
Parallel Programming with MPI
on Clusters

Rusty Lusk
Mathematics and Computer Science Division

Argonne National Laboratory

(The rest of our group: Bill Gropp, Rob Ross,
David Ashton, Brian Toonen, Anthony Chan)

2

Outline
• Clusters are a significant component of high-

performance computing.
• MPI is a significant component of the programming

and execution environment on clusters.
• This talk touches on three components of the MPI

universe:
– The MPI Standard

• And why it has been “successful”
– Implementation issues and status

• With a little extra on MPICH
– Non-MPI software that interacts with MPI implementations

• Tools and environments
• An example MPI application

– Illustrates several points, excuse to show pretty pictures

(Duh!)

3

What is MPI?

• A message-passing library specification
– extended message-passing model
– not a language or compiler specification
– not a specific implementation or product

• For parallel computers, clusters, heterogeneous
networks

• Full-featured
• Designed to provide access to advanced parallel

hardware for
– end users
– library writers
– tool developers

4

Where Did MPI Come From?
• Early vendor systems (NX, EUI, CMMD) were not

portable.
• Early portable systems (PVM, p4, TCGMSG,

Chameleon) were mainly research efforts.
– Did not address the full spectrum of message-passing issues
– Lacked vendor support
– Were not implemented at the most efficient level

• The MPI Forum organized in 1992 with broad
participation by vendors, library writers, and end
users.

• MPI Standard (1.0) released June, 1994; many
implementation efforts.

• MPI-2 Standard (1.2 and 2.0) released July, 1997.
• MPI-2.1 being defined now to remove errors and

ambiguities.

5

MPI Sources

• The Standard itself:
– at http://www.mpi-forum.org

– All MPI official releases, in both postscript and HTML
• Books on MPI and MPI-2:

– MPI: The Complete Reference, volumes 1 and 2, MIT
Press, 1999.

– Using MPI: Portable Parallel Programming with the
Message-Passing Interface (2nd edition), by Gropp, Lusk,
and Skjellum, MIT Press, 1999.

– Using MPI-2: Extending the Message-Passing Interface, by
Gropp, Lusk, and Thakur, MIT Press, 1999

• Other information on Web:
– at http://www.mcs.anl.gov/mpi
– pointers to lots of stuff, including other talks and tutorials, a

FAQ, other people’s MPI pages

6

The MPI Standard Documentation

7

Tutorial Material on MPI, MPI-2

8

Why Has MPI Succeeded?
(Important to understand when contemplating alternatives)

• Open process of definition
– All invited, but hard work required
– All drafts and deliberations open at all times

• Portability
– Need not lead to lowest common denominator approach
– MPI semantics allow aggressive implementations

• Performance
– MPI can help manage the memory hierarchy
– Collective operations can provide scalability
– Cooperates with optimizing compilers

• Simplicity
– MPI-2 has 275 functions; is that a lot?
– Can write serious MPI applications with 6 functions
– Economy of concepts

9

Why Has MPI Succeeded?
(continued)

• Modularity
– MPI supports component-based software with

communicators
– Support for libraries means some applications may contain

no MPI calls
• Composability

– MPI works with other tools (compilers, debuggers, profiliers)
– Provides precise interactions with multithreaded programs

• Completeness
– Any parallel algorithm can be expressed
– Easy things are not always easy with MPI, but
– Hard things are possible

10

MPI Implementation Status

• All parallel computer vendors have MPI-1, and some
have complete MPI-2 implementations.

• Implementations for clusters
– MPICH, LAM, MPI-Pro have MPI-1, parts of MPI-2 for Linux

clusters
– For Windows2000, MPICH and MPIPro

• MPICH-derived special implementations
– Myricom’s MPICH-GM (for Myrinet)
– Globus’s MPICH-G2 (for multiple MPI’s)
– Scyld’s BeoMPI (for Scyld Beowulf clusters)
– LBL’s MVICH (for Linux clusters with VIA)
– Research implementations (e.g. BIPng)
– others

11

MPI Implementation
Research Issues and Topics

The existence of a standard API like MPI focuses implementation
research, like standard languages focus compiler research

• Datatypes
– Packing algorithms
– Exploiting MPI_Type_commit

• Memory motion reduction
– Eliminating interlayer copies
– Utilizing cache-aware data structures

• Portability and performance through lower-level communication
abstractions
– (useful even outside MPI)

• Better collective operation implementations
– Most implementations layer on point-to-point MPI
– Need stream-oriented methods that understand MPI datatypes

12

More Implementation Research
Issues and Topics

• Parallel I/O
– Exploiting MPI collective operations
– The abstract interface for parallel I/O
– Tuning for cluster parallel file systems (e.g. PVFS)

• Optimizing communication algorithms and data structures for
new hardware and software
– Infiniband
– VIA
– What can go on the NIC?

• Fault tolerance
– Intercommunicators can provide one approach

• Checkpointing
– Interfaces for saving state

• Exploiting multithreading at multiple levels
• Scalable startup

13

The MPICH Implementation of MPI

• As a research project: exploring tradeoffs between
performance and portability; conducting research in
implementation issues.

• As a software project: providing a free MPI
implementation on most machines; enabling vendors
and others to build complete MPI implementations on
their own communication services.

• MPICH 1.2.2.2 just released, with complete MPI-1, parts
of MPI-2 (I/O and C++), port to Windows2000.

• Available at http://www.mcs.anl.gov/mpi/mpich

14

MPICH-1 Design and Status

• MPICH’s architecture has
encouraged its use in
other projects and vendor
MPI’s.

