatched piece of the iteration space. The chunk
size specifies the minimum number of iterations to dispatch each time.. The default chunk size is 1.

RUNTIME:
The scheduling decision is deferred until runtime by the environment variable OMP_SCHEDULE. It
is illegal to specify a chunk size for this clause.

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (17 of 59) [2003-11-4 8:59:47]

OpenMP

The default schedule is implementation dependent. Implementation may also vary slightly in the way
the various schedules are implemented.

● ORDERED clause: Must be present when ORDERED directives are enclosed within the DO/for directive.
See Ordered Directive.

● NO WAIT (Fortran) / nowait (C/C++) clause: if specified, then threads do not synchronize at the end of the
parallel loop. Threads proceed directly to the next statements after the loop. For Fortran, the END DO
directive is optional with NO WAIT being the default.

● Other clauses are described in detail later, in the Data Scope Attribute Clauses section.

 Restrictions:

● The DO loop can not be a DO WHILE loop, or a loop without loop control. Also, the loop iteration variable
must be an integer and the loop control parameters must be the same for all threads.

● Program correctness must not depend upon which thread executes a particular iteration.

● It is illegal to branch out of a loop associated with a DO/for directive.

● The chunk size must be specified as a loop invarient integer expression, as there is no synchronization during
its evaluation by different threads.

● The C/C++ for directive requires that the for-loop must have canonical shape. See the OpenMP API
specification for details.

● ORDERED and SCHEDULE clauses may appear once each.

Example: DO / for Directive

● Simple vector-add program
❍ Arrays A, B, C, and variable N will be shared by all threads.
❍ Variable I will be private to each thread; each thread will have its own unique copy.
❍ The iterations of the loop will be distributed dynamically in CHUNK sized pieces.
❍ Threads will not synchronize upon completing their individual pieces of work (NOWAIT).

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (18 of 59) [2003-11-4 8:59:47]

http://www.llnl.gov/computing/tutorials/openMP/#ORDERED
http://www.llnl.gov/computing/tutorials/openMP/#Clauses
http://www.openmp.org/
http://www.openmp.org/

OpenMP

 Fortran - DO Directive Example

 PROGRAM VEC_ADD_DO

 INTEGER N, CHUNKSIZE, CHUNK, I
 PARAMETER (N=1000)
 PARAMETER (CHUNKSIZE=100)
 REAL A(N), B(N), C(N)

! Some initializations
 DO I = 1, N
 A(I) = I * 1.0
 B(I) = A(I)
 ENDDO
 CHUNK = CHUNKSIZE

!$OMP PARALLEL SHARED(A,B,C,CHUNK) PRIVATE(I)

!$OMP DO SCHEDULE(DYNAMIC,CHUNK)
 DO I = 1, N
 C(I) = A(I) + B(I)
 ENDDO
!$OMP END DO NOWAIT

!$OMP END PARALLEL

 END

 C / C++ - for Directive Example

#include <omp.h>
#define CHUNKSIZE 100
#define N 1000

main ()
{

int i, chunk;
float a[N], b[N], c[N];

/* Some initializations */
for (i=0; i < N; i++)
 a[i] = b[i] = i * 1.0;
chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,chunk) private(i)
 {

 #pragma omp for schedule(dynamic,chunk) nowait
 for (i=0; i < N; i++)
 c[i] = a[i] + b[i];

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (19 of 59) [2003-11-4 8:59:47]

OpenMP

 } /* end of parallel section */

}

OpenMP Directives

Work-Sharing Constructs
SECTIONS Directive

 Purpose:

● The SECTIONS directive is a non-iterative work-sharing construct. It specifies that the enclosed section(s) of
code are to be divided among the threads in the team.

● Independent SECTION directives are nested within a SECTIONS directive Each SECTION is executed once
by a thread in the team. Different sections will be executed by different threads.

 Format:

Fortran

!$OMP SECTIONS [clause ...]
 PRIVATE (list)
 FIRSTPRIVATE (list)
 LASTPRIVATE (list)
 REDUCTION (operator | intrinsic : list)

!$OMP SECTION

 block

!$OMP SECTION

 block

!$OMP END SECTIONS [NOWAIT]

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (20 of 59) [2003-11-4 8:59:47]

OpenMP

C/C++

#pragma omp sections [clause ...] newline
 private (list)
 firstprivate (list)
 lastprivate (list)
 reduction (operator: list)
 nowait
 {

 #pragma omp section newline

 structured_block

 #pragma omp section newline

 structured_block

 }

 Clauses:

● There is an implied barrier at the end of a SECTIONS directive, unless the nowait (C/C++) or NOWAIT
(Fortran) clause is used.

● Clauses are described in detail later, in the Data Scope Attribute Clauses section.

 Questions:

What happens if the number of threads and the number of SECTIONs are different? More threads than
SECTIONs? Less threads than SECTIONs?

Which thread executes which SECTION?

 Restrictions:

● It is illegal to branch into or out of section blocks.

● SECTION directives must occur within the lexical extent of an enclosing SECTIONS directive

Example: SECTIONS Directive

● Simple vector-add program - similar to example used previously for the DO / for directive.
❍ The first n/2 iterations of the DO loop will be distributed to the first thread, and the rest will be

distributed to the second thread

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (21 of 59) [2003-11-4 8:59:47]

http://www.llnl.gov/computing/tutorials/openMP/#Clauses

OpenMP

❍ When each thread finishes its block of iterations, it proceeds with whatever code comes next
(NOWAIT)

 Fortran - SECTIONS Directive Example

 PROGRAM VEC_ADD_SECTIONS

 INTEGER N, I
 PARAMETER (N=1000)
 REAL A(N), B(N), C(N)

! Some initializations
 DO I = 1, N
 A(I) = I * 1.0
 B(I) = A(I)
 ENDDO

!$OMP PARALLEL SHARED(A,B,C), PRIVATE(I)

!$OMP SECTIONS

!$OMP SECTION
 DO I = 1, N/2
 C(I) = A(I) + B(I)
 ENDDO

!$OMP SECTION
 DO I = 1+N/2, N
 C(I) = A(I) + B(I)
 ENDDO

!$OMP END SECTIONS NOWAIT

!$OMP END PARALLEL

 END

 C / C++ - sections Directive Example

#include <omp.h>
#define N 1000

main ()
{

int i;
float a[N], b[N], c[N];

/* Some initializations */
for (i=0; i < N; i++)

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (22 of 59) [2003-11-4 8:59:47]

OpenMP

 a[i] = b[i] = i * 1.0;

#pragma omp parallel shared(a,b,c) private(i)
 {

 #pragma omp sections nowait
 {

 #pragma omp section
 for (i=0; i < N/2; i++)
 c[i] = a[i] + b[i];

 #pragma omp section
 for (i=N/2; i < N; i++)
 c[i] = a[i] + b[i];

 } /* end of sections */

 } /* end of parallel section */

}

OpenMP Directives

Work-Sharing Constructs
SINGLE Directive

 Purpose:

● The SINGLE directive specifies that the enclosed code is to be executed by only one thread in the team.

● May be useful when dealing with sections of code that are not thread safe (such as I/O)

 Format:

Fortran

!$OMP SINGLE [clause ...]
 PRIVATE (list)
 FIRSTPRIVATE (list)

 block

!$OMP END SINGLE [NOWAIT]

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (23 of 59) [2003-11-4 8:59:47]

OpenMP

C/C++

#pragma omp single [clause ...] newline
 private (list)
 firstprivate (list)
 nowait

 structured_block

 Clauses:

● Threads in the team that do not execute the SINGLE directive, wait at the end of the enclosed code block,
unless a nowait (C/C++) or NOWAIT (Fortran) clause is specified.

● Clauses are described in detail later, in the Data Scope Attribute Clauses section.

 Restrictions:

● It is illegal to branch into or out of a SINGLE block.

OpenMP Directives

Combined Parallel Work-Sharing Constructs
PARALLEL DO / parallel for Directive

● Iterations of the DO/for loop will be distributed in equal sized blocks to each thread in the team (SCHEDULE
STATIC)

 Fortran - PARALLEL DO Directive Example

 PROGRAM VECTOR_ADD

 INTEGER N, I, CHUNKSIZE, CHUNK
 PARAMETER (N=1000)
 PARAMETER (CHUNKSIZE=100)
 REAL A(N), B(N), C(N)

! Some initializations
 DO I = 1, N
 A(I) = I * 1.0
 B(I) = A(I)
 ENDDO
 CHUNK = CHUNKSIZE

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (24 of 59) [2003-11-4 8:59:47]

http://www.llnl.gov/computing/tutorials/openMP/#Clauses

OpenMP

!$OMP PARALLEL DO
!$OMP& SHARED(A,B,C,CHUNK) PRIVATE(I)
!$OMP& SCHEDULE(STATIC,CHUNK)

 DO I = 1, N
 C(I) = A(I) + B(I)
 ENDDO

!$OMP END PARALLEL DO

 END

 C / C++ - parallel for Directive Example

#include <omp.h>
#define N 1000
#define CHUNKSIZE 100

main () {

int i, chunk;
float a[N], b[N], c[N];

/* Some initializations */
for (i=0; i < N; i++)
 a[i] = b[i] = i * 1.0;
chunk = CHUNKSIZE;

#pragma omp parallel for \
 shared(a,b,c,chunk) private(i) \
 schedule(static,chunk)
 for (i=0; i < n; i++)
 c[i] = a[i] + b[i];
}

OpenMP Directives

Combined Parallel Work-Sharing Constructs
PARALLEL SECTIONS Directive

 Purpose:

● The PARALLEL SECTIONS directive specifies a parallel region containing a single SECTIONS directive.
The single SECTIONS directive must follow immediately as the very next statement.

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (25 of 59) [2003-11-4 8:59:47]

OpenMP

 Format:

Fortran

!$OMP PARALLEL SECTIONS [clause ...]
 DEFAULT (PRIVATE | SHARED | NONE)
 SHARED (list)
 PRIVATE (list)
 FIRSTPRIVATE (list)
 LASTPRIVATE (list)
 REDUCTION (operator | intrinsic : list)
 COPYIN (list)
 ORDERED

 structured_block

!$OMP END PARALLEL SECTIONS

C/C++

#pragma omp parallel sections [clause ...] newline
 default (shared | none)
 shared (list)
 private (list)
 firstprivate (list)
 lastprivate (list)
 reduction (operator: list)
 copyin (list)
 ordered

 structured_block

 Clauses:

● The accepted clauses can be any of the clauses accepted by the PARALLEL and SECTIONS directives.
Clauses not previously discussed, are described in detail later, in the Data Scope Attribute Clauses section.

OpenMP Directives

Synchronization Constructs

● Consider a simple example where two threads on two different processors are both trying to increment a
variable x at the same time (assume x is initially 0):

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (26 of 59) [2003-11-4 8:59:47]

http://www.llnl.gov/computing/tutorials/openMP/#Clauses

OpenMP

THREAD 1:

increment(x)
{
 x = x + 1;
}

THREAD 1:

10 LOAD A, (x address)
20 ADD A, 1
30 STORE A, (x address)

THREAD 2:

increment(x)
{
 x = x + 1;
}

THREAD 2:

10 LOAD A, (x address)
20 ADD A, 1
30 STORE A, (x address)

● One possible execution sequence:
1. Thread 1 loads the value of x into register A.
2. Thread 2 loads the value of x into register A.
3. Thread 1 adds 1 to register A
4. Thread 2 adds 1 to register A
5. Thread 1 stores register A at location x
6. Thread 2 stores register A at location x

The resultant value of x will be 1, not 2 as it should be.

● To avoid a situation like this, the incrementation of x must be synchronized between the two threads to insure
that the correct result is produced.