• Limitations:
– Not thread-safe

(MPI_THREAD_FUNNELLED)
– No dynamic processes
– No RMA

• Most recent change:
– Fast startup with MPD

process manager

MPI

ADI

I/O

collective

pt-to-pt

TCP shmem GM TCP+shmemVIA

devices

ADIO

Parallel file systems

15

MPICH-2 Goals and Design
• Design goals

– Same as before:
• Portable and efficient
• Modular for use by others
• Implementation research

vehicle
– Plus:

• All of MPI-2
• All levels of thread

support
• Ready for next-

generation hardware
• Scalability a major goal

• Status
– Detailed design nearly

complete

MPI

ADI

methods

Multi-
method
device

Globus
device others

VIAshmemTCP others

16

MPI Works with Other Tools
• Since it is a library, MPI applications can use latest

compilers (e.g. new Intel C and Fortran compilers,
choice of Fortran compilers for Linux, Windows
compilers, OpenMP compilers.

• Since it supports libraries, it can be used to
implement other portable software components
– PETSc
– ScaLAPACK
– Global Arrays
– Paramesh
– HDF-5
– Autopack

• Since it is a specification, it encourages multiple
implementations and implementation research.

17

Interfaces Promote MPI
Application Use of Tools

• The MPI Profiling Interface
– Part of any conforming implementation
– Encourages commercial tools (e.g., GuideView, Vampir)
– Encourages open tools (e.g. Jumpshot, XMPI), personal tools

• The Debugger Interface (Cownie & Gropp, 1999)
– Allows debuggers access to message queues
– Used by TotalView
– Implemented by MPICH and other MPI implementations

• The Process Manager Interface (Butler, Lusk, & Gropp,
2000)
– Allows multiple Process Managers to provide startup and other

services to multiple MPI implementations
– Used by MPICH
– Implemented by MPD Process Manager (comes with MPICH)

18

MPI and OpenMP
• MPI provides interface (MPI_Thread_init) for requesting a specific level

of thread safety
– MPI_THREAD_SINGLE – single threaded
– MPI_THREAD_FUNNELLED – needed for loop parallelism
– MPI_THREAD_SERIAL – needed for “single” directive
– MPI_THREAD_MULTIPLE – needed for complete multithreading

• Thread-aware MPI tools: TotalView (Etnus) and GuideView (Pallas/Intel)

19

The MPI Implementation as a
Component of a Cluster Environment

• A component view of cluster system software

Usage
Reports

User DB

Accounting Scheduler

Job
Manager &

Monitor

System
Monitor

Queue
Manager

Checkpoint/
Restart

Data
Migration

Meta
Scheduler

Node
Configuration

& Build
Manager

Meta
Monitor

Meta
Manager

Resource
Allocation

management

Application Environment

High
Performance

Communication
& I/O

Access control
Security
manager

File
System

Interacts with
all components

User
utilities

20

An MPI Application

• Goal of the FLASH project: To simulate matter
accumulation on the surface of compact stars, nuclear
ignition of the accreted (and possibly underlying stellar)
material, and the subsequent evolution of the star’s
interior, surface, and exterior
• X-ray bursts (on neutron star surfaces)
• Novae (on white dwarf surfaces)
• Type Ia supernovae (in white dwarf interiors)

21

The FLASH Code

• Solves complex systems of equations for
hydrodynamics and nuclear burning

• Adaptive mesh refinement on rectangular grid
• Written primarily in Fortran-90

– A little C and Python

• Gordon Bell prize winner in 2000
• Illustrates nearly all aspects of MPI discussed here

22

Role of MPI in FLASH
• Provides Portability and Scalability (see next slide)
• Relies heavily on MPI-based libraries

– Uses Paramesh library for adaptive mesh refinement; Paramesh is
implemented with MPI; no MPI in FLASH itself

– Parallel I/O (for checkpointing, visualization, other purposes) done with
HDF-5 library, which is implemented with MPI-IO

• Debugged with TotalView, using standard debugger interface
• Tuned with Jumpshot and Vampir, using MPI profiling interface

23

FLASH Scaling Runs

1 10 100 1000
Number of Processors

100

1000
Ti

m
e

(s
)

24

X-Ray Burst on the Surface of a Neutron Star

25

Showing the AMR Grid

26

FLASH Scientific Results

' Wide range of compressibility
' Wide range of length and time scales
' Many interacting physical processes

Cellular detonations

Compressible turbulence

Helium burning on neutron stars
Rayleigh-Taylor instability

Richtmyer-Meshkov instability

Flame-vortex interactions

Laser-driven shock instabilities
Nova outbursts on white dwarfs

27

Future Developments in Parallel
Programming: MPI and Beyond

• MPI not perfect
• Any widely-used replacement will have to share the

properties that made MPI a success.
• Some directions (in decreasing order of

speculativeness)
– Improvements to MPI implementations

• Better collective operation performance, full MPI-2
– Improvements to the MPI definition

• E.g., better remote memory operations
– Continued evolution of libraries
– Interactions with compilers
– Further out: radically different programming models for

radically different architectures.

28

Summary

• MPI is a successful example of a community defining,
implementing, and adopting a standard programming
methodology.

• It happened because of the open MPI process, the
MPI design itself, and early implementation work.

• MPI research continues to refine implementations on
modern platforms, and this is the “main road” ahead.

• Tools that work with MPI programs are thus a good
investment.

• MPI provides portability and performance for complex
applications on a variety of architectures.