● OpenMP provides a variety of Synchronization Constructs that control how the execution of each thread
proceeds relative to other team threads.

OpenMP Directives

Synchronization Constructs
MASTER Directive

 Purpose:

● The MASTER directive specifies a region that is to be executed only by the master thread of the team. All
other threads on the team skip this section of code

● There is no implied barrier associated with this directive

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (27 of 59) [2003-11-4 8:59:47]

OpenMP

 Format:

Fortran

!$OMP MASTER

 block

!$OMP END MASTER

C/C++

#pragma omp master newline

 structured_block

 Restrictions:

● It is illegal to branch into or out of MASTER block.

OpenMP Directives

Synchronization Constructs
CRITICAL Directive

 Purpose:

● The CRITICAL directive specifies a region of code that must be executed by only one thread at a time.

 Format:

Fortran

!$OMP CRITICAL [name]

 block

!$OMP END CRITICAL

C/C++

#pragma omp critical [name] newline

 structured_block

 Notes:

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (28 of 59) [2003-11-4 8:59:47]

OpenMP

● If a thread is currently executing inside a CRITICAL region and another thread reaches that CRITICAL
region and attempts to execute it, it will block until the first thread exits that CRITICAL region.

● The optional name enables multiple different CRITICAL regions to exist:
❍ Names act as global identifiers. Different CRITICAL regions with the same name are treated as the

same region.
❍ All CRITICAL sections which are unnamed, are treated as the same section.

 Restrictions:

● It is illegal to branch into or out of a CRITICAL block.

Example: CRITICAL Construct

● All threads in the team will attempt to execute in parallel, however, because of the CRITICAL construct
surrounding the increment of x, only one thread will be able to read/increment/write x at any time

 Fortran - CRITICAL Directive Example

 PROGRAM CRITICAL

 INTEGER X
 X = 0

!$OMP PARALLEL SHARED(X)

!$OMP CRITICAL
 X = X + 1
!$OMP END CRITICAL

!$OMP END PARALLEL

 END

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (29 of 59) [2003-11-4 8:59:47]

OpenMP

 C / C++ - critical Directive Example

#include <omp.h>

main()
{

int x;
x = 0;

#pragma omp parallel shared(x)
 {

 #pragma omp critical
 x = x + 1;

 } /* end of parallel section */

}

OpenMP Directives

Synchronization Constructs
BARRIER Directive

 Purpose:

● The BARRIER directive synchronizes all threads in the team.

● When a BARRIER directive is reached, a thread will wait at that point until all other threads have reached
that barrier. All threads then resume executing in parallel the code that follows the barrier.

 Format:

Fortran
!$OMP BARRIER

C/C++
#pragma omp barrier newline

 Restrictions:

● For C/C++, the smallest statement that contains a barrier must be a structured block. For example:

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (30 of 59) [2003-11-4 8:59:47]

OpenMP

WRONG RIGHT

if (x == 0)
 #pragma omp barrier

if (x == 0)
 {
 #pragma omp barrier
 }

OpenMP Directives

Synchronization Constructs
ATOMIC Directive

 Purpose:

● The ATOMIC directive specifies that a specific memory location must be updated atomically, rather than
letting multiple threads attempt to write to it. In essence, this directive provides a mini-CRITICAL section.

 Format:

Fortran

!$OMP ATOMIC

 statement_expression

C/C++

#pragma omp atomic newline

 statement_expression

 Restrictions:

● The directive applies only to a single, immediately following statement

● An atomic statement must have one of the following forms:

Fortran C / C++

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (31 of 59) [2003-11-4 8:59:47]

OpenMP

x = x operator expr
x = expr operator x
x = intrinsic(x, expr)
x = intrinsic(expr, x)

x binop = expr
x++
++x
x--
--x

x is a scalar variable
expr is a scalar expression that does not
reference x
intrinsic is one of MAX, MIN, IAND, IOR, or
IEOR
operator is one of +, *, -, /, .AND., .OR.,
.EQV., or .NEQV.

x is a scalar variable
expr is a scalar expression that does not
reference x
binop is not overloaded, and is one of +, *, -, /,
&, ^, |, >>, or <<

● Note: Only the load and store of x are atomic; the evaluation of the expression is not atomic.

OpenMP Directives

Synchronization Constructs
FLUSH Directive

 Purpose:

● The FLUSH directive identifies a synchronization point at which the implementation must provide a
consistent view of memory. Thread-visible variables are written back to memory at this point.

 Format:

Fortran !$OMP FLUSH (list)

C/C++
#pragma omp flush (list) newline

 Notes:

● Thread-visible variables include:

❍ Globally visible variables (common blocks and modules)

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (32 of 59) [2003-11-4 8:59:47]

OpenMP

❍ Local variables that do not have the SAVE attribute but have had their address used by another
subprogram

❍ Local variables that do not have the SAVE attribute that are declared shared in a parallel region within
the subprogram

❍ Dummy arguments
❍ All pointer dereferences

● The optional list contains a list of named variables that will be flushed in order to avoid flushing all variables.
For pointers in the list, note that the pointer itself is flushed, not the object it points to.

● Implementations must ensure any prior modifications to thread-visible variables are visible to all threads after
this point; ie. compilers must restore values from registers to memory, hardware might need to flush write
buffers, etc

● The FLUSH directive is implied for the directives shown in the table below. The directive is not implied if a
NOWAIT clause is present.

Fortran C / C++

BARRIER
CRITICAL and END CRITICAL
END DO
END PARALLEL
END SECTIONS
END SINGLE
ORDERED and END ORDERED

barrier
critical- upon entry and exit
ordered- upon entry and exit
parallel- upon exit
for- upon exit
sections- upon exit
single- upon exit

OpenMP Directives

Synchronization Constructs
ORDERED Directive

 Purpose:

● The ORDERED directive specifies that iterations of the enclosed loop will be executed in the same order as if
they were executed on a serial processor.

 Format:

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (33 of 59) [2003-11-4 8:59:47]

OpenMP

Fortran

!$OMP ORDERED

 (block)

!$OMP END ORDERED

C/C++

#pragma omp ordered newline

 structured_block

 Restrictions:

● An ORDERED directive can only appear in the dynamic extent of the following directives:
❍ DO or PARALLEL DO (Fortran)
❍ for or parallel for (C/C++)

● Only one thread is allowed in an ordered section at any time

● It is illegal to branch into or out of an ORDERED block.

● An iteration of a loop must not execute the same ORDERED directive more than once, and it must not
execute more than one ORDERED directive.

● A loop which contains an ORDERED directive, must be a loop with an ORDERED clause.

OpenMP Directives

THREADPRIVATE Directive

 Purpose:

● The THREADPRIVATE directive is used to make global file scope variables (C/C++) or common blocks
(Fortran) local and persistent to a thread through the execution of multiple parallel regions.

 Format:

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (34 of 59) [2003-11-4 8:59:47]

OpenMP

Fortran
!$OMP THREADPRIVATE (/cb/, ...) cb is the name of a common block

C/C++
#pragma omp threadprivate (list)

 Notes:

● The directive must appear after the declaration of listed variables/common blocks. Each thread then gets its
own copy of the variable/common block, so data written by one thread is not visible to other threads. For
example:

 Fortran - THREADPRIVATE Directive Example

 PROGRAM THREADPRIV

 INTEGER ALPHA(10), BETA(10), I
 COMMON /A/ ALPHA

!$OMP THREADPRIVATE(/A/)

C First parallel region
!$OMP PARALLEL PRIVATE(BETA, I)
 DO I=1,10
 ALPHA(I) = I
 BETA(I) = I
 END DO
!$OMP END PARALLEL

C Second parallel region
!$OMP PARALLEL
 PRINT *, 'ALPHA(3)=',ALPHA(3), ' BETA(3)=',BETA(3)
!$OMP END PARALLEL

 END

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (35 of 59) [2003-11-4 8:59:47]

OpenMP

 C/C++ - threadprivate Directive Example

int alpha[10], beta[10], i;
#pragma omp threadprivate(alpha)

main () {

/* First parallel region */
#pragma omp parallel private(i,beta)
 for (i=0; i < 10; i++)
 alpha[i] = beta[i] = i;

/* Second parallel region */
#pragma omp parallel
 printf("alpha[3]= %d and beta[3]= %d\n",alpha[3],beta[3]);

}

● On first entry to a parallel region, data in THREADPRIVATE variables and common blocks should be
assumed undefined, unless a COPYIN clause is specified in the PARALLEL directive

● THREADPRIVATE variables differ from PRIVATE variables (discussed later) because they are able to
persist between different parallel sections of a code.

 Restrictions:

● Data in THREADPRIVATE objects is guaranteed to persist only if the dynamic threads mechanism is "turned
off" and the number of threads in different parallel regions remains constant. The default setting of dynamic
threads is undefined.

● The THREADPRIVATE directive must appear after every declaration of a thread private variable/common
block.

● Fortran: only named common blocks can be made THREADPRIVATE.

OpenMP Directives

Data Scope Attribute Clauses

● An important consideration for OpenMP programming is the understanding and use of data scoping

● Because OpenMP is based upon the shared memory programming model, most variables are shared by
default

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (36 of 59) [2003-11-4 8:59:47]

OpenMP

● Global variables include:
❍ Fortran: COMMON blocks, SAVE variables, MODULE variables
❍ C: File scope variables, static

● Private variables include:
❍ Loop index variables
❍ Stack variables in subroutines called from parallel regions
❍ Fortran: Automatic variables within a statement block

● The OpenMP Data Scope Attribute Clauses are used to explicitly define how variables should be scoped.
They include:

❍ PRIVATE
❍ FIRSTPRIVATE
❍ LASTPRIVATE
❍ SHARED
❍ DEFAULT
❍ REDUCTION
❍ COPYIN

● Data Scope Attribute Clauses are used in conjunction with several directives (PARALLEL, DO/for, and
SECTIONS) to control the scoping of enclosed variables.

● These constructs provide the ability to control the data environment during execution of parallel constructs.

❍ They define how and which data variables in the serial section of the program are transferred to the
parallel sections of the program (and back)

❍ They define which variables will be visible to all threads in the parallel sections and which variables
will be privately allocated to all threads.

● Note: Data Scope Attribute Clauses are effective only within their lexical/static extent.

● See the Clauses / Directives Summary Table for the associations between directives and clauses.

PRIVATE Clause

 Purpose:

● The PRIVATE clause declares variables in its list to be private to each thread.

 Format:

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (37 of 59) [2003-11-4 8:59:47]

http://www.llnl.gov/computing/tutorials/openMP/#ClausesDirectives

OpenMP

Fortran PRIVATE (list)

C/C++
private (list)

 Notes:

● PRIVATE variables behave as follows:

❍ A new object of the same type is declared once for each thread in the team

❍ All references to the original object are replaced with references to the new object

❍ Variables declared PRIVATE are uninitialized for each thread

● Comparison between PRIVATE and THREADPRIVATE:

 PRIVATE THREADPRIVATE

Data Item C/C++: variable
Fortran: variable or common
block

C/C++: variable
Fortran: common block

Where Declared At start of region or work-sharing
group

In declarations of each routine using
block or global file scope

Persistent? No Yes

Extent Lexical only - unless passed as
an argument to subroutine

Dynamic

Initialized Use FIRSTPRIVATE Use COPYIN

 Questions:

For the C/C++ and Fortran THREADPRIVATE example codes, what output would you expect for
alpha[3] and beta[3]? Why?

SHARED Clause

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (38 of 59) [2003-11-4 8:59:47]

http://www.llnl.gov/computing/tutorials/openMP/#ThreadprivateExamples

OpenMP

 Purpose:

● The SHARED clause declares variables in its list to be shared among all threads in the team.

 Format:

Fortran SHARED (list)

C/C++
shared (list)

 Notes:

● A shared variable exists in only one memory location and all threads can read or write to that address

● It is the programmer's responsibility to ensure that multiple threads properly access SHARED variables (such
as via CRITICAL sections)

DEFAULT Clause

 Purpose:

● The DEFAULT clause allows the user to specify a default PRIVATE, SHARED, or NONE scope for all
variables in the lexical extent of any parallel region.

 Format:

Fortran DEFAULT (PRIVATE | SHARED | NONE)

C/C++
default (shared | none)

 Notes:

● Specific variables can be exempted from the default using the PRIVATE, SHARED, FIRSTPRIVATE,

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (39 of 59) [2003-11-4 8:59:47]

OpenMP

LASTPRIVATE, and REDUCTION clauses

● The C/C++ OpenMP specification does not include "private" as a possible default. However, actual
implementations may provide this option.

 Restrictions:

● Only one DEFAULT clause can be specified on a PARALLEL directive

FIRSTPRIVATE Clause

 Purpose:

● The FIRSTPRIVATE clause combines the behavior of the PRIVATE clause with automatic initialization of
the variables in its list.

 Format:

Fortran FIRSTPRIVATE (list)

C/C++
firstprivate (list)

 Notes:

● Listed variables are initialized according to the value of their original objects prior to entry into the parallel or
work-sharing construct.

LASTPRIVATE Clause

 Purpose:

● The LASTPRIVATE clause combines the behavior of the PRIVATE clause with a copy from the last loop
iteration or section to the original variable object.

 Format:

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (40 of 59) [2003-11-4 8:59:47]

OpenMP

Fortran LASTPRIVATE (list)

C/C++
lastprivate (list)

 Notes:

● The value copied back into the original variable object is obtained from the last (sequentially) iteration or
section of the enclosing construct.

For example, the team member which executes the final iteration for a DO section, or the team member which
does the last SECTION of a SECTIONS context performs the copy with its own values

COPYIN Clause

 Purpose:

● The COPYIN clause provides a means for assigning the same value to THREADPRIVATE variables for all
threads in the team.

 Format:

Fortran COPYIN (list)

C/C++
copyin (list)

 Notes:

● List contains the names of variables to copy. In Fortran, the list can contain both the names of common blocks
and named variables.

● The master thread variable is used as the copy source. The team threads are initialized with its value upon
entry into the parallel construct.

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (41 of 59) [2003-11-4 8:59:47]

OpenMP

REDUCTION Clause

 Purpose:

● The REDUCTION clause performs a reduction on the variables that appear in its list.

● A private copy for each list variable is created for each thread. At the end of the reduction, the reduction
variable is applied to all private copies of the shared variable, and the final result is written to the global
shared variable.

 Format:

Fortran REDUCTION (operator|intrinsic: list)

C/C++
reduction (operator: list)

 Example: REDUCTION - Vector Dot Product:

● Iterations of the parallel loop will be distributed in equal sized blocks to each thread in the team (SCHEDULE
STATIC)

● At the end of the parallel loop construct, all threads will add their values of "result" to update the master
thread's global copy.

 Fortran - REDUCTION Clause Example

 PROGRAM DOT_PRODUCT

 INTEGER N, CHUNKSIZE, CHUNK, I
 PARAMETER (N=100)
 PARAMETER (CHUNKSIZE=10)
 REAL A(N), B(N), RESULT

! Some initializations
 DO I = 1, N
 A(I) = I * 1.0
 B(I) = I * 2.0
 ENDDO
 RESULT= 0.0
 CHUNK = CHUNKSIZE

!$OMP PARALLEL DO

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (42 of 59) [2003-11-4 8:59:47]

OpenMP

!$OMP& DEFAULT(SHARED) PRIVATE(I)
!$OMP& SCHEDULE(STATIC,CHUNK)
!$OMP& REDUCTION(+:RESULT)

 DO I = 1, N
 RESULT = RESULT + (A(I) * B(I))
 ENDDO

!$OMP END DO NOWAIT

 PRINT *, 'Final Result= ', RESULT
 END

 C / C++ - reduction Clause Example

#include <omp.h>

main () {

int i, n, chunk;
float a[100], b[100], result;

/* Some initializations */
n = 100;
chunk = 10;
result = 0.0;
for (i=0; i < n; i++)
 {
 a[i] = i * 1.0;
 b[i] = i * 2.0;
 }

#pragma omp parallel for \
 default(shared) private(i) \
 schedule(static,chunk) \
 reduction(+:result)

 for (i=0; i < n; i++)
 result = result + (a[i] * b[i]);

printf("Final result= %f\n",result);

}

 Restrictions:

● Variables in the list must be named scalar variables. They can not be array or structure type variables. They
must also be declared SHARED in the enclosing context.

● Reduction operations may not be associative for real numbers.

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (43 of 59) [2003-11-4 8:59:47]

OpenMP

● The REDUCTION clause is intended to be used on a region or work-sharing construct in which the reduction
variable is used only in statements which have one of following forms:

Fortran C / C++

x = x operator expr
x = expr operator x (except subtraction)
x = intrinsic(x, expr)
x = intrinsic(expr, x)

x = x op expr
x = expr op x (except subtraction)
x binop = expr
x++
++x
x--
--x

x is a scalar variable in the list
expr is a scalar expression that does not reference
x
intrinsic is one of MAX, MIN, IAND, IOR,
IEOR
operator is one of +, *, -, .AND., .OR., .EQV.,
.NEQV.

x is a scalar variable in the list
expr is a scalar expression that does not
reference x
op is not overloaded, and is one of +, *, -, /,
&, ^, |, &&, ||
binop is not overloaded, and is one of +, *, -
, /, &, ^, |

OpenMP Directives

Clauses / Directives Summary

● The table below summarizes which clauses are accepted by which OpenMP directives.

Clause

Directive

PARALLEL DO/for SECTIONS SINGLE
PARALLEL
DO/for

PARALLEL
SECTIONS

IF

PRIVATE

SHARED

DEFAULT

FIRSTPRIVATE

LASTPRIVATE

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (44 of 59) [2003-11-4 8:59:47]

OpenMP

REDUCTION

COPYIN

SCHEDULE

ORDERED

NOWAIT

● The following OpenMP directives do not accept clauses:
❍ MASTER
❍ CRITICAL
❍ BARRIER
❍ ATOMIC
❍ FLUSH
❍ ORDERED
❍ THREADPRIVATE

● Implementations may (and do) differ from the standard in which clauses are supported by each directive.

OpenMP Directives

Directive Binding and Nesting Rules

This section is provided mainly as a quick reference on rules which govern OpenMP directives and binding.
Users should consult their implementation documentation and the OpenMP standard for other rules and
restrictions.

● Unless indicated otherwise, rules apply to both Fortran and C/C++ OpenMP implementations.

● Note: the Fortran API also defines a number of Data Environment rules. Those have not been reproduced
here.

 Directive Binding:

● The DO/for, SECTIONS, SINGLE, MASTER and BARRIER directives bind to the dynamically enclosing
PARALLEL, if one exists. If no parallel region is currently being executed, the directives have no effect.

● The ORDERED directive binds to the dynamically enclosing DO/for.

● The ATOMIC directive enforces exclusive access with respect to ATOMIC directives in all threads, not just
the current team.

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (45 of 59) [2003-11-4 8:59:47]

OpenMP

● The CRITICAL directive enforces exclusive access with respect to CRITICAL directives in all threads, not
just the current team.

● A directive can never bind to any directive outside the closest enclosing PARALLEL.

 Directive Nesting:

● A PARALLEL directive dynamically inside another PARALLEL directive logically establishes a new team,
which is composed of only the current thread unless nested parallelism is enabled.

● DO/for, SECTIONS, and SINGLE directives that bind to the same PARALLEL are not allowed to be nested
inside of each other.

● DO/for, SECTIONS, and SINGLE directives are not permitted in the dynamic extent of CRITICAL,
ORDERED and MASTER regions.

● CRITICAL directives with the same name are not permitted to be nested inside of each other.

● BARRIER directives are not permitted in the dynamic extent of DO/for, ORDERED, SECTIONS, SINGLE,
MASTER and CRITICAL regions.

● MASTER directives are not permitted in the dynamic extent of DO/for, SECTIONS and SINGLE directives.

● ORDERED directives are not permitted in the dynamic extent of CRITICAL regions.

● Any directive that is permitted when executed dynamically inside a PARALLEL region is also legal when
executed outside a parallel region. When executed dynamically outside a user-specified parallel region, the
directive is executed with respect to a team composed of only the master thread.

Run-Time Library Routines

● The OpenMP standard defines an API for library calls that perform a variety of functions:

❍ Query the number of threads/processors, set number of threads to use

❍ General purpose locking routines (semaphores)

❍ Set execution environment functions: nested parallelism, dynamic adjustment of threads.

● For C/C++, it may be necessary to specify the include file "omp.h".

● For the Lock routines/functions:

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (46 of 59) [2003-11-4 8:59:47]

OpenMP

❍ The lock variable must be accessed only through the locking routines

❍ For Fortran, the lock variable should be of type integer and of a kind large enough to hold an address.

❍ For C/C++, the lock variable must have type omp_lock_t or type omp_nest_lock_t, depending
on the function being used.

● Implementation notes:

Current OpenMP implementations for the SP (IBM and KAI) do not implement nested parallelism
routines. KAI does implement dynamic threads library routines.

OMP_SET_NUM_THREADS

 Purpose:

● Sets the number of threads that will be used in the next parallel region.

 Format:

Fortran
SUBROUTINE OMP_SET_NUM_THREADS(scalar_integer_expression)

C/C++
void omp_set_num_threads(int num_threads)

 Notes & Restrictions:

● The dynamic threads mechanism modifies the effect of this routine.
❍ Enabled: specifies the maximum number of threads that can be used for any parallel region by the

dynamic threads mechanism.
❍ Disabled: specifies exact number of threads to use until next call to this routine.

● This routine can only be called from the serial portions of the code

● This call has precedence over the OMP_NUM_THREADS environment variable

OMP_GET_NUM_THREADS

 Purpose:

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (47 of 59) [2003-11-4 8:59:47]

OpenMP

● Returns the number of threads that are currently in the team executing the parallel region from which it is
called.

 Format:

Fortran
INTEGER FUNCTION OMP_GET_NUM_THREADS()

C/C++
int omp_get_num_threads(void)

 Notes & Restrictions:

● If this call is made from a serial portion of the program, or a nested parallel region that is serialized, it will
return 1.

● The default number of threads is implementation dependent.

OMP_GET_MAX_THREADS

 Purpose:

● Returns the maximum value that can be returned by a call to the OMP_GET_NUM_THREADS function.

Fortran
INTEGER FUNCTION OMP_GET_MAX_THREADS()

C/C++
int omp_get_max_threads(void)

 Notes & Restrictions:

● Generally reflects the number of threads as set by the OMP_NUM_THREADS environment variable or the
OMP_SET_NUM_THREADS() library routine.

● May be called from both serial and parallel regions of code.

OMP_GET_THREAD_NUM

 Purpose:

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (48 of 59) [2003-11-4 8:59:47]

OpenMP

● Returns the thread number of the thread, within the team, making this call. This number will be between 0
and OMP_GET_NUM_THREADS-1. The master thread of the team is thread 0

 Format:

Fortran
INTEGER FUNCTION OMP_GET_THREAD_NUM()

C/C++
int omp_get_thread_num(void)

 Notes & Restrictions:

● If called from a nested parallel region, or a serial region, this function will return 0.

 Examples:

● Example 1 is the correct way to determine the number of threads in a parallel region.
● Example 2 is incorrect - the TID variable must be PRIVATE
● Example 3 is incorrect - the OMP_GET_THREAD_NUM call is outside the parallel region

 Fortran - determining the number of threads in a parallel region

Example 1: Correct

 PROGRAM HELLO

 INTEGER TID, OMP_GET_THREAD_NUM

!$OMP PARALLEL PRIVATE(TID)

 TID = OMP_GET_THREAD_NUM()
 PRINT *, 'Hello World from thread = ', TID

 ...

!$OMP END PARALLEL

 END

Example 2: Incorrect

 PROGRAM HELLO

 INTEGER TID, OMP_GET_THREAD_NUM

!$OMP PARALLEL

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (49 of 59) [2003-11-4 8:59:47]

OpenMP

 TID = OMP_GET_THREAD_NUM()
 PRINT *, 'Hello World from thread = ', TID

 ...

!$OMP END PARALLEL

 END

Example 3: Incorrect

 PROGRAM HELLO

 INTEGER TID, OMP_GET_THREAD_NUM

 TID = OMP_GET_THREAD_NUM()
 PRINT *, 'Hello World from thread = ', TID

!$OMP PARALLEL

 ...

!$OMP END PARALLEL

 END

OMP_GET_NUM_PROCS

 Purpose:

● Returns the number of processors that are available to the program.

 Format:

Fortran
INTEGER FUNCTION OMP_GET_NUM_PROCS()

C/C++
int omp_get_num_procs(void)

OMP_IN_PARALLEL

 Purpose:

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (50 of 59) [2003-11-4 8:59:47]

OpenMP

● May be called to determine if the section of code which is executing is parallel or not.

 Format:

Fortran
LOGICAL FUNCTION OMP_IN_PARALLEL()

C/C++
int omp_in_parallel(void)

 Notes & Restrictions:

● For Fortran, this function returns .TRUE. if it is called from the dynamic extent of a region executing in
parallel, and .FALSE. otherwise. For C/C++, it will return a non-zero integer if parallel, and zero otherwise.

OMP_SET_DYNAMIC

 Purpose:

● Enables or disables dynamic adjustment (by the run time system) of the number of threads available for
execution of parallel regions.

 Format:

Fortran
SUBROUTINE OMP_SET_DYNAMIC(scalar_logical_expression)

C/C++
void omp_set_dynamic(int dynamic_threads)

 Notes & Restrictions:

● For Fortran, if called with .TRUE. then the number of threads available for subsequent parallel regions can be
adjusted automatically by the run-time environment. If called with .FALSE., dynamic adjustment is disabled.

● For C/C++, if dynamic_threads evaluates to non-zero, then the mechanism is enabled, otherwise it is disabled.

● The OMP_SET_DYNAMIC subroutine has precedence over the OMP_DYNAMIC environment variable.

● The default setting is implementation dependent.

● Must be called from a serial section of the program.

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (51 of 59) [2003-11-4 8:59:48]

OpenMP

OMP_GET_DYNAMIC

 Purpose:

● Used to determine if dynamic thread adjustment is enabled or not.

 Format:

Fortran
LOGICAL FUNCTION OMP_GET_DYNAMIC()

C/C++
int omp_get_dynamic(void)

 Notes & Restrictions:

● For Fortran, this function returns .TRUE. if dynamic thread adjustment is enabled, and .FALSE. otherwise.

● For C/C++, non-zero will be returned if dynamic thread adjustment is enabled, and zero otherwise.

OMP_SET_NESTED

 Purpose:

● Used to enable or disable nested parallelism.

 Format:

Fortran
SUBROUTINE OMP_SET_NESTED(scalar_logical_expression)

C/C++
void omp_set_nested(int nested)

 Notes & Restrictions:

● For Fortran, calling this function with .FALSE. will disable nested parallelism, and calling with .TRUE. will
enable it.

● For C/C++, if nested evaluates to non-zero, nested parallelism is enabled; otherwise it is disabled.

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (52 of 59) [2003-11-4 8:59:48]

OpenMP

● The default is for nested parallelism to be disabled.

● This call has precedence over the OMP_NESTED environment variable

OMP_GET_NESTED

 Purpose:

● Used to determine if nested parallelism is enabled or not.

 Format:

Fortran
LOGICAL FUNCTION OMP_GET_NESTED

C/C++
void omp_get_nested

 Notes & Restrictions:

● For Fortran, this function returns .TRUE. if nested parallelism is enabled, and .FALSE. otherwise.

● For C/C++, non-zero will be returned if nested parallelism is enabled, and zero otherwise.

OMP_INIT_LOCK

 Purpose:

● This subroutine initializes a lock associated with the lock variable.

 Format:

Fortran
SUBROUTINE OMP_INIT_LOCK(var)
SUBROUTINE OMP_INIT_NEST_LOCK(var)

C/C++
void omp_init_lock(omp_lock_t *lock)
void omp_init_nest_lock(omp_nest_lock_t *lock)

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (53 of 59) [2003-11-4 8:59:48]

OpenMP

 Notes & Restrictions:

● The initial state is unlocked

OMP_DESTROY_LOCK

 Purpose:

● This subroutine disassociates the given lock variable from any locks.

 Format:

Fortran
SUBROUTINE OMP_DESTROY_LOCK(var)
SUBROUTINE OMP_DESTROY_NEST_LOCK(var)

C/C++
void omp_destroy_lock(omp_lock_t *lock)
void omp_destroy_nest__lock(omp_nest_lock_t *lock)

 Notes & Restrictions:

● It is illegal to call this routine with a lock variable that is not initialized.

OMP_SET_LOCK

 Purpose:

● This subroutine forces the executing thread to wait until the specified lock is available. A thread is granted
ownership of a lock when it becomes available.

 Format:

Fortran
SUBROUTINE OMP_SET_LOCK(var)
SUBROUTINE OMP_SET_NEST_LOCK(var)

C/C++
void omp_set_lock(omp_lock_t *lock)
void omp_set_nest__lock(omp_nest_lock_t *lock)

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (54 of 59) [2003-11-4 8:59:48]

OpenMP

 Notes & Restrictions:

● It is illegal to call this routine with a lock variable that is not initialized.

OMP_UNSET_LOCK

 Purpose:

● This subroutine releases the lock from the executing subroutine.

 Format:

Fortran
SUBROUTINE OMP_UNSET_LOCK(var)
SUBROUTINE OMP_UNSET_NEST_LOCK(var)

C/C++
void omp_unset_lock(omp_lock_t *lock)
void omp_unset_nest__lock(omp_nest_lock_t *lock)

 Notes & Restrictions:

● It is illegal to call this routine with a lock variable that is not initialized.

OMP_TEST_LOCK

 Purpose:

● This subroutine attempts to set a lock, but does not block if the lock is unavailable.

 Format:

Fortran
SUBROUTINE OMP_TEST_LOCK(var)
SUBROUTINE OMP_TEST_NEST_LOCK(var)

C/C++
void omp_test_lock(omp_lock_t *lock)
void omp_test_nest__lock(omp_nest_lock_t *lock)

 Notes & Restrictions:

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (55 of 59) [2003-11-4 8:59:48]

OpenMP

● For Fortran, .TRUE. is returned if the lock was set successfully, otherwise .FALSE. is returned.

● For C/C++, non-zero is returned if the lock was set successfully, otherwise zero is returned.

● It is illegal to call this routine with a lock variable that is not initialized.

Environment Variables

● OpenMP provides four environment variables for controlling the execution of parallel code.

● All environment variable names are uppercase. The values assigned to them are not case sensitive.

OMP_SCHEDULE

Applies only to DO, PARALLEL DO (Fortran) and for, parallel for (C/C++) directives
which have their schedule clause set to RUNTIME. The value of this variable determines how
iterations of the loop are scheduled on processors. For example:

setenv OMP_SCHEDULE "guided, 4"
setenv OMP_SCHEDULE "dynamic"

OMP_NUM_THREADS

Sets the maximum number of threads to use during execution. For example:

setenv OMP_NUM_THREADS 8

OMP_DYNAMIC

Enables or disables dynamic adjustment of the number of threads available for execution of parallel
regions. Valid values are TRUE or FALSE. For example:

setenv OMP_DYNAMIC TRUE

OMP_NESTED

Enables or disables nested parallelism. Valid values are TRUE or FALSE. For example:

setenv OMP_NESTED TRUE

● Implementation notes:

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (56 of 59) [2003-11-4 8:59:48]

OpenMP

The current IBM OpenMP implementations (IBM and KAI) for the SP do not implement nested
parallelism. The KAI implementation does implement dynamic threads.

LLNL Specific Information and Recommendations

 LC OpenMP Implementations:

● OpenMP is fully supported in the native compilers of all IBM, Intel and Compaq systems. Additionally, the
KAI Guide products, which fully support OpenMP, are available on LC production machines.

● LC maintains different versions of compilers. For the most recent information, please see:
www.llnl.gov/asci/platforms/bluepac/CompsAvails.html

 Compiling:

● For IBM systems, use the flag -qsmp=omp

● For Intel systems, use the flag -openmp

● For Compaq systems, use the flag -omp

● For KAI on any system, there is no special OpenMP flag required.

 Documentation:

● IBM compiler documentation:
Vendor: www-4.ibm.com/software/ad/fortran and www-4.ibm.com/software/ad/caix
Locally: see the /usr/local/doc/xlf* and /usr/local/doc/xlc* files

● Intel compiler documentation:
Vendor: www.intel.com/software/products/compilers/
Locally: see the /usr/local/doc/ia32_ref and /usr/local/doc/intel_compilers files

● Compaq compiler documentation:
Vendor:

C (Developer's Toolkit): http://h30097.www3.hp.com/dtk
Fortran: http://h18009.www1.hp.com/fortran/docs
C++: http://h30097.www3.hp.com/cplus

Locally: see the relevant files in /usr/local/docs

● KAI C/C++ and Fortran compilers documentation:
Vendor: http://www.kai.com/

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (57 of 59) [2003-11-4 8:59:48]

http://www.llnl.gov/asci/platforms/bluepac/CompsAvails.html
http://www-4.ibm.com/software/ad/fortran
http://www-4.ibm.com/software/ad/caix
http://www.intel.com/software/products/compilers/
http://h30097.www3.hp.com/dtk
http://h18009.www1.hp.com/fortran/docs
http://h30097.www3.hp.com/cplus
http://www.kai.com/

OpenMP

Locally: see the /usr/local/doc/Guide* files

References and More Information

● The OpenMP web site.
http://www.openmp.org/

● "OpenMP C and C++ Application Program Interface, Version 1.0". OpenMP Architecture Review Board.
October 1998.

● "OpenMP Fortran Application Program Interface, Version 1.0". OpenMP Architecture Review Board.
October 1997.

● "OpenMP". Workshop presentation. John Engle, Lawrence Livermore National Laboratory. October, 1998.

● "OpenMP". Alliance 98 Tutorial. Faisel Saied, NCSA.

● "Introduction to OpenMP Using the KAP/PRO Toolset". Kuck & Associates, Inc.

● "Guide Reference Manual (C/C++ Edition, Version 3.6". Kuck & Associates, Inc.

● "Guide Reference Manual (Fortran Edition, Version 3.6". Kuck & Associates, Inc.

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (58 of 59) [2003-11-4 8:59:48]

http://www.openmp.org/

OpenMP

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (59 of 59) [2003-11-4 8:59:48]

	Local Disk
	OpenMP

	BHJAJOLFLHCALCEBNKACJDDGIHILMNDF:
	form1:
	f1:
	f2:
	f3:

