
Using Platform LSF™ HPC Features
Version 8
Release date: January 2011

Last modified: January 10, 2011
Support: support@platform.com

Comments to: doc@platform.com

mailto:Support@platform.com?Subject=LSF%20Support%20Request
mailto:doc@platform.com?Subject=LSF%20Documentation%20Feedback

Copyright © 1994-2011, Platform Computing Inc.

We’d like to hear from
you

You can help us make this document better by telling us what you think of the content,
organization, and usefulness of the information. If you find an error, or just want to make a
suggestion for improving this document, please address your comments to
doc@platform.com.

Your comments should pertain only to Platform documentation. For product support, contact
support@platform.com.

Although the information in this document has been carefully reviewed, Platform Computing
Inc. (“Platform”) does not warrant it to be free of errors or omissions. Platform reserves the
right to make corrections, updates, revisions or changes to the information in this document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS
DOCUMENT IS PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL PLATFORM
COMPUTING BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR
SAVINGS, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS PROGRAM.

Document redistribution and translation
This document is protected by copyright and you may not redistribute or translate it into
another language, in part or in whole.

Internal redistribution You may only redistribute this document internally within your organization (for
example, on an intranet) provided that you continue to check the Platform Web site
for updates and update your version of the documentation. You may not make it
available to your organization over the Internet.

Trademarks LSF is a registered trademark of Platform Computing Inc. in the United States and in other
jurisdictions.

PLATFORM COMPUTING, PLATFORM SYMPHONY, PLATFORM JOBSCHEDULER, PLATFORM
ENTERPRISE GRID ORCHESTRATOR, PLATFORM EGO, PLATFORM VM ORCHESTRATOR,
PLATFORM VMO, ACCELERATING INTELLIGENCE, and the PLATFORM and PLATFORM LSF logos
are trademarks of Platform Computing Inc. in the United States and in other jurisdictions.

UNIX is a registered trademark of The Open Group in the United States and in other
jurisdictions.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the
United States and/or other countries.

Windows is a registered trademark of Microsoft Corporation in the United States and other
countries.

Macrovision, Globetrotter, and FLEXlm are registered trademarks or trademarks of
Macrovision Corporation in the United States of America and/or other countries.

Topspin is a registered trademark of Topspin Communications, Inc.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Other products or services mentioned in this document are identified by the trademarks or
service marks of their respective owners.

Third Party License Agreements
http://www.platform.com/legal-notices/third-party-license-agreements

mailto:doc@platform.com?Subject=Platform%20Documentation%20Feedback
mailto:support@platform.com

Contents
1 About Platform LSF HPC Features . . 7

What Are Platform LSF HPC Features? . . 8

HPC Components . 11

2 Running Parallel Jobs . 13

blaunch Distributed Application Framework 14

OpenMP Jobs . . 23

PVM Jobs . . 24

SGI Vendor MPI Support . 25

HP Vendor MPI Support . 28

LSF Generic Parallel Job Launcher Framework 30

How the Generic PJL Framework Works . . 31

Integration Method 1 . 37

Integration Method 2 . 39

Tuning PAM Scalability and Fault Tolerance 41

Running Jobs with Task Geometry . 42

Enforcing Resource Usage Limits for Parallel Tasks 45

Example Integration: LAM/MPI . 47

Tips for Writing PJL Wrapper Scripts . 55

Other Integration Options . . 57

3 Using Platform LSF with HP-UX Processor Sets 59

About HP-UX Psets . . 60

Configuring LSF with HP-UX Psets . . 63

Using LSF with HP-UX Psets . 66

4 Using Platform LSF with IBM POE . 71

Running IBM POE Jobs . . 72

Migrating IBM Load Leveler Job Scripts to Use LSF Options 79

Controlling Allocation and User Authentication for IBM POE Jobs 86

Submitting IBM POE Jobs over InfiniBand . . 89

5 Using Platform LSF with SGI Cpusets 91

About SGI cpusets . 92
Using Platform LSF HPC Features 3

4

Configuring LSF with SGI Cpusets . . 95

Using LSF with SGI Cpusets . 102

Using SGI Comprehensive System Accounting facility (CSA) 112

Using SGI User Limits Database (ULDB—IRIX only) 114

SGI Job Container and Process Aggregate Support 116

6 Using Platform LSF with LAM/MPI . . 119

About Platform LSF and LAM/MPI . 120

Configuring LSF to work with LAM/MPI . 122

Submitting LAM/MPI Jobs . 123

7 Using Platform LSF with MPICH-GM 125

About Platform LSF and MPICH-GM . 126

Configuring LSF to Work with MPICH-GM . 128

Submitting MPICH-GM Jobs . 130

Using AFS with MPICH-GM . 131

8 Using Platform LSF with MPICH-P4 . 133

About Platform LSF and MPICH-P4 . 134

Configuring LSF to Work with MPICH-P4 . 136

Submitting MPICH-P4 Jobs . 137

9 Using Platform LSF with MPICH2 . 139

About Platform LSF and MPICH2 . 140

Configuring LSF to Work with MPICH2 . 142

Building Parallel Jobs . 144

Submitting MPICH2 Jobs . 145

10 Using Platform LSF with MVAPICH . . 147

About Platform LSF and MVAPICH . 148

Configuring LSF to Work with MVAPICH . 150

Submitting MVAPICH Jobs . 151

11 Using Platform LSF with Intel® MPI . 153

About Platform LSF and the Intel® MPI Library 154

Configuring LSF to Work with Intel MPI . 156

Working with the Multi-purpose Daemon (MPD) 157

Submitting Intel MPI Jobs . 158

12 Using Platform LSF with Open MPI . 161

About Platform LSF and the Open MPI Library 162

Configuring LSF to Work with Open MPI . 164

Submitting Open MPI Jobs . 165
Using Platform LSF HPC Features

13 Using Platform LSF Parallel Application Integrations 167

Using LSF with ANSYS . 168

Using LSF with NCBI BLAST . 171

Using LSF with FLUENT . 172

Using LSF with Gaussian . 176

Using LSF with Lion Bioscience SRS . 177

Using LSF with LSTC LS-DYNA . 178

Using LSF with MSC Nastran . 184

14 Using Platform LSF with the Etnus TotalView® Debugger 187

How LSF Works with TotalView . 188

Running Jobs for TotalView Debugging . 190

Controlling and Monitoring Jobs Being Debugged in TotalView 193

Index . . 195
Using Platform LSF HPC Features 5

6
 Using Platform LSF HPC Features

C H A P T E R

1
About Platform LSF HPC Features

Contents ◆ “What Are Platform LSF HPC Features?” on page 8
◆ “HPC Components” on page 11
Using Platform LSF HPC Features 7

8

What Are Platform LSF HPC Features?
Platform LSF™ HPC features maximize the performance of High Performance
Computing (HPC) clusters.
Platform LSF is the industry standard workload management software product, it
provides load sharing in a distributed system and batch scheduling for compute-
intensive jobs. The HPC features provide support for:
◆ Dynamic resource discovery and allocation (resource reservation) for parallel batch

job execution
◆ Full job-level control of the distributed processes to ensure no processes will

become un-managed. This effectively reduces the possibility of one parallel job
causing severe disruption to an organization's computer service

◆ The standard MPI interface
◆ Heterogeneous resource-based batch job scheduling including job-level resource

usage enforcement

Advanced HPC scheduling policies
Platform LSF HPC features enhance the job management capability of your cluster
through advanced scheduling policies such as:
◆ Policy-based job preemption
◆ Advance reservation
◆ Memory and processor reservation
◆ Memory and processor backfill
◆ Cluster-wide resource allocation limits
◆ User and project-based fairshare scheduling
◆ Topology-aware scheduling

LSF daemons Run on every node to collect resource information such as processor load, memory
availability, interconnect states, and other host-specific as well as cluster-wide resources.
These agents coordinate to create a single system image of the cluster.

HPC workload
scheduler

Supports advanced HPC scheduling policies that match user demand with resource
supply.

Job-level runtime
resource

management

Control sequential and parallel jobs (terminate, suspend, resume, send signals) running
on the same host and across hosts. Configure and monitor job-level and system-wide
CPU, memory, swap, and other runtime resource usage limits.

Application integration support
Packaged application integrations and tailored HPC configurations make Platform LSF
ideal for Industrial Manufacturing, Life Sciences, Government and Research sites using
large-scale modeling and simulation parallel applications involving large amounts of
data. Platform LSF helps Computer-Aided Engineering (CAE) users reduce the cost of
manufacturing, and increase engineer productivity and the quality of results.
Platform LSF is integrated to work out of the box with many HPC applications, such as
LSTC LS-Dyna, FLUENT, ANSYS, MSC Nastran, Gaussian, Lion Bioscience SRS, and
NCBI BLAST.
Using Platform LSF HPC Features

Parallel application support
Platform LSF supports jobs using the following parallel job launchers:

POE The IBM Parallel Operating Environment (POE) interfaces with the Resource Manager
to allow users to run parallel jobs requiring dedicated access to the high performance
switch.
The LSF integration for IBM High-Performance Switch (HPS) systems provides
support for submitting POE jobs from AIX hosts to run on IBM HPS hosts.

OpenMP Platform LSF provides the ability to start parallel jobs that use OpenMP to
communicate between process on shared-memory machines and MPI to communicate
across networked and non-shared memory machines.

PVM Parallel Virtual Machine (PVM) is a parallel programming system distributed by Oak
Ridge National Laboratory. PVM programs are controlled by the PVM hosts file, which
contains host names and other information.

MPI The Message Passing Interface (MPI) is a portable library that supports parallel
programming. LSF supports several MPI implementations, includding MPICH, a joint
implementation of MPI by Argonne National Laboratory and Mississippi State
University. LSF also supports MPICH-P4, MPICH-GM, LAM/MPI, Intel® MPI, IBM
Message Passing Library (MPL) communication protocols, as well as SGI and HP-UX
vendor MPI integrations.

blaunch distributed application framework
Most MPI implementations and many distributed applications use rsh and ssh as their
task launching mechanism. The blaunch command provides a drop-in replacement for
rsh and ssh as a transparent method for launching parallel and distributed applications
within LSF.
Similar to the LSF lsrun command, blaunch transparently connects directly to the
RES/SBD on the remote host, and subsequently creates and tracks the remote tasks,
and provides the connection back to LSF. There no need to insert pam, taskstarter into
the rsh or ssh calling sequence, or configure any wrapper scripts.
blaunch supports the following core command line options as rsh and ssh:
◆ rsh host_name command
◆ ssh [user_name@]host_name command

All other rsh and ssh options are silently ignored.

Important: You cannot run blaunch directly from the LSF command line.

blaunch only works within an LSF job; it can only be used to launch tasks on remote
hosts that are part of a job allocation. It cannot be used as a standalone command. On
success blaunch exits with 0.

Windows blaunch is supported on Windows 2000 or later with the following exceptions:
◆ Only the following signals are supported: SIGKILL, SIGSTOP, SIGCONT.
◆ The -n option is not supported.
◆ CMD.exe /C <user command line> is used as an intermediate command shell when

-no-shell is not specified
Using Platform LSF HPC Features 9

10
◆ CMD.exe /C is not used when -no-shell is specified.
See“blaunch Distributed Application Framework” on page 14 for more information.

PAM
The Parallel Application Manager (PAM) is the point of control for LSF HPC features.
PAM interfaces the user application with LSF. For all parallel application processes
(tasks), PAM:
◆ Monitors and forwards control signals to parallel tasks
◆ Monitors resource usage while the user application is running
◆ Passes job-level resource limits to sbatchd for enforcement
◆ Collects resource usage information and exit status upon termination
See the Platform LSF Command Reference for more information about PAM.

Resizable jobs
Jobs running in HPC system integrations (psets, cpusets, etc.) cannot be resized.

Resource requirements
Jobs running in HPC system integrations (psets, cpusets, etc.) cannot have compound
resource requirements.
Jobs running in HPC system integrations (psets, cpusets, etc.) cannot have resource
requirements with compute unit strings (cu[...]).
When compound resource requirements are used at any level, an esub can create job-
level resource requirements which overwrite most application-level and queue-level
resource requirements. -R merge rules are explained in detail in Administering Platform
LSF.
Using Platform LSF HPC Features

HPC Components
HPC components take full advantage of the resources of LSF for resource selection and
batch job process invocation and control.

User requests Batch job submission to LSF using the bsub command.

mbatchd Master Batch Daemon (MBD) is the policy center for LSF. It maintains information
about batch jobs, hosts, users, and queues. All of this information is used in scheduling
batch jobs to hosts.

LIM Load Information Manager is a daemon process running on each execution host. LIM
monitors the load on its host and exchanges this information with the master LIM.
For batch submission the master LIM provides this information to mbatchd.
The master LIM resides on one execution host and collects information from the LIMs
on all other hosts in the cluster. If the master LIM becomes unavailable, another host
will automatically take over.

mpirun.lsf Reads the environment variable LSF_PJL_TYPE, and generates the appropriate
command line to invoke the PJL. The esub programs provided in LSF_SERVERDIR
set this variable to the proper type.

sbatchd Slave Batch Daemons (SBDs) are batch job execution agents residing on the execution
hosts. sbatchd receives jobs from mbatchd in the form of a job specification and
starts RES to run the job according the specification. sbatchd reports the batch job
status to mbatchd whenever job state changes.

blaunch The blaunch command provides a drop-in replacement for rsh and ssh as a
transparent method for launching parallel and distributed applications within LSF.

PAM Parallel Application Manager is the point of control for LSF HPC features. PAM
interfaces the user application with the LSF system.

RES Remote Execution Servers reside on each execution host. RES manages all remote tasks
and forwards signals, standard I/O, resources consumption data, and parallel job
information between PAM and the tasks.

PJL Parallel Job Launcher is any executable script or binary capable of starting parallel tasks
on all hosts assigned for a parallel job (for example, mpirun, poe, prun.)

TS TaskStarter is an executable responsible for starting a task on the local host and
reporting the process ID and host name to the PAM. TaskStarter is located in
LSF_BINDIR.

Application task The individual process of a parallel application

First execution
host

The host name at the top of the execution host list as determined by LSF. Starts PAM.

Execution hosts The most suitable hosts to execute the batch job as determined by LSF

esub.pjl_type LSF provides a generic esub to handle job submission requirements of your HPC
applications. Use the -a option of bsub to specify the application you are running.
For example, to submit a job to LAM/MPI:
bsub -a lammpi bsub_options mpirun.lsf myjob
Using Platform LSF HPC Features 11

12
The method name lammpi, uses the esub for LAM/MPI jobs
(LSF_SERVERDIR/esub.lammpi), which sets the environment variable
LSF_PJL_TYPE=lammpi. The job launcher, mpirun.lsf reads the environment
variable LSF_PJL_TYPE=lammpi, and generates the appropriate command line to
invoke LAM/MPI as the PJL to start the job.
Using Platform LSF HPC Features

C H A P T E R

2
Running Parallel Jobs

Contents ◆ “blaunch Distributed Application Framework” on page 14
◆ “OpenMP Jobs” on page 23
◆ “PVM Jobs” on page 24
◆ “SGI Vendor MPI Support” on page 25
◆ “HP Vendor MPI Support” on page 28
◆ “LSF Generic Parallel Job Launcher Framework” on page 30
◆ “How the Generic PJL Framework Works” on page 31

❖ “Integration Method 1” on page 37
❖ “Integration Method 2” on page 39

◆ “Tuning PAM Scalability and Fault Tolerance” on page 41
◆ “Running Jobs with Task Geometry” on page 42
◆ “Enforcing Resource Usage Limits for Parallel Tasks” on page 45
◆ “Example Integration: LAM/MPI” on page 47
◆ “Tips for Writing PJL Wrapper Scripts” on page 55
◆ “Other Integration Options” on page 57
Using Platform LSF HPC Features 13

14
blaunch Distributed Application Framework
Most MPI implementations and many distributed applications use rsh and ssh as their
task launching mechanism. The blaunch command provides a drop-in replacement for
rsh and ssh as a transparent method for launching parallel and distributed applications
within LSF.
The following figure illustrates blaunch processing:

About the blaunch command
Similar to the LSF lsrun command, blaunch transparently connects directly to the
RES/SBD on the remote host, and subsequently creates and tracks the remote tasks,
and provides the connection back to LSF. There no need to insert pam, taskstarter into
the rsh or ssh calling sequence, or configure any wrapper scripts.
blaunch supports the following core command line options as rsh and ssh:
◆ rsh host_name command
◆ ssh host_name command

Whereas the host name value for rsh and ssh can only be a single host name, you can
use the -z option to specify a space-delimited list of hosts where tasks are started in
parallel. All other rsh and ssh options are silently ignored.

Important: You cannot run blaunch directly from the command line as a standalone command.

blaunch only works within an LSF job; it can only be used to launch tasks on remote
hosts that are part of a job allocation. On success, blaunch exits with 0.
Windows: blaunch is supported on Windows 2000 or later with the following
exceptions:
◆ Only the following signals are supported: SIGKILL, SIGSTOP, SIGCONT.
Using Platform LSF HPC Features

◆ The -n option is not supported.
◆ CMD.EXE /C <user command line> is used as intermediate command shell when:

❖ -no-shell is not specified
◆ CMD.EXE /C is not used when -no-shell is specified.
◆ Windows Vista User Account Control must be configured correctly to run jobs.
See the Platform LSF Command Reference for more information about the blaunch
command.

LSF APIs for the blaunch distributed application framework
LSF provides the following APIs for programming your own applications to use the
blaunch distributed application framework:
◆ lsb_launch()—a synchronous API call to allow source level integration with

vendor MPI implementations. This API will launch the specified command (argv)
on the remote nodes in parallel. LSF must be installed before integrating your MPI
implementation with lsb_launch(). The lsb_launch() API requires the full
set of liblsf.so, libbat.so (or liblsf.a, libbat.a).

◆ lsb_getalloc()—allocates memory for a host list to be used for launching
parallel tasks through blaunch and the lsb_lanuch() API. It is the
responsibility of the caller to free the host list when it is no longer needed. On
success, the host list will be a list of strings. Before freeing host list, the individual
elements must be freed. An application using the lsb_getalloc() API is
assumed to be part of an LSF job, and that LSB_MCPU_HOSTS is set in the
environment.

See the Platform LSF API Reference for more information about these APIs.

The blaunch job environment
blaunch determines from the job environment what job it is running under, and what
the allocation for the job is. These can be determined by examining the environment
variables LSB_JOBID, LSB_JOBINDEX, and LSB_MCPU_HOSTS. If any of these
variables do not exist, blaunch exits with a non-zero value. Similarly, if blaunch is
used to start a task on a host not listed in LSB_MCPU_HOSTS, the command exits with
a non-zero value.
The job submission script contains the blaunch command in place of rsh or ssh. The
blaunch command does sanity checking of the environment to check for LSB_JOBID
and LSB_MCPU_HOSTS. The blaunch command contacts the job RES to validate
the information determined from the job environment. When the job RES receives the
validation request from blaunch, it registers with the root sbatchd to handle signals
for the job.
The job RES periodically requests resource usage for the remote tasks. This message
also acts as a heartbeat for the job. If a resource usage request is not made within a
certain period of time it is assumed the job is gone and that the remote tasks should be
shut down. This timeout is configurable in an application profile in
lsb.applications.
Using Platform LSF HPC Features 15

16
The blaunch command also honors the parameters LSB_CMD_LOG_MASK,
LSB_DEBUG_CMD, and LSB_CMD_LOGDIR when defined in lsf.conf or as
environment variables. The environment variables take precedence over the values in
lsf.conf.
To ensure that no other users can run jobs on hosts allocated to tasks launched by
blaunch set LSF_DISABLE_LSRUN=Y in lsf.conf. When
LSF_DISABLE_LSRUN=Y is defined, RES refuses remote connections from lsrun
and lsgrun unless the user is either an LSF administrator or root. LSF_ROOT_REX
must be defined for remote execution by root. Other remote execution commands, such
as ch and lsmake are not affected.

Temporary directory for tasks launched by blaunch

By default, LSF creates a temporary directory for a job only on the first execution host.
If LSF_TMPDIR is set in lsf.conf, the path of the job temporary directory on the
first execution host is set to LSF_TMPDIR/job_ID.tmpdir.
If LSB_SET_TMPDIR= Y, the environment variable TMPDIR will be set equal to the
path specified by LSF_TMPDIR. This value for TMPDIR overrides any value that
might be set in the submission environment.
Tasks launched through the blaunch distributed application framework make use of
the LSF temporary directory specified by LSF_TMPDIR:
◆ When the environment variable TMPDIR is set on the first execution host, the

blaunch framework propagates this environment variable to all execution hosts
when launching remote tasks

◆ The job RES or the task RES creates the directory specified by TMPDIR if it does
not already exist before starting the job

◆ The directory created by the job RES or task RES has permission 0700 and is owned
by the execution user

◆ If the TMPDIR directory was created by the task RES, LSF deletes the temporary
directory and its contents when the task is complete

◆ If the TMPDIR directory was created by the job RES, LSF will delete the temporary
directory and its contents when the job is done

◆ If the TMPDIR directory is on a shared file system, it is assumed to be shared by all
the hosts allocated to the blaunch job, so LSF does not remove TMPDIR
directories created by the job RES or task RES

Automatic generation of the job host file
LSF automatically places the allocated hosts for a job into the $LSB_HOSTS and
$LSB_MCPU_HOSTS environment variables. Since most MPI implementations and
parallel applications expect to read the allocated hosts from a file, LSF creates a host file
in the the default job output directory $HOME/.lsbatch on the execution host before
the job runs, and deletes it after the job has finished running. The name of the host file
created has the format:
.lsb.<jobID>.hostfile

The host file contains one host per line. For example, if LSB_MCPU_HOSTS="hostA
2 hostB 2 hostC 1", the host file contains:
hostA
Using Platform LSF HPC Features

hostA
hostB
hostB
hostC

LSF publishes the full path to the host file by setting the environment variable
LSB_DJOB_HOSTFILE.

Configuring application profiles for the blaunch framework

Handle remote
task exit

You can configure an application profile in lsb.applications to control the
behavior of a parallel or distributed application when a remote task exits. Specify a value
for RTASK_GONE_ACTION in the application profile to define what the LSF does
when a remote task exits.
The default behavior is:

RTASK_GONE_ACTION has the following syntax:
RTASK_GONE_ACTION="[KILLJOB_TASKDONE | KILLJOB_TASKEXIT]
[IGNORE_TASKCRASH]"

Where:
◆ IGNORE_TASKCRASH

A remote task crashes. LSF does nothing. The job continues to launch the next task.
◆ KILLJOB_TASKDONE

A remote task exits with zero value. LSF terminates all tasks in the job.
◆ KILLJOB_TASKEXIT

A remote task exits with non-zero value. LSF terminates all tasks in the job.
For example:
RTASK_GONE_ACTION="IGNORE_TASKCRASH KILLJOB_TASKEXIT"

RTASK_GONE_ACTION only applies to the blaunch distributed application
framework.
When defined in an application profile, the LSB_DJOB_RTASK_GONE_ACTION
variable is set when running bsub -app for the specified application.
You can also use the environment variable LSB_DJOB_RTASK_GONE_ACTION to
override the value set in the application profile.

Handle
communication

failure

By default, LSF shuts down the entire job if connection is lost with the task RES,
validation timeout, or heartbeat timeout. You can configure an application profile in
lsb.applications so only the current tasks are shut down, not the entire job.

When ... LSF ...

Task exits with zero value Does nothing
Task exits with non-zero value Does nothing
Task crashes Shuts down the entire job
Using Platform LSF HPC Features 17

18
Use DJOB_COMMFAIL_ACTION="KILL_TASKS" to define the behavior of LSF
when it detects a communication failure between itself and one or more tasks. If not
defined, LSF terminates all tasks, and shuts down the job. If set to KILL_TASKS, LSF
tries to kill all the current tasks of a parallel or distributed job associated with the
communication failure.
DJOB_COMMFAIL_ACTION only applies to the blaunch distributed application
framework.
When defined in an application profile, the LSB_DJOB_COMMFAIL_ACTION
environment variable is set when running bsub -app for the specified application.

Set up job
launching

environment

LSF can run an appropriate script that is responsible for setup and cleanup of the job
launching environment. You can specify the name of the appropriate script in an
application profile in lsb.applications.
Use DJOB_ENV_SCRIPT to define the path to a script that sets the environment for
the parallel or distributed job launcher. The script runs as the user, and is part of the job.
DJOB_ENV_SCRIPT only applies to the blaunch distributed application framework.
If a full path is specified, LSF uses the path name for the execution. If a full path is not
specified, LSF looks for it in LSF_BINDIR.
The specified script must support a setup argument and a cleanup argument. LSF
invokes the script with the setup argument before launching the actual job to set up
the environment, and with cleanup argument after the job is finished.
LSF assumes that if setup cannot be performed, the environment to run the job does
not exist. If the script returns a non-zero value at setup, an error is printed to stderr
of the job, and the job exits.
Regardless of the return value of the script at cleanup, the real job exit value is used. If
the return value of the script is non-zero, an error message is printed to stderr of the
job.
When defined in an application profile, the LSB_DJOB_ENV_SCRIPT variable is set
when running bsub -app for the specified application.
For example, if DJOB_ENV_SCRIPT=mpich.script, LSF runs
$LSF_BINDIR/mpich.script setup

to set up the environment to run an MPICH job. After the job completes, LSF runs
$LSF_BINDIR/mpich.script cleanup

On cleanup, the mpich.script file could, for example, remove any temporary files
and release resources used by the job. Changes to the LSB_DJOB_ENV_SCRIPT
environment variable made by the script are visible to the job.

Update job
heartbeat and

resource usage

Use DJOB_HB_INTERVAL in an application profile in lsb.applications to
configure an interval in seconds used to update the heartbeat between LSF and the tasks
of a parallel or distributed job. DJOB_HB_INTERVAL only applies to the blaunch
distributed application framework.
When DJOB_HB_INTERVAL is specified, the interval is scaled according to the
number of tasks in the job:
max(DJOB_HB_INTERVAL, 10) + host_factor

where
Using Platform LSF HPC Features

host_factor = 0.01 * number of hosts allocated for the job
When defined in an application profile, the LSB_DJOB_HB_INTERVAL variable is set
in the parallel or distributed job environment. You should not manually change the value
of LSB_DJOB_HB_INTERVAL.
By default, the interval is equal to SBD_SLEEP_TIME in lsb.params, where the
default value of SBD_SLEEP_TIME is 30 seconds.

Update job
heartbeat and

resource usage

Use DJOB_RU_INTERVAL in an application profile in lsb.applications to
configure an interval in seconds used to update the resource usage for the tasks of a
parallel or distributed job. DJOB_RU_INTERVAL only applies to the blaunch
distributed application framework.
When DJOB_RU_INTERVAL is specified, the interval is scaled according to the
number of tasks in the job:
max(DJOB_RU_INTERVAL, 10) + host_factor

where
host_factor = 0.01 * number of hosts allocated for the job
When defined in an application profile, the LSB_DJOB_RU_INTERVAL variable is set
in parallel or distributed job environment. You should not manually change the value of
LSB_DJOB_RU_INTERVAL.
By default, the interval is equal to SBD_SLEEP_TIME in lsb.params, where the
default value of SBD_SLEEP_TIME is 30 seconds.

How blaunch supports task geometry and process group files
The current support for task geometry in LSF requires the user submitting a job to
specify the wanted task geometry by setting the environment variable
LSB_PJL_TASK_GEOMETRY in their submission environment before job
submission. LSF checks for LSB_PJL_TASK_GEOMETRY and modifies
LSB_MCPU_HOSTS appropriately
The environment variable LSB_PJL_TASK_GEOMETRY is checked for all parallel
jobs. If LSB_PJL_TASK_GEOMETRY is set users submit a parallel job (a job that
requests more than 1 slot), LSF attempts to shape LSB_MCPU_HOSTS accordingly.

Resource collection for all commands in a job script
Parallel and distributed jobs are typically launched with a job script. If your job script
runs multiple commands, you can ensure that resource usage is collected correctly for
all commands in a job script by configuring
LSF_HPC_EXTENSIONS=CUMULATIVE_RUSAGE in lsf.conf. Resource
usage is collected for jobs in the job script, rather than being overwritten when each
command is executed.

Resizable jobs and blaunch
Because a resizable job can be resized any time, the blaunch framework is aware of the
newly added resources (hosts) or released resources. When a validation request comes
with those additional resources, the blaunch framework accepts the request and
launches the remote tasks accordingly. When part of an allocation is released, the
Using Platform LSF HPC Features 19

20
blaunch framework makes sure no remote tasks are running on those released
resources, by terminating remote tasks on the released hosts if any. Any further
validation requests with those released resources are rejected.
The blaunch framework provides the following functionality for resizable jobs:
◆ The blaunch command and lsb_getalloc() API call accesses up to date

resource allocation through the LSB_DJOB_HOSTFILE environment variable
◆ Validation request (to launch remote tasks) with the additional resources succeeds
◆ Validation request (to launch remote tasks) with the released resources fails
◆ Remote tasks on the released resources are terminated and the blaunch

framework terminates tasks on a host when the host has been completely removed
from the allocation.

◆ When releasing resources, LSF allows a configurable grace period
(DJOB_RESIZE_ GRACE_PERIOD in lsb.applications) for tasks to clean
up and exit themselves. By default, there is no grace period.

◆ When remote tasks are launched on new additional hosts but the notification
command fails, those remote tasks are terminated.

Submitting jobs with blaunch
Use bsub to call blaunch, or to invoke an execution script that calls blaunch. The
blaunch command assumes that bsub -n implies one task per job slot.
◆ Submit a job:

bsub -n 4 blaunch myjob

◆ Submit a job to launch tasks on a specific host:
bsub -n 4 blaunch hostA myjob

◆ Submit a job with a host list:
bsub -n 4 blaunch -z "hostA hostB" myjob

◆ Submit a job with a host file:
bsub -n 4 blaunch -u ./hostfile myjob

◆ Submit a job to an application profile
bsub -n 4 -app djob blaunch myjob

Example execution scripts

Launching MPICH-P4 tasks

To launch an MPICH-P4 tasks through LSF using the blaunch framework, substitute
the path to rsh or ssh with the path to blaunch. For example:
Sample mpirun script changes:
...
Set default variables
AUTOMOUNTFIX="sed -e s@/tmp_mnt/@/@g"
DEFAULT_DEVICE=ch_p4
RSHCOMMAND="$LSF_BINDIR/blaunch"
SYNCLOC=/bin/sync
CC="cc"
...
Using Platform LSF HPC Features

You must also set special arguments for the ch_p4 device:
#! /bin/sh
#
mpirun.ch_p4.args
#
Special args for the ch_p4 device
setrshcmd="yes"
givenPGFile=0
case $arg in
...

Sample job submission script:
#! /bin/sh
#
job script for MPICH-P4
#
#BSUB -n 2
#BSUB -R'span[ptile=1]'
#BSUB -o %J.out
#BSUB -e %J.err
NUMPROC=`wc -l $LSB_DJOB_HOSTFILE|cut -f 1 -d ' '`
mpirun -n $NUMPROC -machinefile $LSB_DJOB_HOSTFILE ./myjob

Launching ANSYS jobs

To launch an ANSYS job through LSF using the blaunch framework, substitute the
path to rsh or ssh with the path to blaunch. For example:

#BSUB -o stdout.txt
#BSUB -e stderr.txt
Note: This case statement should be used to set up any
environment variables needed to run the different versions
of Ansys. All versions in this case statement that have the
string "version list entry" on the same line will appear as
choices in the Ansys service submission page.

case $VERSION in
 10.0) #version list entry
 export ANSYS_DIR=/usr/share/app/ansys_inc/v100/Ansys
 export ANSYSLMD_LICENSE_FILE=1051@licserver.company.com
 export MPI_REMSH=/opt/lsf/bin/blaunch
 program=${ANSYS_DIR}/bin/ansys100
 ;;
 *)
 echo "Invalid version ($VERSION) specified"
 exit 1
 ;;
esac

if [-z "$JOBNAME"]; then
 export JOBNAME=ANSYS-$$
fi

if [$CPUS -eq 1]; then
Using Platform LSF HPC Features 21

22
 ${program} -p ansys -j $JOBNAME -s read -l en-us -b -i $INPUT $OPTS
else
 if [$MEMORY_ARCH = "Distributed"] Then
 HOSTLIST=`echo $LSB_HOSTS | sed s/" "/":1:"/g` ${program} -j $JOBNAME -p
ansys -pp -dis -machines \
 ${HOSTLIST}:1 -i $INPUT $OPTS
 else
 ${program} -j $JOBNAME -p ansys -pp -dis -np $CPUS \
 -i $INPUT $OPTS
 fi
fi
Using Platform LSF HPC Features

OpenMP Jobs
Platform LSF provides the ability to start parallel jobs that use OpenMP to
communicate between process on shared-memory machines and MPI to communicate
across networked and non-shared memory machines.
This implementation allows you to specify the number of machines and to reserve an
equal number of processors per machine. When the job is dispatched, PAM only starts
one process per machine.

OpenMP
specification

The OpenMP specifications are owned and managed by the OpenMP Architecture
Review Board. See www.openmp.org for detailed information.

OpenMP esub
An esub for OpenMP jobs, esub.openmp, is installed with Platform LSF. The
OpenMP esub sets environment variable LSF_PAM_HOSTLIST_USE=unique, and
starts PAM.
Use bsub -a openmp to submit OpenMP jobs.

Submitting OpenMP jobs
To run an OpenMP job with MPI on multiple hosts, specify the number of processors
and the number of processes per machine. For example, to reserve 32 processors and
run 4 processes per machine:
bsub -a openmp -n 32 -R "span[ptile=4]" myOpenMPJob

myOpenMPJob runs across 8 machines (4/32=8) and PAM starts 1 MPI process per
machine.
To run a parallel OpenMP job on a single host, specify the number of processors:
bsub -a openmp -n 4 -R "span[hosts=1]" myOpenMPJob
Using Platform LSF HPC Features 23

http://www.openmp.org

24
PVM Jobs
Parallel Virtual Machine (PVM) is a parallel programming system distributed by Oak
Ridge National Laboratory. PVM programs are controlled by the PVM hosts file, which
contains host names and other information.

PVM esub
An esub for PVM jobs, esub.pvm, is installed with Platform LSF. The PVM esub
calls the pvmjob script.
Use bsub -a pvm to submit PVM jobs.

pvmjob script
The pvmjob shell script is invoked by esub.pvm to run PVM programs as parallel LSF
jobs. The pvmjob script reads the LSF environment variables, sets up the PVM hosts
file and then runs the PVM job. If your PVM job needs special options in the hosts file,
you can modify the pvmjob script.

Example
For example, if the command line to run your PVM job is:
myjob data1 -o out1

the following command submits this job to run on 10 processors:
bsub -a pvm -n 10 myjob data1 -o out1

Other parallel programming packages can be supported in the same way.
Using Platform LSF HPC Features

SGI Vendor MPI Support

Compiling and linking your MPI program
You must use the SGI C compiler (cc by default). You cannot use mpicc to build your
programs.
For example, use one of the following compilation commands to build the program
mpi_sgi:
◆ On IRIX/TRIX:

cc -g -64 -o mpi_sgi mpi_sgi.c -lmpi

f90 -g -64 -o mpi_sgi mpi_sgi.c -lmpi

cc -g -n32 -mips3 -o mpi_sgi mpi_sgi.c -lmpi

◆ On Altix:
efc -g -o mpi_sgi mpi_sgi.f -lmpi

ecc -g -o mpi_sgi mpi_sgi.c -lmpi

gcc -g -o mpi_sgi mpi_sgi.c -lmpi

System requirements
SGI MPI has the following system requirements:
◆ Your SGI systems must be running IRIX 6.5.24 or higher, or SGI Alitx ProPack 3.0

or higher, with the latest operating system patches applied. Use the uname
command to determine your system configuration. For example:
uname -aR
IRIX64 hostA 6.5 6.5.17f 07121148 IP27

◆ SGI MPI version:
❖ On IRIX/TRIX: SGI MPI 3.2.04 (MPT 1.3.0.3) released December 7 1999 or

later with the latest patches applied
❖ On Altix: MPT 1.8.1 or later and SGI Array Services 3.6 or later

Use the one of the following commands to determine your installation:
◆ On IRIX/TRIX:

versions mpt mpi sma

◆ On Altix:
rpm -qa | grep sgi-mpt

rpm -qa | grep sgi-array

Configuring LSF to work with SGI MPI
To use 32-bit or 64-bit SGI MPI with Platform LSF, set the following parameters in
lsf.conf:
◆ Set LSF_VPLUGIN to the full path to the MPI library libxmpi.so.

For example:
❖ On SGI IRIX: LSF_VPLUGIN="/usr/lib32/libxmpi.so"
❖ On SGI Altix: LSF_VPLUGIN="/usr/lib/libxmpi.so"
Using Platform LSF HPC Features 25

26
You can specify multiple paths for LSF_VPLUGIN, separated by colons (:). For
example, the following configures both /usr/lib32/libxmpi.so for SGI
IRIX, and /usr/lib/libxmpi.so for SGI IRIX:
LSF_VPLUGIN="/usr/lib32/libxmpi.so:/usr/lib/libxmpi.so"

◆ LSF_PAM_USE_ASH=Y enables LSF to use the SGI Array Session Handler
(ASH) to propagate signals to the parallel jobs.
See the SGI system documentation and the array_session(5) man page for
more information about array sessions.

libxmpi.so file
permission

For PAM to access the libxmpi.so library, the file permission mode must be 755
(-rwxr-xr-x).

Array services
authentication

(Altix only)

For PAM jobs on Altix, the SGI Array Services daemon arrayd must be running and
AUTHENTICATION must be set to NONE in the SGI array services authentication
file /usr/lib/array/arrayd.auth (comment out the AUTHENTICATION
NOREMOTE method and uncomment the AUTHENTICATION NONE method).
To run a mulithost MPI applications, you must also enable rsh without password
prompt between hosts:
◆ The remote host must defined in the arrayd configuration.
◆ Configure .rhosts so that rsh does not require a password.

The pam command
The pam command invokes the Platform Parallel Application Manager (PAM) to run
parallel batch jobs in LSF. It uses the mpirun library and SGI array services to spawn
the child processes needed for the parallel tasks that make up your MPI application. It
starts these tasks on the systems allocated by LSF. The allocation includes the number
of execution hosts needed, and the number of child processes needed on each host.

Using the
pam -mpi option

The -mpi option on the bsub and pam command line is equivalent to mpirun in the
SGI environment.

Using the pam
-auto_place option

The -auto_place option on the pam command line tells the mpirun library to launch
the MPI application according to the resources allocated by LSF.

Using the pam -n
option

The -n option on the pam command line notifies PAM to wait for -n number of
TaskStarter to return.
You can use both bsub -n and pam -n in the same job submission. The number
specified in the pam -n option should be less than or equal to the number specified by
bsub -n. If the number of tasks specified with pam -n is greater than the number
specified by bsub -n, the pam -n is ignored.
For example, you can specify:
bsub -n 5 pam -n 2 a.out

Here, the job requests 5 processors, but PAM only starts 2 parallel tasks.

Examples

Running a job To run a job and have LSF select the host, the command:
mpirun -np 4 a.out
Using Platform LSF HPC Features

is entered as:
bsub -n 4 pam -mpi -auto_place a.out

Running a job on
a single host

To run a single-host job and have LSF select the host, the command:
mpirun -np 4 a.out

is entered as:
bsub -n 4 -R "span[hosts=1]" pam -mpi -auto_place a.out

Running a job on
multiple hosts

To run a multihost job (5 processors per host) and have LSF select the hosts, the
following command:
mpirun hosta -np 5 a.out: hostb -np 5 a.out

is entered as:
bsub -n 10 -R "span[ptile=5]" pam -mpi -auto_place a.out

For a complete list of mpirun options and environment variable controls refer to the
SGI mpirun man page.

Limitations
◆ SBD and MBD take a few seconds to get the process IDs and process group IDs

of the PAM jobs from the SGI MPI components, If you use bstop, bresume, or
bkill before this happens, uncontrolled MPI child processes may be left running.

◆ A single MPI job cannot run on a heterogeneous architecture. The entire job must
run on systems of a single architecture.
Using Platform LSF HPC Features 27

28
HP Vendor MPI Support
When you use mpirun in stand-alone mode, you specify host names to be used by the
MPI job.

Automatic Platform MPI library configuration
During installation, lsfinstall sets LSF_VPLUGIN in lsf.conf to the full path
to the MPI library libmpirm.sl. For example:
LSF_VPLUGIN="/opt/mpi/lib/pa1.1/libmpirm.sl"

On Linux On Linux hosts running Platform MPI, you must manually set the full path to the
vendor MPI library libmpirm.so.
For example, if Platform MPI is installed in /opt/hpmpi:
LSF_VPLUGIN="/opt/hpmpi/lib/linux_ia32/libmpirm.so"

The pam command
The pam command invokes the Platform Parallel Application Manager (PAM) to run
parallel batch jobs in LSF. It uses the mpirun library to spawn the child processes
needed for the parallel tasks that make up your MPI application. It starts these tasks on
the systems allocated by LSF. The allocation includes the number of execution hosts
needed, and the number of child processes needed on each host.

Automatic host allocation by LSF

Using the
pam -mpi option

To achieve better resource utilization, you can have LSF manage the allocation of hosts,
coordinating the start-up phase with mpirun.
This is done by preceding the regular mpirun command with:
bsub pam -mpi

The -mpi option on the bsub and pam command line is equivalent to mpirun in the
Platform MPI environment. The -mpi option must be the first option of the pam
command.

How to run Platform MPI jobs
1 Add the Platform MPI command mpirun in the $PATH environment variable.
2 Set the MPI_ROOT environment variable to point to the Platform MPI installation

directory.
3 Set LSF_VPLUGIN in lsf.conf or in your environment.
4 Submit thte job with -lsb_hosts option: bsub -I -n 3 pam -mpi mpirun

-lsb_hosts myjob

Running a job on
a single host

For example, to run a single-host job and have LSF select the host, the command:
mpirun -np 14 a.out

is entered as:
bsub pam -mpi mpirun -np 14 a.out

Running a job on
multiple hosts

For example, to run a multi-host job and have LSF select the hosts, the command:
mpirun -f appfile
Using Platform LSF HPC Features

is entered as:
bsub -n 8 -R "span[ptile=4]" pam -mpi mpirun -f appfile

where appfile contains the following entries:
-h host1 -np 4 a.out

-h host2 -np 4 b.out

In this example host1 and host2 are used in place of actual host names and refer to
the actual hosts that LSF allocates to the job.
Using Platform LSF HPC Features 29

30
LSF Generic Parallel Job Launcher Framework
Any parallel execution environment (for example a vendor MPI, or an MPI package like
MPICH-GM, MPICH-P4, or LAM/MPI) can be made compatible with LSF using the
generic parallel job launcher (PJL) framework.

Vendor MPIs for SGI MPI and Platform MPI are already integrated with Platform LSF.

The generic PJL integration is a framework that allows you to integrate any vendor’s
parallel job launcher with Platform LSF. PAM does not launch the parallel jobs directly,
but manages the job to monitor job resource usage and provide job control over the
parallel tasks.

System requirements
◆ Vendor parallel package is installed and operating properly
◆ LSF cluster is installed and operating properly
Using Platform LSF HPC Features

How the Generic PJL Framework Works

Terminology

First execution
host

The host name at the top of the execution host list as determined by LSF. Starts PAM.

Execution hosts The most suitable hosts to execute the batch job as determined by LSF

task A process that runs on a host; the individual process of a parallel application

parallel job A parallel job consists of multiple tasks that could be executed on different hosts.

PJL (Parallel Job Launcher) Any executable script or binary capable of starting parallel tasks
on all hosts assigned for a parallel job (for example, mpirun.)

sbatchd Slave Batch Daemons (SBDs) are batch job execution agents residing on the execution
hosts. sbatchd receives jobs from mbatchd in the form of a job specification and
starts RES to run the job according the specification. sbatchd reports the batch job
status to mbatchd whenever job state changes.

mpirun.lsf Reads the environment variable LSF_PJL_TYPE, and generates the appropriate pam
command line to invoke the PJL. The esub programs provided in LSF_SERVERDIR
set this variable to the proper type.

TS (TaskStarter) An executable responsible for starting a parallel task on a host and
reporting the process ID and host name to PAM. TS is located in LSF_BINDIR.

PAM (Parallel Application Manager) The supervisor of any parallel LSF job. PAM allows LSF
to collect resources used by the job and perform job control.
PAM starts the PJL and maintains connection with RES on all execution hosts. It
collects resource usage, updates the resource usage of tasks and its own PID and PGID
to sbatchd. It propagates signals to all process groups and individual tasks, and cleans
up tasks as needed.

PJL wrapper A script that starts the PJL. The wrapper is typically used to set up the environment for
the parallel job and invokes the PJL.

RES (Remote Execution Server) An LSF daemon running on each server host. Accepts
remote execution requests to provide transparent and secure remote execution of jobs
and tasks.
RES manages all remote tasks and forwards signals, standard I/O, resources
consumption data, and parallel job information between PAM and the tasks.
Using Platform LSF HPC Features 31

32
Architecture

Running a parallel job using a non-integrated PJL

Without the generic PJL framework, the PJL starts tasks directly on each host, and
manages the job.
Even if the MPI job was submitted through LSF, LSF never receives information about
the individual tasks. LSF is not able to track job resource usage or provide job control.
If you simply replace PAM with a parallel job launcher that is not integrated with LSF,
LSF loses control of the process and is not able to monitor job resource usage or provide
job control. LSF never receives information about the individual tasks.

Using the generic
PJL framework

PAM is the resource manager for the job. The key step in the integration is to place TS
in the job startup hierarchy, just before the task starts. TS must be the parent process of
each task in order to collect the task process ID (PID) and pass it to PAM.
The following figure illustrates the relationship between PAM, PJL, PJL wrapper, TS,
and the parallel job tasks.

1 Instead of starting the PJL directly, PAM starts the specified PJL wrapper on a single
host.

2 The PJL wrapper starts the PJL (for example, mpirun).
3 Instead of starting tasks directly, PJL starts TS on each host selected to run the

parallel job.
4 TS starts the task.
Each TS reports its task PID and host name back to PAM. Now PAM can perform job
control and resource usage collection through RES.
TaskStarter also collects the exit status of the task and reports it to PAM. When PJL
exits, PAM exits with the same termination status as the PJL.
Using Platform LSF HPC Features

Customize
mpirun.lsf

If you choose to customize mpirun.lsf and your job scripts call mpirun.lsf more
than once, make use of the the environment variables that call a custom command,
script, or binary when needed:
◆ $MPIRUN_LSF_PRE_EXEC: Runs before calling pam..PJL_wrapper.
◆ $MPIRUN_LSF_POST_EXEC: Runs after calling pam..PJL_wrapper.
These environment variables are run as users.

Integration methods
There are 2 ways to integrate the PJL.

Method 1 In this method, PAM rewrites the PJL command line to insert TS in the correct position,
and set callback information for TS to communicate with PAM.
Use this method when:
◆ You always use the same number of PJL arguments
◆ The job in the PJL command line is the executable application that starts the parallel

tasks
For details, see “Integration Method 1” on page 37

Method 2 In this method, you rewrite or wrap the PJL to include TS and callback information for
TS to communicate with PAM. This method of integration is the most flexible, but may
be more difficult to implement.
Use this method when:
◆ The number of PJL arguments is uncertain
◆ Parallel tasks have a complex startup sequence
◆ The job in the PJL command line could be a script instead of the executable

application that starts the parallel tasks
For details, see “Integration Method 2” on page 39.

Error handling
1 If PAM cannot start PJL, no tasks are started and PAM exits.
2 If PAM does not receive all the TS registration messages (host name and PID)

within a the timeout specified by LSF_HPC_PJL_LOADENV_TIMEOUT in
lsf.conf, it assumes that the job can not be executed. It kills the PJL, kills all the
tasks that have been successfully started (if any), and exits. The default for
LSF_HPC_PJL_LOADENV_TIMEOUT is 300 seconds.

3 If TS cannot start the task, it reports this to PAM and exits. If all tasks report, PAM
checks to make sure all tasks have started. If any task does not start, PAM kills the
PJL, sends a message to kill all the remote tasks that have been successfully started,
and exit.

4 If TS terminates before it can report the exit status of the task to PAM, PAM never
succeeds in receiving all the exit status. It then exits when the PJL exits.

5 If the PJL exits before all TS have registered the exit status of the tasks, then PAM
assumes the parallel job is completed, and communicates with RES, which signals
the tasks.
Using Platform LSF HPC Features 33

34
Using the pam -n option (SGI MPI only)
The -n option on the pam command line specifies the number of tasks that PAM should
start.
You can use both bsub -n and pam -n in the same job submission. The number
specified in the pam -n option should be less than or equal to the number specified by
bsub -n. If the number of task specified with pam -n is greater than the number
specified by bsub -n, the pam -n is ignored.
For example, you can specify:
bsub -n 5 pam -n 2 -mpi a.out

Here, 5 processors are reserved for the job, but PAM only starts 2 parallel tasks.

Custom job controls for parallel jobs
As with sequential LSF jobs, you can use the JOB_CONTROLS parameter in the queue
(lsb.queues) to configure custom job controls for your parallel jobs.

Using the LSB_JOBRES_PID and LSB_PAMPID environment variables

How to use these two variables in your job control scripts:
◆ If pam and the job RES are in same process group, use LSB_JOBRES_PID. Here

is an example of JOB_CONTROL defined in the queue:

If the custom job control contains ... Platform LSF ...

A signal name (for example, SIGSTOP or
SIGTSTP)

Propagates the signal to the PAM PGID and all
parallel tasks

A /bin/sh command line or script Sets all job environment variables for the
command action.
Sets the following additional environment
variables:
◆ LSB_JOBPGIDS—a list of current process

group IDs of the job
◆ LSB_JOBPIDS—a list of current process

IDs of the job
◆ LSB_PAMPID—the PAM process ID
◆ LSB_JOBRES_PID—the process ID of

RES for the job
For the SUSPEND action command, sets the
following environment variables:
◆ LSB_SUSP_REASONS—an integer

representing a bitmap of suspending reasons
as defined in lsbatch.h. The suspending
reason can allow the command to take
different actions based on the reason for
suspending the job.

◆ LSB_SUSP_SUBREASONS—an integer
representing the load index that caused the
job to be suspended. When the suspending
reason SUSP_LOAD_REASON
(suspended by load) is set in
LSB_SUSP_REASONS,
LSB_SUSP_SUBREASONS set to one of
the load index values defined in lsf.h.
Using Platform LSF HPC Features

JOB_CONTROLS = TERMINATE[kill -CONT -$LSB_JOBRES_PID; kill -TERM
-$LSB_JOBRES_PID]

◆ If pam and the job RES are in different process groups (for example, pam is started
by a wrapper, which could set its own PGID). Use both LSB_JOBRES_PID and
LSB_PAMPID to make sure your parallel jobs are cleaned up.

JOB_CONTROLS = TERMINATE[kill -CONT -$LSB_JOBRES_PID -$LSB_PAMPID; kill -TERM
-$LSB_JOBRES_PID -$LSB_PAMPID]

LSB_PAM_PID may not be available when job first starts. It take some time for pam to
register back its PID to sbatchd.

For more
information

See the Platform LSF Configuration Reference for information about
JOB_CONTROLS in the lsb.queues file.
See Administering Platform LSF for information about configuring job controls.

Sample job termination script for queue job control
By default, LSF sends a SIGUSR2 signal to terminate a job that has reached its run limit
or deadline. Some applications do not respond to the SIGUSR2 signal (for example,
LAM/MPI), so jobs may not exit immediately when a job run limit is reached. You
should configure your queues with a custom job termination action specified by the
JOB_CONTROLS parameter.

Sample script Use the following sample job termination control script for the TERMINATE job
control in the hpc_linux queue for LAM/MPI jobs:

#!/bin/sh

#JOB_CONTROL_LOG=job.control.log.$LSB_BATCH_JID
JOB_CONTROL_LOG=/dev/null

kill -CONT -$LSB_JOBRES_PID >>$JOB_CONTROL_LOG 2>&1

if ["$LSB_PAM_PID" != "" -a "$LSB_PAM_PID" != "0"]; then
 kill -TERM $LSB_PAM_PID >>$JOB_CONTROL_LOG 2>&1

 MACHINETYPE=`uname -a | cut -d" " -f 5`
 while ["$LSB_PAM_PID" != "0" -a "$LSB_PAM_PID" != ""] # pam is running
 do
 if ["$MACHINETYPE" = "CRAY"]; then
 PIDS=`(ps -ef; ps auxww) 2>/dev/null | egrep ".*[/\[\t]pam[]
\t]*$"| sed -n "/grep/d;s/^ *[^ \t]* *\([0-9]*\).*/\1/p" | sort -u`
 else
 PIDS=`(ps -ef; ps auxww) 2>/dev/null | egrep " pam |/pam |
pam$|/pam$"| sed -n "/grep/d;s/^ *[^ \t]* *\([0-9]*\).*/\1/p" | sort -u`
 fi

 echo PIDS=$PIDS >> $JOB_CONTROL_LOG
 if ["$PIDS" = ""]; then # no pam is running
 break;
 fi
Using Platform LSF HPC Features 35

36
 foundPamPid="N"
 for apid in $PIDS
 do
 if ["$apid" = "$LSB_PAM_PID"]; then
 # pam is running
 foundPamPid="Y"
 break
 fi
 done

 if ["$foundPamPid" == "N"]; then
 break # pam has exited
 fi
 sleep 2
 done
fi

User other terminate signals if SIGTERM is
caught and ignored by your application.
kill -TERM -$LSB_JOBRES_PID >>$JOB_CONTROL_LOG 2>&1
exit 0

To configure the
script in the

hpc_linux queue

1 Create a job control script named job_terminate_control.sh.
2 Make the script executable:

chmod +x job_terminate_control.sh

3 Edit the hpc_linux queue in lsb.queues to configure your
job_terminate_control.sh script as the TERMINATE action in the
JOB_CONTROLS parameter. For example:
Begin Queue
QUEUE_NAME = hpc_linux_tv
PRIORITY = 30
NICE = 20
...
JOB_CONTROLS = TERMINATE[kill -CONT -$LSB_JOBRES_PID; kill
-TERM -$LSB_JOBRES_PID]
JOB_CONTROLS = TERMINATE [/path/job_terminate_control.sh]
TERMINATE_WHEN = LOAD PREEMPT WINDOW
RERUNNABLE = NO
INTERACTIVE = NO
DESCRIPTION = Platform LSF TotalView Debug queue.
End Queue

4 Reconfigure your cluster to make the change take effect:
badmin mbdrestart
Using Platform LSF HPC Features

Integration Method 1

When to use this integration method
In this method, PAM rewrites the PJL command line to insert TS in the correct position,
and set callback information for TS to communicate with PAM.
Use this method when:
◆ You always use the same number of PJL arguments
◆ The job in the PJL command line is the executable application that starts the parallel

tasks

Using pam to call the PJL
Submit jobs using pam in the following format:

pam [other_pam_options] -g num_args pjl [pjl_options] job [job_options]

The command line includes:
◆ The pam command and its options (other_pam_options)
◆ the pam -g num_args option
◆ The parallel job launcher or PJL wrapper (pjl) and its options (pjl_options)
◆ The job to run (job) and its options (job_options)

pam options The -g option is required to use the generic PJL framework. You must specify all the
other pam options before -g.
num_args specifies how many space-separated arguments in the command line are
related to the PJL, including the PJL itself (after that, the rest of the command line is
assumed to be related to the binary application that launches the parallel tasks).
For example:
◆ A PJL named no_arg_pjl takes no options, so -g 1 is required after the other

pam options:
pam [pam_options] -g 1 no_arg_pjl job [job_options]

◆ A PJL is named 3_arg_pjl and takes the options -a, -b, and group_name, so
The option -g 4 is required after the other pam options:

pam [pam_options] -g 4 3_arg_pjl -a -b group_name job [job_options]

How PAM inserts TaskStarter
Before the PJL is started, PAM automatically modifies the command line and inserts the
TS, the host and port for TS to contact PAM, and the LSF_ENVDIR in the correct
position before the actual job.
TS is placed between the PJL and the parallel application. In this way, the TS starts each
task, and LSF can monitor resource usage and control the task.
For example, if your LSF directory is /usr/share/lsf and you input:

pam [pam_options] -g 3 my_pjl -b group_name job [job_options]

PAM automatically modifies the PJL command line to:
my_pjl -b group_name /usr/share/lsf/TaskStarter -p host_name:port_number
-c /user/share/lsf/conf job [job_options] [pjl_options]
Using Platform LSF HPC Features 37

38
For more detailed
examples

See “Example Integration: LAM/MPI” on page 47
Using Platform LSF HPC Features

Integration Method 2

When to use this integration method
In this method, you rewrite or wrap the PJL to include TS and callback information for
TS to communicate with PAM. This method of integration is the most flexible, but may
be more difficult to implement.
Use this method when:
◆ The number of PJL arguments varies
◆ Parallel tasks have a complex startup sequence
◆ The job in the PJL command line could be a script instead of the executable

application that starts the parallel tasks

Using pam to call the PJL
Submit jobs using pam in the following format:

pam [other_pam_options] -g pjl_wrap [pjl_wrap_options] job [job_options]

The command line includes:
◆ The PJL wrapper script (pjl_wrap) and its options (pjl_wrap_options). This wrapper

script must insert TS in the correct position before the actual job command.
◆ The job to run (job) and its options (job_options)

The job could be a wrapper script that starts the application that starts the parallel
tasks, or it could be the executable application itself

pam options The -g option is required to use the generic PJL framework. You must specify all the
other pam options before -g.

Placing TaskStarter in your code
Each end job task must be started by the binary TaskStarter that is provided by Platform
Computing.
When you use this method, PAM does not insert TS for you. You must modify your
code to use TS and the LSF_TS_OPTIONS environment variable. LSF_TS_OPTIONS
is created by PAM on the first execution host and contains the callback information for
TS to contact PAM.

You must insert TS and the PAM callback information directly in front of the
executable application that starts the parallel tasks.

To place TS and its options, you can modify either the PJL wrapper or the job script,
depending on your implementation. If the package requires the path, specify the full
path to TaskStarter.

Example
This example modifies the PJL wrapper. The job script includes both the PJL wrapper
and the job itself.

Before Without the integration, your job submission command line is:
bsub -n 2 jobscript
Using Platform LSF HPC Features 39

40
Your job script is:
#!/bin/sh
if [-n "$ENV1"]; then
pjl -opt1 job1

else
pjl -opt2 -opt3 job2

fi

After After the integration, your job submission command line includes the pam command:
bsub -n 2 pam -g new_jobscript

Your new job script inserts TS and LSF_TS_OPTIONS before the jobs:
#!/bin/sh
if [-n "$ENV1"]; then
pjl -opt1 usr/share/lsf/TaskStarter $LSF_TS_OPTIONS job1

else
pjl -opt2 -opt3 usr/share/lsf/TaskStarter $LSF_TS_OPTIONS

job2
fi

For more detailed
examples

See “Example Integration: LAM/MPI” on page 47
Using Platform LSF HPC Features

Tuning PAM Scalability and Fault Tolerance
To improve performance and scalability for large parallel jobs, tune the following
parameters.

Parameters for PAM (lsf.conf)
For better performance, you can adjust the following parameters in lsf.conf. The
user's environment can override these.

LSF_HPC_PJL_LOADENV_TIMEOUT

Timeout value in seconds for PJL to load or unload the environment. For example, the
time needed for IBM POE to load or unload adapter windows.
At job startup, the PJL times out if the first task fails to register within the specified
timeout value. At job shutdown, the PJL times out if it fails to exit after the last
Taskstarter termination report within the specified timeout value.
Default: LSF_HPC_PJL_LOADENV_TIMEOUT=300

LSF_PAM_RUSAGE_UPD_FACTOR

This factor adjusts the update interval according to the following calculation:
RUSAGE_UPDATE_INTERVAL + num_tasks * 1 * LSF_PAM_RUSAGE_UPD_F
ACTOR.
PAM updates resource usage for each task for every
SBD_SLEEP_TIME + num_tasks * 1 seconds (by default, SBD_SLEEP_TIME=15).
For large parallel jobs, this interval is too long. As the number of parallel tasks increases,
LSF_PAM_RUSAGE_UPD_FACTOR causes more frequent updates.
Default: LSF_PAM_RUSAGE_UPD_FACTOR=0.01
Using Platform LSF HPC Features 41

42
Running Jobs with Task Geometry
Specifying task geometry allows you to group tasks of a parallel job step to run together
on the same node. Task geometry allows for flexibility in how tasks are grouped for
execution on system nodes. You cannot specify the particular nodes that these groups
run on; the scheduler decides which nodes run the specified groupings.
Task geometry is supported for all Platform LSF MPI integrations including IBM POE,
LAM/MPI, MPICH-GM, MPICH-P4, and Intel® MPI.
Use the LSB_PJL_TASK_GEOMETRY environment variable to specify task geometry
for your jobs. LSB_PJL_TASK_GEOMETRY overrides any process group or
command file placement options.
The environment variable LSB_PJL_TASK_GEOMETRY is checked for all parallel
jobs. If LSB_PJL_TASK_GEOMETRY is set users submit a parallel job (a job that
requests more than 1 slot), LSF attempts to shape LSB_MCPU_HOSTS accordingly.
The mpirun.lsf script sets the LSB_MCPU_HOSTS environment variable in the job
according to the task geometry specification. The PJL wrapper script controls the actual
PJL to start tasks based on the new LSB_MCPU_HOSTS and task geometry.

Syntax
setenv LSB_PJL_TASK_GEOMETRY "{(task_ID,...) ...}"

For example, to submit a job to spawn 8 tasks and span 4 nodes, specify:
setenv LSB_PJL_TASK_GEOMETRY "{(2,5,7)(0,6)(1,3)(4)}"

◆ Tasks 2,5, and 7 run on one node
◆ Tasks 0 and 6 run on another node
◆ Tasks 1 and 3 run on a third node
◆ Task 4 runs on one node alone
Each task_ID number corresponds to a task ID in a job, each set of parenthesis
contains the task IDs assigned to one node. Tasks can appear in any order, but the entire
range of tasks specified must begin with 0, and must include all task ID numbers; you
cannot skip a task ID number. Use braces to enclose the entire task geometry
specification, and use parentheses to enclose groups of nodes. Use commas to separate
task IDs.
For example.
setenv LSB_PJL_TASK_GEOMETRY "{(1)(2)}"

is incorrect because it does not start from task 0.
setenv LSB_PJL_TASK_GEOMETRY "{(0)(3)}"

is incorrect because it does not specify task 1and 2.
LSB_PJL_TASK_GEOMETRY cannot request more hosts than specified by the
bsub -n option.
For example:
setenv LSB_PJL_TASK_GEOMETRY "{(0)(1)(2)}"

specifies three nodes, one task per node. A correct job submission must request at least
3 hosts:
Using Platform LSF HPC Features

bsub -n 3 -R "span[ptile=1]" -I -a mpich_gm mpirun.lsf my_job
Job <564> is submitted to queue <hpc_linux>.
<<Waiting for dispatch ...>>
<<Starting on hostA>>
...

Planning your task geometry specification
You should plan their task geometry in advance and specify the job resource
requirements for LSF to select hosts appropriately.
Use bsub -n and -R "span[ptile=]" to make sure LSF selects appropriate hosts
to run the job, so that:
◆ The correct number of nodes is specified
◆ All exceution hosts have the same number of available slots
◆ The ptile value is the maximum number of CPUs required on one node by task

geometry specifications.
LSB_PJL_TASK_GEOMETRY only guarantees the geometry but does not guarantee
the host order. You must make sure each host selected by LSF can run any group of tasks
specified in LSB_PJL_TASK_GEOMETRY.
You can also use bsub -x to run jobs exclusively on a host. No other jobs share the
node once this job is scheduled.

Usage notes and limitations
◆ MPICH-P4 jobs:

MPICH-P4 mpirun requires the first task to run on local node OR all tasks to run
on remote node (-nolocal). If the LSB_PJL_TASK_GEOMETRY environment
variable is set, mpirun.lsf makes sure the task group that contains task 0 in
LSB_PJL_TASK_GEOMETRY runs on the first node.

◆ LAM/MPI jobs:
You should not specify mpirun n manually on command line; you should use
LSB_PJL_TASK_GEOMETRY for consistency with other Platform LSF MPI
integrations. LSB_PJL_TASK_GEOMETRY overrides the mpirun n option.

◆ OpenMPI jobs:
Each thread of an OpenMPI job is counted as a task. For example, task geometry
specification is:
setenv LSB_PJL_TASK_GEOMETRY "{(1), (2,3,4) (0,5)}"

and task 5 is an openmp job that spawns 3 threads. From this specification, the job
spans 3 nodes, and maximum number of CPUs required is 4 (because (0,5)
requires 4 cpus). The job should be submitted as:
bsub -n 12 -R "span[ptile=4]" -a openmp mpirun.lsf myjob

Examples
For the following task geometry:
setenv LSB_PJL_TASK_GEOMETRY "{(2,5,7)(0,6)(1,3)(4)}"

The job submission should look like:
Using Platform LSF HPC Features 43

44
bsub -n 12 -R "span[ptile=3]" -a poe mpirun.lsf myjob

If task 6 is an OpenMP job that spawns 4 threads, the job submission is:
bsub -n 20 -R "span[ptile=5]" -a poe mpirun.lsf myjob

Do not use -a openmp or set LSF_PAM_HOSTLIST_USE for OpenMP jobs.

A POE job has three tasks: task0, task1, and task2, and
Task task2 spawns 3 threads. The tasks task0 and task1 run on one node and
task2 runs on the other node. The job submission is:
bsub -a poe -n 6 -R "span[ptile=3]" mpirun.lsf -cmdfile
mycmdfile

where mycmdfile contains:
task0
task1
task2

The order of the tasks in the task geometry specification must match the order of tasks
in mycmdfile:
setenv LSB_PJL_TASK_GEOMETRY "{(0,1)(2)}"

If the order of tasks in mycmdfile changes, you must change the task geometry
specification accordingly.
For example, if mycmdfile contains:
task0
task2
task1

the task geometry must be changed to:
setenv LSB_PJL_TASK_GEOMETRY "{(0,2)(1)}"
Using Platform LSF HPC Features

Enforcing Resource Usage Limits for Parallel Tasks
A typical Platform LSF parallel job launches its tasks across multiple hosts. By default
you can enforce limits on the total resources used by all the tasks in the job. Because
PAM only reports the sum of parallel task resource usage, LSF does not enforce
resource usage limits on individual tasks in a parallel job.
For example, resource usage limits cannot control allocated memory of a single task of
a parallel job to prevent it from allocating memory and bringing down the entire system.
For some jobs, the total resource usage may be exceed a configured resource usage limit
even if no single task does, and the job is terminated when it does not need to be.
Attempting to limit individual tasks by setting a system-level swap hard limit
(RLIMIT_AS) in the system limit configuration file
(/etc/security/limits.conf) is not satisfactory, because it only prevents tasks
running on that host from allocating more memory than they should; other tasks in the
job can continue to run, with unpredictable results.
By default, custom job controls (JOB_CONTROL in lsb.queues) apply only to the
entire job, not individual parallel tasks.

Enabling resource usage limit enforcement for parallel tasks
Use the LSF_HPC_EXTENSIONS options TASK_SWAPLIMIT and
TASK_MEMLIMIT in lsf.conf to enable resource usage limit enforcement and job
control for parallel tasks. When TASK_SWAPLIMIT or TASK_MEMLIMIT is set in
LSF_HPC_EXTENSIONS, LSF terminates the entire parallel job if any single task
exceeds the limit setting for memory and swap limits.
Other resource usage limits (CPU limit, process limit, run limit, and so on) continue to
be enforced for the entire job, not for individual tasks.

For more
information

For detailed information about resource usage limits in LSF, see the “Runtime Resource
Usage Limits” chapter in Administering Platform LSF.

Assumptions and behavior
◆ To enforce resource usage limits by parallel task, you must use the LSF generic PJL

framework (PAM/TS) to launch your parallel jobs.
◆ This feature only affects parallel jobs monitored by PAM. It has no effect on other

LSF jobs.
◆ LSF_HPC_EXTENSIONS=TASK_SWAPLIMIT overrides the default behavior

of swap limits (bsub -v, bmod -v, or SWAPLIMIT in lsb.queues).
◆ LSF_HPC_EXTENSIONS=TASK_MEMLIMIT overrides the default behavior

of memory limits (bsub -M, bmod -M, or MEMLIMIT in lsb.queues).
◆ LSF_HPC_EXTENSIONS=TASK_MEMLIMIT overrides

LSB_MEMLIMIT_ENFORCE=Y or LSB_JOB_MEMLIMIT=Y in lsf.conf
◆ When a parallel job is terminated because of task limit enforcement, LSF sets a value

in the LSB_JOBEXIT_INFO environment variable for any post-execution
programs:
❖ LSB_JOBEXIT_INFO=SIGNAL -29 SIG_TERM_SWAPLIMIT
❖ LSB_JOBEXIT_INFO=SIGNAL -25 SIG_TERM_MEMLIMIT
Using Platform LSF HPC Features 45

46
◆ When a parallel job is terminated because of task limit enforcement, LSF logs the
job termination reason in lsb.acct file:
❖ TERM_SWAP for swap limit
❖ TERM_MEMLIMIT for memory limit
and bacct displays the termination reason.
Using Platform LSF HPC Features

Example Integration: LAM/MPI
The script lammpirun_wrapper is the PJL wrapper. Use either “Integration Method
1” on page 37 or “Integration Method 2” on page 39 to call this script:

pam [other_pam_options] -g num_args lammpirun_wrapper job [job_options]

pam [other_pam_options] -g lammpirun_wrapper job [job_options]

Example script
#!/bin/sh

Source the LSF environment. Optional.

. ${LSF_ENVDIR}/lsf.conf

Set up the variable LSF_TS representing the TaskStarter.

LSF_TS="$LSF_BINDIR/TaskStarter"

Define the function to handle external signals:
- display the signal received and the shutdown action to the user
- log the signal received and the daemon shutdown action
- exit gracefully by shutting down the daemon
- set the exit code to 1
--

lammpirun_exit()
{
 trap '' 1 2 3 15
 echo "Signal Received, Terminating the job<${TMP_JOBID}> and run lamhalt
..."
 echo "Signal Received, Terminating the job<${TMP_JOBID}> and run lamhalt
..." >>$LOGFILE
 $LAMHALT_CMD >>$LOGFILE 2>&1
 exit 1
} #lammpirun_exit

#-----------------------------------
Name: who_am_i
Synopsis: who_am_i
Environment Variables:
Description:
It returns the name of the current user.
Return Value:
User name.
#-----------------------------------
who_am_i()
{
if [`uname` = ConvexOS] ; then
Using Platform LSF HPC Features 47

48
 _my_name=`whoami | sed -e "s/[]//g"`
else
 _my_name=`id | sed -e 's/[^(]*(\([^)]*\)).*/\1/' | sed -e "s/[]//g"`
fi

echo $_my_name
} # who_am_i

#

Set up the script's log file:
- create and set the variable LOGDIR to represent the log file directory
- fill in your own choice of directory LOGDIR
- the log directory you choose must be accessible by the user from all hosts
- create a log file with a unique name, based on the job ID
- if the log directory is not specified, the log file is /dev/null
- the first entry logs the file creation date and file name
- we create and set a second variable DISPLAY_JOBID to format the job
ID properly for writing to the log file
--
#
#
Please specify your own LOGDIR,
Your LOGDIR must be accessible by the user from all hosts.
#
LOGDIR=""

TMP_JOBID=""
if [-z "$LSB_JOBINDEX" -o "$LSB_JOBINDEX" = "0"]; then
 TMP_JOBID="$LSB_JOBID"
 DISPLAY_JOBID="$LSB_JOBID"
else
 TMP_JOBID="$LSB_JOBID"_"$LSB_JOBINDEX"
 DISPLAY_JOBID="$LSB_JOBID[$LSB_JOBINDEX]"
fi

if [-z "$LOGDIR"]; then
 LOGFILE="/dev/null"
else
 LOGFILE="${LOGDIR}/lammpirun_wrapper.job${TMP_JOBID}.log"
fi

#

Create and set variables to represent the commands used in the script:
- to modify this script to use different commands, edit this section
--
#
TPING_CMD="tping"
LAMMPIRUN_CMD="mpirun"
LAMBOOT_CMD="lamboot"
Using Platform LSF HPC Features

LAMHALT_CMD="lamhalt"

#

Define an exit value to rerun the script if it fails
- create and set the variable EXIT_VALUE to represent the requeue exit value
- we assume you have enabled job requeue in LSF
- we assume 66 is one of the job requeue values you specified in LSF
--
#
EXIT_VALUE should not be set to 0
EXIT_VALUE="66"

#

Write the first entry to the script's log file
- date of creationg
- name of log file
--
#
my_name=`who_am_i`
echo "`date` $my_name" >>$LOGFILE

Use the signal handling function to handle specific external signals.
--
#
trap lammpirun_exit 1 2 3 15

#

Set up a hosts file in the specific format required by LAM MPI:
- remove any old hosts file
- create a new hosts file with a unique name using the LSF job ID
- write a comment at the start of the hosts file
- if the hosts file was not created properly, display an error to
the user and exit
- define the variables HOST, NUM_PROC, FLAG, and TOTAL_CPUS to
help with parsing the host information
- LSF's selected hosts are described in LSB_MCPU_HOSTS environment variable
- parse LSB_MCPU_HOSTS into the components
- write the new hosts file using this information
- write a comment at the end of the hosts file
- log the contents of the new hosts file to the script log file
--
#
LAMHOST_FILE=".lsf_${TMP_JOBID}_lammpi.hosts"

if [-d "$HOME"]; then
 LAMHOST_FILE="$HOME/$LAMHOST_FILE"
fi
Using Platform LSF HPC Features 49

50
#
#
start a new host file from scratch
rm -f $LAMHOST_FILE
echo "# LAMMPI host file created by LSF on `date`" >> $LAMHOST_FILE

check if we were able to start writing the conf file
if [-f $LAMHOST_FILE]; then
 :
else
 echo "$0: can't create $LAMHOST_FILE"
 exit 1
fi

HOST=""
NUM_PROC=""
FLAG=""
TOTAL_CPUS=0
for TOKEN in $LSB_MCPU_HOSTS
do
 if [-z "$FLAG"]; then
 HOST="$TOKEN"
 FLAG="0"
 else
 NUM_PROC="$TOKEN"
 TOTAL_CPUS=`expr $TOTAL_CPUS + $NUM_PROC`
 FLAG="1"
 fi

 if ["$FLAG" = "1"]; then
 _x=0
 while [$_x -lt $NUM_PROC]
 do
 echo "$HOST" >>$LAMHOST_FILE
 _x=`expr $_x + 1`
 done

 # get ready for the next host
 FLAG=""
 HOST=""
 NUM_PROC=""
 fi
done

last thing added to LAMHOST_FILE
echo "# end of LAMHOST file" >> $LAMHOST_FILE

echo "Your lamboot hostfile looks like:" >> $LOGFILE
cat $LAMHOST_FILE >> $LOGFILE
Using Platform LSF HPC Features

Process the command line:
- extract [mpiopts] from the command line
- extract jobname [jobopts] from the command line

ARG0=`$LAMMPIRUN_CMD -h 2>&1 | \
 egrep '^[[:space:]]+-[[:alpha:][:digit:]-]+[[:space:]][[:space:]]' | \
 awk '{printf "%s ", $1}'`
get -ton,t and -w / nw options
TMPARG=`$LAMMPIRUN_CMD -h 2>&1 | \
 egrep '^[[:space:]]+-[[:alpha:]_-]+[[:space:]]*(,|/)[[:space:]]-
[[:alpha:]]*' |
 sed 's/,/ /'| sed 's/\// /' | \
 awk '{printf "%s %s ", $1, $2}'`
ARG0="$ARG0 $TMPARG"

ARG1=`$LAMMPIRUN_CMD -h 2>&1 | \
 egrep '^[[:space:]]+-[[:alpha:]_-
]+[[:space:]]+<[[:alpha:][:space:]_]+>[[:space:]]' | \
 awk '{printf "%s ", $1}'`

while [$# -gt 0]
do
 MPIRunOpt="0"

 #single-valued options
 for option in $ARG1
 do
 if ["$option" = "$1"]; then
 MPIRunOpt="1"
 case "$1" in
 -np|-c)

 shift
 shift
 ;;

 *)
 LAMMPI_OPTS="$LAMMPI_OPTS $1" #get option name
 shift
 LAMMPI_OPTS="$LAMMPI_OPTS $1" #get option value
 shift
 ;;

 esac
 break
 fi
 done

 if [$MPIRunOpt = "1"]; then
 :
 else
 #Non-valued options
 for option in $ARG0
 do
Using Platform LSF HPC Features 51

52
 if [$option = "$1"]; then
 MPIRunOpt="1"
 case "$1" in
 -v)
 shift

 ;;
 *)

 LAMMPI_OPTS="$LAMMPI_OPTS $1"
 shift
 ;;

 esac
 break

 fi
 done
 fi

 if [$MPIRunOpt = "1"]; then
 :
 else
 JOB_CMDLN="$*"
 break
 fi

done

Set up the CMD_LINE variable representing the integrated section of the
command line:
- LSF_TS, script variable representing the TaskStarter binary.
TaskStarter must start each and every job task process.
- LSF_TS_OPTIONS, LSF environment variable containing all necessary
information for TaskStarter to callback to LSF's Parallel Application
Manager.
- JOB_CMDLN, script variable containing the job and job options
#--
if [-z "$LSF_TS_OPTIONS"]
then
 echo CMD_LINE="$JOB_CMDLN" >> $LOGFILE
 CMD_LINE="$JOB_CMDLN "
else
 echo CMD_LINE="$LSF_TS $LSF_TS_OPTIONS $JOB_CMDLN" >> $LOGFILE
 CMD_LINE="$LSF_TS $LSF_TS_OPTIONS $JOB_CMDLN "
fi

#

Pre-execution steps required by LAMMPI:
- define the variable LAM_MPI_SOCKET_SUFFIX using the LSF
job ID and export it
- run lamboot command and log the action
- append the hosts file to the script log file
- run tping command and log the action and output
Using Platform LSF HPC Features

- capture the result of tping and test for success before proceeding
- exits with the "requeue" exit value if pre-execution setup failed
--
#

LAM_MPI_SOCKET_SUFFIX="${LSB_JOBID}_${LSB_JOBINDEX}"
export LAM_MPI_SOCKET_SUFFIX

echo $LAMBOOT_CMD $LAMHOST_FILE >>$LOGFILE
$LAMBOOT_CMD $LAMHOST_FILE >>$LOGFILE 2>&1
echo $TPING_CMD h -c 1 >>$LOGFILE
$TPING_CMD N -c 1 >>$LOGFILE 2>&1
EXIT_VALUE="$?"

if ["$EXIT_VALUE" = "0"]; then
#

Run the parallel job launcher:
- log the action
- trap the exit value
--
#
 #call mpirun -np # a.out
 echo "Your command line looks like:" >> $LOGFILE
 echo $LAMMPIRUN_CMD $LAMMPI_OPTS -v C $CMD_LINE >> $LOGFILE
 $LAMMPIRUN_CMD $LAMMPI_OPTS -v C $CMD_LINE
 EXIT_VALUE=$?
#

Post-execution steps required by LAMMPI:
- run lamhalt
- log the action
--
#
 echo $LAMHALT_CMD >>$LOGFILE
 $LAMHALT_CMD >>$LOGFILE 2>&1
fi

#

Clean up after running this script:
- delete the hosts file we created
- log the end of the job
- log the exit value of the job
--
#
cleanup temp and conf file then exit
rm -f $LAMHOST_FILE
echo "Job<${DISPLAY_JOBID}> exits with exit value $EXIT_VALUE." >>$LOGFILE 2>&1
To support multiple jobs inside one job script
Sleep one sec to allow next lamd start up, otherwise tping will return error
sleep 1
Using Platform LSF HPC Features 53

54
exit $EXIT_VALUE
#

End the script.
--
#

Using Platform LSF HPC Features

Tips for Writing PJL Wrapper Scripts
A wrapper script is often used to call the PJL. We assume the PJL is not integrated with
LSF, so if PAM was to start the PJL directly, the PJL would not automatically use the
hosts that LSF selected, or allow LSF to collect resource information.
The wrapper script can set up the environment before starting the actual job.

Script log file The script should create and use its own log file, for troubleshooting purposes. For
example, it should log a message each time it runs a command, and it should also log the
result of the command. The first entry might record the successful creation of the log
file itself.

Command aliases Set up aliases for the commands used in the script, and identify the full path to the
command. Use the alias throughout the script, instead of calling the command directly.
This makes it simple to change the path or the command at a later time, by editing just
one line.

Signal handling If the script is interrupted or terminated before it finishes, it should exit gracefully and
undo any work it started. This might include closing files it was using, removing files it
created, shutting down daemons it started, and recording the signal event in the log file
for troubleshooting purposes.

Requeue exit
value

In LSF, job requeue is an optional feature that depends on the job’s exit value. PAM exits
with the same exit value as PJL, or its wrapper script. Some or all errors in the script can
specify a special exit value that causes LSF to requeue the job.

Redirect screen
output

Use /dev/null to redirect any screen output to a null file.

Access LSF
configuration

Set LSF_ENVDIR and source the lsf.conf file. This gives you access to LSF
configuration settings.

Construct host file The hosts LSF has selected to run the job are described by the environment variable
LSB_MCPU_HOSTS. This environment variable specifies a list, in quotes, consisting of
one or more host names paired with the number of processors to use on that host:
“host_name number_processors host_name number_processors ...”
Parse this variable into the components and create a host file in the specific format
required by the vendor PJL. In this way, the hosts LSF has chosen are passed to the PJL.

Vendor-specific
pre-exec

Depending on the vendor, the PJL may require some special pre-execution work, such
as initializing environment variables or starting daemons. You should log each pre-exec
task in the log file, and also check the result and handle errors if a required task failed.

Double-check
external resource

If an external resource is used to identify MPI-enabled hosts, LSF has selected hosts
based on the availability of that resource. However, there is some time delay between
LSF scheduling the job and the script starting the PJL. It’s a good idea to make the script
verify that required resources are still available on the selected hosts (and exit if the hosts
are no longer able to execute the parallel job). Do this immediately before starting the
PJL.

PJL The most important function of the wrapper script is to start the PJL and have it execute
the parallel job on the hosts selected by LSF. Normally, you use a version of the mpirun
command.
Using Platform LSF HPC Features 55

56
Vendor-specific
post-exec

Depending on the vendor, the PJL may require some special post-execution work, such
as stopping daemons. You should log each post-exec task in the log file, and also check
the result and handle errors if any task failed.

Script post-exec The script should exit gracefully. This might include closing files it used, removing files
it created, shutting down daemons it started, and recording each action in the log file for
troubleshooting purposes.
Using Platform LSF HPC Features

Other Integration Options
Once the PJL integration is successful, you might be interested in the following LSF
features.
For more information about these features, see the LSF documentation.

Using a job starter
A job starter is a wrapper script that can set up the environment before starting the
actual job.

Using external resources
You may need to identify MPI-enabled hosts
If all hosts in the LSF cluster can be used run the parallel jobs, with no restrictions, you
don’t need to differentiate between regular hosts and MPI-enabled hosts.
You can use an external resource to identify suitable hosts for running your parallel jobs.
To identify MPI-enabled hosts, you can configure a static Boolean resource in LSF.
For some integrations, to make sure the parallel jobs are sent to suitable hosts, you must
track a dynamic resource (such as free ports). You can use an LSF ELIM to report the
availability of these. See Administering Platform LSF for information about writing
ELIMs.

Named hosts ◆ If you create a dedicated LSF queue to manage the parallel jobs, make sure the
queue’s host list includes only MPI-enabled hosts.

◆ The bsub option -m host_name allows you to specify hosts by name. All the
hosts you name are used to run the parallel job.

◆ The bsub option -R res_req allows you to specify any LSF resource
requirements, including a list of hosts; in this case, you specify that the hosts selected
must have one of the names in your host list.

Using esub
An esub program can contain logic that modifies a job before submitting it to LSF. The
esub can be used to simplify the user input. An example is the LAM/MPI integration
in the Platform open source FTP directory.
Using Platform LSF HPC Features 57

58
 Using Platform LSF HPC Features

C H A P T E R

3
Using Platform LSF with HP-UX

Processor Sets

LSF makes use of HP-UX processor sets (psets) to create an efficient execution
environment that allows a mix of users and jobs to coexist in the HP Superdome cell-
based architecture.

Contents ◆ “About HP-UX Psets” on page 60
◆ “Configuring LSF with HP-UX Psets” on page 63
◆ “Using LSF with HP-UX Psets” on page 66
Using Platform LSF HPC Features 59

60
About HP-UX Psets
HP-UX processor sets (psets) are available as an optional software product for HP-UX
11i Superdome multiprocessor systems. A pset is a set of active processors group for the
exclusive access of the application assigned to the set. A pset manages processor
resources among applications and users.
The operating system restricts applications to run only on the processors in their
assigned psets. Processes bound to a pset can only run on the CPUs belonging to that
pset, so applications assigned to different psets do not contend for processor resources.
A newly created pset initially has no processors assigned to it.

Dynamic application binding

Each running application in the system is bound to some pset, which defines the
processors that the application can run on.

Scheduling
allocation domain

A pset defines a scheduling allocation domain that restricts applications to run only on
the processors in its assigned pset.

System default
pset

At system startup, the HP-UX system is automatically configured with one system
default pset to which all enabled processors are assigned. Processor 0 is always assigned
to the default pset. All users in the system can access the default pset.

For more
information

See the HP-UX 11i system administration documentation for information about
defining and managing psets.

How LSF uses psets

Processor
isolation

On HP-UX 11i Superdome multiprocessor systems, psets can be created and
deallocated dynamically out of available machine resources. The pset provides processor
isolation, so that a job requiring a specific number of CPUs only run on those CPUs.

Processor
distance

Processor distance is a value used to measure how fast the process running on one
processor access local memory of another processor. The bigger the value is, the slower
memory access is. For example, the processor distance of two processes within one cell
is less than that of two processes between cells.
When creating a pset for the job, LSF uses a best-fit algorithm for pset allocation to
choose processors as close as possible to each other. LSF attempts to choose the set of
processors with the smallest processor distance.

Pset creation and
deallocation

LSF makes use of HP-UX processor sets (psets) to create an efficient execution
environment that allows a mix of users and jobs to coexist in the HP Superdome cell-
based architecture.
When a job is submitted, LSF:
◆ Chooses the best CPUs based on job resource requirements (number of processors

requested and pset topology)
◆ Creates a pset for the job. The operating system assigns a unique pset identifier (pset

ID) to it.

LSF has no control over the pset ID assigned to a newly created pset.

◆ Places the job processes in the pset when the job starts running
Using Platform LSF HPC Features

After the job finishes, LSF destroys the pset. If no host meets the CPU requirements,
the job remains pending until processors become available to allocate the pset.
CPU 0 in the default pset 0 is always considered last for a job, and cannot be taken out
of pset 0, since all system processes are running on it. LSF cannot create a pset with CPU
0; it only uses the default pset if it cannot create a pset without CPU 0.

LSF topology
adapter for psets

(RLA)

RLA runs on each HP-UX11i host. It is started and monitored by sbatchd. RLA
provides services for external clients, including pset scheduler plugin and sbatchd to:
◆ Allocate and deallocate job psets
◆ Get the job pset ID
◆ Suspend a pset when job is suspended, and reassign all CPUs within pset back to

pset 0
◆ Resume a pset, and before a job is resumed, assign all original CPUs back to the job

pset
◆ Get pset topology information, cells, CPUs, and processor distance between cells.
◆ Get updated free CPU map
◆ Get job resource map
RLA maintains a status file in the directory defined by LSB_RLA_WORKDIR in
lsf.conf, which keeps track of job pset allocation information. When RLA starts, it
reads the status file and recovers the current status.

Assumptions and limitations

Account mapping User-level account and system account mapping are not supported. If a user account
does not exist on the remote host, LSF cannot create a pset for it.

Resizable jobs Jobs running in a pset cannot be resized.

Resource
reservation

By default, job start time is not accurately predicted for pset jobs with topology options,
so the forecast start time shown by bjobs -l is optimistic. LSF may incorrectly
indicate that the job can start at a certain time, when it actually cannot start until some
time after the indicated time.
For a more accuration start-time estimate, you should configure time-based slot
reservation. With time-based reservation, a set of pending jobs will get future allocation
and estimated start time.
See Administering Platform LSF for more information about time-based slot
reservation.

Chunk jobs Jobs submitted to a chunk job queue are not chunked together, but run outside of a pset
as a normal LSF job.

Preemption ◆ When LSF selects pset jobs to preempt, specialized preemption preferences, such
as MINI_JOB and LEAST_RUN_TIME in the PREEMPT_FOR parameter in
lsb.params, and others are ignored when slot preemption is required.

◆ Preemptable queue preference is not supported.

Suspending and
resuming jobs

When a job is suspended with bstop, all CPUs in the pset are released and reassigned
back to the default pset (pset 0). Before resuming the job LSF reallocates the pset and
rebinds all job processes to the job pset.
Using Platform LSF HPC Features 61

62
Pre-execution and
post-execution

Job pre-execution programs run within the job pset, since they are part of the job. Post-
execution programs run outside of the job pset.
Using Platform LSF HPC Features

Configuring LSF with HP-UX Psets

Automatic configuration at installation

lsb.modules During installation, lsfinstall adds the schmod_pset external scheduler plugin
module name to the PluginModule section of lsb.modules:
Begin PluginModule
SCH_PLUGIN RB_PLUGIN SCH_DISABLE_PHASES
schmod_default () ()
schmod_fcfs () ()
schmod_fairshare () ()
schmod_limit () ()
schmod_preemption () ()
...
schmod_pset () ()
End PluginModule

The schmod_pset plugin name must be configured after the standard LSF plugin
names in the PluginModule list.

See the Platform LSF Configuration Reference for more information about
lsb.modules.

lsf.conf During installation, lsfinstall sets the following parameters in lsf.conf:
◆ On HP-UX hosts, sets the full path to the HP vendor MPI library libmpirm.sl.

LSF_VPLUGIN="/opt/mpi/lib/pa1.1/libmpirm.sl"

◆ On Linux hosts running Platform MPI, sets the full path to the HP vendor MPI
library libmpirm.so.
For example, if Platform MPI is installed in /opt/hpmpi:
LSF_VPLUGIN="/opt/hpmpi/lib/linux_ia32/libmpirm.so"

◆ LSF_ENABLE_EXTSCHEDULER=Y
LSF uses an external scheduler for pset allocation.

◆ LSB_RLA_PORT=port_number
Where port_number is the TCP port used for communication between the LSF
topology adapter (RLA) and sbatchd.
The default port number is 6883.

◆ LSB_SHORT_HOSTLIST=1
Displays an abbreviated list of hosts in bjobs and bhist for a parallel job where
multiple processes of a job are running on a host. Multiple processes are displayed
in the following format:
processes*hostA

lsf.shared During installation, the Boolean resource pset is defined in lsf.shared:
Using Platform LSF HPC Features 63

64
Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
...
pset Boolean () () (PSET)
...
End Resource

You should add the pset resource name under the RESOURCES column of the Host
section of lsf.cluster.cluster_name. Hosts without the pset resource
specified are not considered for scheduling pset jobs.

lsb.hosts For each pset host, lsfinstall enables "!" in the MXJ column of the HOSTS section
of lsb.hosts for the HPPA11 host type.
For example:

Begin Host
HOST_NAME MXJ r1m pg ls tmp DISPATCH_WINDOW # Keywords
#hostA () 3.5/4.5 15/ 12/15 0 () # Example
default ! () () () () ()
HPPA11 ! () () () () () #pset host
End Host

lsf.cluster.cluster_name

For each pset host, hostsetup adds the pset Boolean resource to the HOST section
of lsf.cluster.cluster_name.

Configuring default and mandatory pset options
Use the DEFAULT_EXTSCHED and MANDATORY_EXTSCHED queue
paramters in lsb.queues to configure default and mandatory pset options.

DEFAULT_EXTSCHED=PSET[topology]

where topology is:
[CELLS=num_cells | PTILE=cpus_per_cell] [;CELL_LIST=cell_list]

Specifies default pset topology scheduling options for the queue.
-extsched options on the bsub command override any conflicting queue-level
options set by DEFAULT_EXTSCHED.
For example, if the queue specifies:
DEFAULT_EXTSCHED=PSET[PTILE=2]

and a job is submitted with no topology requirements requesting 6 CPUs (bsub -n 6),
a pset is allocated using 3 cells with 2 CPUs in each cell.
If the job is submitted:
bsub -n 6 -ext "PSET[PTILE=3]" myjob

The pset option in the command overrides the DEFAULT_EXTSCHED, so a pset is
allocated using 2 cells with 3 CPUs in each cell.

MANDATORY_EXTSCHED=PSET[topology]

Specifies mandatory pset topology scheduling options for the queue.
Using Platform LSF HPC Features

MANDATORY_EXTSCHED options override any conflicting job-level options set by
-extsched options on the bsub command.
For example, if the queue specifies:
MANDATORY_EXTSCHED=PSET[CELLS=2]

and a job is submitted with no topology requirements requesting 6 CPUs (bsub n 6),
a pset is allocated using 2 cells with 3 CPUs in each cell.
If the job is submitted:
bsub -n 6 -ext "PSET[CELLS=3]" myjob

MANDATORY_EXTSCHED overrides the pset option in the command, so a pset is
allocated using 2 cells with 3 CPUs in each cell.
Use the CELL_LIST option in MANDATORY_EXTSCHED to restrict the cells
available for allocation to pset jobs. For example, if the queue specifies:
MANDATORY_EXTSCHED=PSET[CELL_LIST=1-7]

job psets can only use cells 1 to 7; cell 0 is not used for pset jobs.
Using Platform LSF HPC Features 65

66
Using LSF with HP-UX Psets

Specifying pset topology options
To specify processor topology scheduling policy options for pset jobs, use:
◆ The -extsched option of bsub.

You can abbreviate the -extsched option to -ext.

◆ DEFAULT_EXTSCHED or MANDATORY_EXTSCHED, or both, in the queue
definition (lsb.queues).

If LSB_PSET_BIND_DEFAULT is set in lsf.conf, and no pset options are
specified for the job, LSF binds the job to the default pset 0. If
LSB_PSET_BIND_DEFAULT is not set, LSF must still attach the job to a pset, and so
binds the job to the same pset being used by the LSF daemons.
For more information about job operations, see Administering Platform LSF.
For more information about bsub, see the Platform LSF Command Reference.

Syntax -ext[sched] "PSET[topology]"

where topology is:
[CELLS=num_cells | PTILE=cpus_per_cell][;CELL_LIST=cell_list]

◆ CELLS=num_cells
Defines the exact number of cells the LSF job requires. For example, if CELLS=4,
and the job requests 6 processors (bsub -n 6) on a 4-CPU/cell HP Superdome
system with no other jobs running, the pset uses 4 cells, and the allocation is 2, 2, 1,
1 on each cell. If LSF cannot satisfy the CELLS request, the job remains pending.
If CELLS is greater than 1 and you specify minimum and maximum processors (for
example, bsub -n 2,8), only the minimum is used.
To enforce job processes to run within one cell, use "PSET[CELLS=1]".

◆ PTILE=cpus_per_cell
Defines the exact number of processors allocated on each cell up to the maximum
for the system. For example, if PTILE=2, and the job requests 6 processors
(bsub -n 6) on a 4-CPU/cell HP Superdome system with no other jobs running,
the pset spreads across 3 cells instead of 2 cells, and the allocation is 2, 2, 2 on each
cell.
The value for -n and the PTILE value must be divisible by the same number. If LSF
cannot satisfy the PTILE request, the job remains pending. For example:
bsub -n 5 -ext "PSET[PTILE=3] ...

is incorrect.
To enforce jobs to run on the cells that no others jobs are running on, use
"PSET[PTILE=4]" on 4 CPU/cell system.

You can specify either one CELLS or one PTILE option in the same PSET[]
option, not both.

◆ CELL_LIST=min_cell_ID[-max_cell_ID][,min_cell_ID[-max_cell_ID] ...]
Using Platform LSF HPC Features

The LSF job uses only cells specified in the specified cell list to allocate the pset. For
example, if CELL_LIST=1,2, and the job requests 8 processors (bsub -n 8) on
a 4-CPU/cell HP Superdome system with no other jobs running, the pset uses cells
1 and 2, and the allocation is 4 CPUs on each cell. If LSF cannot satisfy the
CELL_LIST request, the job remains pending.
If CELL_LIST is defined in DEFAULT_EXTSCHED in the queue, and you do not
want to specify a cell list for your job, use the CELL_LIST keyword with no value.
For example, if DEFAULT_EXTSCHED=PSET[CELL_LIST=1-8], and you do not
want to specify a cell list, use -ext "PSET[CELL_LIST=]".

Priority of topology scheduling options
The options set by -extsched can be combined with the queue-level
MANDATORY_EXTSCHED or DEFAULT_EXTSCHED parameters. If
-extsched and MANDATORY_EXTSCHED set the same option, the
MANDATORY_EXTSCHED setting is used. If -extsched and
DEFAULT_EXTSCHED set the same options, the -extsched setting is used.
topology scheduling options are applied in the following priority order of level from
highest to lowest:
1 Queue-level MANDATORY_EXTSCHED options override ...
2 Job level -ext options, which override ...
3 Queue-level DEFAULT_EXTSCHED options
For example, if the queue specifies:
DEFAULT_EXTSCHED=PSET[CELLS=2]

and the job is submitted with:
bsub -n 4 -ext "PSET[PTILE=1]" myjob

The pset option in the job submission overrides the DEFAULT_EXTSCHED, so the
job will run in a pset allocated using 4 cells, honoring the job-level PTILE option.
If the queue specifies:
MANDATORY_EXTSCHED=PSET[CELLS=2]
and the job is submitted with:
bsub -n 4 -ext "PSET[PTILE=1]" myjob

The job will run on 2 cells honoring the cells option in MANDATORY_EXTSCHED.

Partitioning the system for specific jobs (CELL_LIST)
Use the bsub -ext "PSET[CELL_LIST=cell_list]" option to partition a large
Superdome machine. Instead of allocating CPUs from the entire machine, LSF creates
a pset containing only the cells specified in the cell list.
Non-existent cells are ignored during scheduling, but the job can be dispatched as long
as enough cells are available to satisfy the job requirements. For example, in a cluster
with both 32-CPU and 64-CPU machines and a cell list specification CELL_LIST=1-15,
jobs can use cells 1-7 on the 32-CPU machine, and cells 1-15 on the 64-CPU machine.

CELL_LIST and
CELLS

You can use CELL_LIST with the PSET[CELLS=num_cells] option. The number of
requested cells in the cell list must be less than or equal to the number of cells in the
CELLS option; otherwise, the job remains pending.
Using Platform LSF HPC Features 67

68
CELL_LIST and
PTILE

You can use CELL_LIST with the PSET[PTILE=cpus_per_cell] option. The PTILE
option allows the job pset to spread across several cells. The number of required cells
equals the number of requested processors divided by the PTILE value. The resulting
number of cells must be less than or equal to the number of cells in the cell list;
otherwise, the job remains pending.
For example, the following is a correct specification:
bsub -n 8 -ext "PSET[PTILE=2;CELL_LIST=1-4]" myjob

The job requests 8 CPUs spread over 4 cells (8/2=4), which is equal to the 4 cells
requested in the CELL_LIST option.

Viewing pset allocations for jobs

bjobs -l After a pset job starts to run, use bjobs -l to display the job pset ID. For example, if
LSF creates pset 23 on hostA for job 329, bjobs shows:

bjobs -l 329

Job <329>, User <user1>, Project <default>, Status <RUN>, Queue <normal>, Ext
 sched <PSET[]>, Command <sleep 60>
Thu Jan 22 12:04:31 2010: Submitted from host <hostA>, CWD <$HOME>, 2
Processors
 Requested;
Thu Jan 22 12:04:38 2010: Started on 2 Hosts/Processors <2*hostA>, Execution
Home
 </home/user1>, Execution CWD </home/user1>;
Thu Jan 22 12:04:38 2010: psetid=hostA:23;
Thu Jan 22 12:04:39 2010: Resource usage collected.
 MEM: 1 Mbytes; SWAP: 2 Mbytes; NTHREAD: 1
 PGID: 18440; PIDs: 18440

 SCHEDULING PARAMETERS:
 r15s r1m r15m ut pg io ls it tmp swp mem
 loadSched - - - - - - - - - - -
 loadStop - - - - - - - - - - -

 EXTERNAL MESSAGES:
 MSG_ID FROM POST_TIME MESSAGE ATTACHMENT
 0 - - - -
 1 user1 Jan 22 12:04 PSET[]

The pset ID string for bjobs does not change after the job is dispatched.

bhist Use bhist to display historical information about pset jobs:
bhist -l 329

Job <329>, User <user1>, Project <default>, Extsched <PSET[]>, Command <sleep
 60>
Thu Jan 22 12:04:31 2010: Submitted from host <hostA>, to Queue <normal>, CWD
<$H
 OME>, 2 Processors Requested;
Using Platform LSF HPC Features

Thu Jan 22 12:04:38 2010: Dispatched to 2 Hosts/Processors <2*hostA>;
Thu Jan 22 12:04:38 2010: psetid=hostA:23;
Thu Jan 22 12:04:39 2010: Starting (Pid 18440);
Thu Jan 22 12:04:39 2010: Running with execution home </home/user1>, Execution
CWD
 </home/user1>, Execution Pid <18440>;
Thu Jan 22 12:05:39 2010: Done successfully. The CPU time used is 0.1 seconds;
Thu Jan 22 12:05:40 2010: Post job process done successfully;

Summary of time in seconds spent in various states by Thu Jan 22 12:05:40
 PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL
 7 0 61 0 0 0 68

bacct Use bacct to display accounting information about pset jobs:
bacct -l 329
Accounting information about jobs that are:
 - submitted by all users.
 - accounted on all projects.
 - completed normally or exited
 - executed on all hosts.
 - submitted to all queues.
 - accounted on all service classes.
--

Job <331>, User <user1>, Project <default>, Status <DONE>, Queue <normal>, Co
 mmand <sleep 60>
Thu Jan 22 18:23:14 2010: Submitted from host <hostA>, CWD <$HOME>;
Thu Jan 22 18:23:23 2010: Dispatched to <hostA>;
Thu Jan 22 18:23:23 2010: psetid=hostA:23;
Thu Jan 22 18:24:24 2010: Completed <done>.

Accounting information about this job:
 CPU_T WAIT TURNAROUND STATUS HOG_FACTOR MEM SWAP
 0.12 9 70 done 0.0017 1M 2M
--

SUMMARY: (time unit: second)
 Total number of done jobs: 1 Total number of exited jobs: 0
 Total CPU time consumed: 0.1 Average CPU time consumed: 0.1
 Maximum CPU time of a job: 0.1 Minimum CPU time of a job: 0.1
 Total wait time in queues: 9.0
 Average wait time in queue: 9.0
 Maximum wait time in queue: 9.0 Minimum wait time in queue: 9.0
 Average turnaround time: 70 (seconds/job)
 Maximum turnaround time: 70 Minimum turnaround time: 70
 Average hog factor of a job: 0.00 (cpu time / turnaround time)
 Maximum hog factor of a job: 0.00 Minimum hog factor of a job: 0.00

Examples
The following examples assume a 4-CPU/cell HP Superdome system with no other jobs
running:
Using Platform LSF HPC Features 69

70
◆ Submit a pset job without topology requirement:
bsub -n 8 -ext "PSET[]" myjob

A pset containing 8 cpus is created for the job. According to default scheduler
policy, these 8 cpus will come from 2 cells on a single host.

◆ Submit a pset job specifying 1 CPU per cell:
bsub -n 6 -ext "PSET[PTILE=1]" myjob

A pset containing 6 processors is created for the job. The allocation uses 6 cells with
1 processor per cell.

◆ Submit a pset job specifying 4 cells:
bsub -n 6 -ext "PSET[CELLS=4]" myjob

A pset containing 6 processors is created for the job. The allocation uses 4 cells: 2
cells with 2 processors and 2 cells with 1 processor.

◆ Submit a pset job with a range of CPUs and 3 CPUs per cell:
bsub -n 7,10 -ext "PSET[PTILE=3]" myjob

A pset containing 9 processors is created for the job. The allocation uses 3 cells, with
3 CPUs each.

◆ Submit a pset job with a range of CPUs and 4 cells:
bsub -n 7,10 -ext "PSET[CELLS=4]" myjob

A pset containing 7 processors is created for the job. The allocation uses 4 cells, 3
cells with 2 CPUs and 1 cell with 1 CPU:

◆ Submit a pset job with a range of CPUs and 1 cell:
bsub -n 2,4 -ext "PSET[CELLS=1]" myjob

A pset containing 4 processors is created for the job. The allocation uses 1 cell with
4 CPUs.

◆ Submit a pset job requiring cells 1 and 2 with 4 CPUs per cell:
bsub -n 8 -ext"PSET[PTILE=4;CELL_LIST=1,2]" myjob

A pset containing 8 processors is created for the job. The allocation uses cells 1 and
2, each with 4 CPUs.

◆ Submit a pset job requiring a specific range of 6 cells:
bsub -n 16 -ext "PSET[CELL_LIST=4-9]" myjob

A pset containing 16 processors is created for the job. The allocation uses cells
between 4 and 9.

◆ Submit a pset job requiring processors from two ranges of cells, separated by a
comma:
bsub -n 16 -ext "PSET[CELL_LIST=1-5,8-15]" myjob

A pset containing 16 processors is created for the job. The allocation uses
processors from cells 1 through 5 and cells 8 through 15.
Using Platform LSF HPC Features

C H A P T E R

4
Using Platform LSF with IBM POE

Contents ◆ “Running IBM POE Jobs” on page 72
◆ “Migrating IBM Load Leveler Job Scripts to Use LSF Options” on page 79
◆ “Controlling Allocation and User Authentication for IBM POE Jobs” on page 86
◆ “Submitting IBM POE Jobs over InfiniBand” on page 89
Using Platform LSF HPC Features 71

72
Running IBM POE Jobs
The IBM Parallel Operating Environment (POE) interfaces with the Resource Manager
to allow users to run parallel jobs requiring dedicated access to the high performance
switch.
The LSF integration for IBM High-Performance Switch (HPS) systems provides
support for submitting POE jobs from AIX hosts to run on IBM HPS hosts.
An IBM HPS system consists of multiple nodes running AIX. The system can be
configured with a high-performance switch to allow high bandwidth and low latency
communication between the nodes. The allocation of the switch to jobs as well as the
division of nodes into pools is controlled by the HPS Resource Manager.

Run chown to change the owner of nrt_api to root, and then use chmod to set
setuid bit (chmod u+s).

hpc_ibm queue for POE jobs
During installation, lsfinstall configures a queue in lsb.queues named
hpc_ibm for running POE jobs. It defines requeue exit values to enable requeuing of
POE jobs if some users submit jobs requiring exclusive access to the node.
The poejob script will exit with 133 if it is necessary to requeue the job. Other types of
jobs should not be submitted to the same queue. Otherwise, they will get requeued if
they happen to exit with 133.

Begin Queue
QUEUE_NAME = hpc_ibm
PRIORITY = 30
NICE = 20
...
RES_REQ = select[poe > 0]
REQUEUE_EXIT_VALUES = 133 134 135
...
DESCRIPTION = This queue is to run POE jobs ONLY.
End Queue

Configuring LSF to run POE jobs
Ensure that the HPS node names are the same as their host names. That is, st_status
should return the same names for the nodes that lsload returns.

To set up POE jobs “1. Configure per-slot resource reservation (lsb.resources)”.
“2. Optional. Enable exclusive mode (lsb.queues)”.
“3. Optional. Define resource management pools (rmpool) and node locking queue
threshold”.
“4. Optional. Define system partitions (spname)”.
“5. Allocate switch adapter specific resources”.
“6. Optional. Tune PAM parameters”.
“7. Reconfigure to apply the changes”.
Using Platform LSF HPC Features

1. Configure per-slot resource reservation (lsb.resources)

To support the IBM HPS architecture, LSF must reserve resources based on job slots.
During installation, lsfinstall configures the ReservationUsage section in
lsb.resources to reserve HPS resources on a per-slot basis.
Resource usage defined in the ReservationUsage section overrides the cluster-wide
RESOURCE_RESERVE_PER_SLOT parameter defined in lsb.params if it also
exists.
Begin ReservationUsage
RESOURCE METHOD
adapter_windows PER_SLOT
ntbl_windows PER_SLOT
csss PER_SLOT
css0 PER_SLOT
End ReservationUsage

2. Optional. Enable exclusive mode (lsb.queues)

To support the MP_ADAPTER_USE and -adapter_use POE job options, you must
enable the LSF exclusive mode for each queue. To enable exclusive mode, edit
lsb.queues and set EXCLUSIVE=Y:
Begin Queue
...
EXCLUSIVE=Y
...
End Queue

3. Optional. Define resource management pools (rmpool) and node locking queue threshold

If you schedule jobs based on resource management pools, you must configure
rmpools as a static resource in LSF. Resource management pools are collections of SP2
nodes that together contain all available SP2 nodes without any overlap.
For example, to configure 2 resource management pools, p1 and p2, made up of 6 SP2
nodes (sp2n1, sp2n1, sp2n3, ..., sp2n6):
1 Edit lsf.shared and add an external resource called pool. For example:

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
...
pool Numeric () () (sp2 resource mgmt
pool)
lock
Numeric 60 Y (IBM SP Node lock status)
...
End Resource

pool represents the resource management pool the node is in, and and lock
indicates whether the switch is locked.

2 Edit lsf.cluster.cluster_name and allocate the pool resource. For
example:
Using Platform LSF HPC Features 73

74
Begin ResourceMap
RESOURCENAME LOCATION
...
pool (p1@[sp2n1 sp2n2 sp2n3] p2@[sp2n4 sp2n5
sp2n6])
...
End ResourceMap

3 Edit lsb.queues and a threshold for the lock index in the hpc_ibm queue:
Begin Queue
NAME=hpc_ibm
...
lock=0
...
End Queue

The scheduling threshold on the lock index prevents dispatching to nodes which
are being used in exclusive mode by other jobs.

4. Optional. Define system partitions (spname)

If you schedule jobs based on system partition names, you must configure the static
resource spname. System partitions are collections of HPS nodes that together contain
all available HPS nodes without any overlap. For example, to configure two system
partition names, spp1 and spp2, made up of 6 SP2 nodes (sp2n1, sp2n1, sp2n3, ...,
sp2n6):
1 Edit lsf.shared and add an external resource called spname. For example:

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
...
spname String () () (sp2 sys partition
name)
...
End Resource

2 Edit lsf.cluster.cluster_name and allocate the spname resource. For
example:
Begin ResourceMap
RESOURCENAME LOCATION
...
spname (spp1@[sp2n1 sp2n3 sp2n5] spp2@[sp2n2 sp2n4
sp2n6])
...
End ResourceMap

5. Allocate switch adapter specific resources

If you use a switch adapter, you must define specific resources in LSF. During
installation, lsfinstall defines the following external resources in lsf.shared:
◆ adapter_windows—number of free adapter windows on IBM SP Switch2

systems
◆ ntbl_windows—number of free network table windows on IBM HPS systems
◆ css0—number of free adapter windows on on css0 on IBM SP Switch2 systems
◆ csss—number of free adapter windows on on csss on IBM SP Switch2 systems
Using Platform LSF HPC Features

◆ dedicated_tasks—number of of running dedicated tasks
◆ ip_tasks—number of of running IP (Internet Protocol communication

subsystem) tasks
◆ us_tasks—number of of running US (User Space communication subsystem)

tasks
These resources are updated through elim.hpc.

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
...
adapter_windows Numeric 30 N (free adapter windows on css0 on IBM SP)
ntbl_windows Numeric 30 N (free ntbl windows on IBM HPS)
poe Numeric 30 N (poe availability)
css0 Numeric 30 N (free adapter windows on css0 on IBM SP)
csss Numeric 30 N (free adapter windows on csss on IBM SP)
dedicated_tasks Numeric () Y (running dedicated tasks)
ip_tasks Numeric () Y (running IP tasks)
us_tasks Numeric () Y (running US tasks)
...
End Resource

You must edit lsf.cluster.cluster_name and allocate the external resources.
For example, to configure a switch adapter for six SP2 nodes (sp2n1, sp2n1, sp2n3,
..., sp2n6):
Begin ResourceMap

RESOURCENAME LOCATION
...
adapter_windows [default]
ntbl_windows [default]
css0 [default]
csss [default]
dedicated_tasks (0@[default])
ip_tasks (0@[default])
us_tasks (0@[default])
...
End ResourceMap

The adapter_windows and ntbl_windows resources are required for all POE jobs.
The other three resources are only required when you run IP and US jobs at the same
time.

6. Optional. Tune PAM parameters

To improve performance and scalability for large POE jobs, tune the following
lsf.conf parameters. The user's environment can override these.
◆ LSF_HPC_PJL_LOADENV_TIMEOUT

Timeout value in seconds for PJL to load or unload the environment. For example,
the time needed for IBM POE to load or unload adapter windows.
At job startup, the PJL times out if the first task fails to register within the specified
timeout value. At job shutdown, the PJL times out if it fails to exit after the last
Taskstarter termination report within the specified timeout value.
Using Platform LSF HPC Features 75

76
Default: LSF_HPC_PJL_LOADENV_TIMEOUT=300
◆ LSF_PAM_RUSAGE_UPD_FACTOR

This factor adjusts the update interval according to the following calculation:
RUSAGE_UPDATE_INTERVAL + num_tasks * 1 *
LSF_PAM_RUSAGE_UPD_FACTOR.
PAM updates resource usage for each task for every SBD_SLEEP_TIME +
num_tasks * 1 seconds (by default, SBD_SLEEP_TIME=15). For large parallel
jobs, this interval is too long. As the number of parallel tasks increases,
LSF_PAM_RUSAGE_UPD_FACTOR causes more frequent updates.
Default: LSF_PAM_RUSAGE_UPD_FACTOR=0.01For large clusters

7. Reconfigure to apply the changes
1 Run badmin ckconfig to check the configuration changes.

If any errors are reported, fix the problem and check the configuration again.
2 Reconfigure the cluster:

badmin reconfig
Checking configuration files ...
No errors found.
Do you want to reconfigure? [y/n] y
Reconfiguration initiated

LSF checks for any configuration errors. If no fatal errors are found, you are asked
to confirm reconfiguration. If fatal errors are found, reconfiguration is aborted.

POE ELIM (elim.hpc)
An external LIM (ELIM) for POE jobs is supplied with LSF.
On IBM HPS systems, ELIM uses the st_status or ntbl_status command to
collect information from the Resource Manager.

PATH variable in elim

The ELIM searches the following path for the poe and st_status commands:
PATH="/usr/bin:/bin:/usr/local/bin:/local/bin:/sbin:/usr/sbin:/usr/ucb:/usr/sbi
n:
/usr/bsd:${PATH}"

If these commands are installed in a different directory, you must modify the PATH
variable in LSF_SERVERDIR/elim.hpc to point to the correct directory.

POE esub (esub.poe)
The esub for POE jobs, esub.poe, is installed by lsfinstall. It is invoked using
the -a poe option of bsub. By default, the POE esub sets the environment variable
LSF_PJL_TYPE=poe. The job launcher, mpirun.lsf reads the environment variable
LSF_PJL_TYPE=poe, and generates the appropriate pam command line to invoke
POE to start the job.

LSF options The value of the bsub -n option overrides the POE -procs option. If no -n is used,
the esub sets default values with the variables LSB_SUB_NUM_PROCESSORS=1
and LSB_SUB_MAX_NUM_PROCESSORS=1.
Using Platform LSF HPC Features

POE options If you specify -euilib us (US mode), then -euidevice must be css0 or csss (the
HPS for interprocess communications.)
The -euidevice sn_all option is supported. The -euidevice sn_single
option is ignored. POE jobs submitted with -euidevice sn_single use
-euidevice sn_all.

POE PJL wrapper (poejob)
The POE PJL (Parallel Job Launcher) wrapper, poejob, parses the POE job options,
and filters out those that have been set by LSF.

Submitting POE jobs
Use bsub to submit POE jobs, including parameters required for the application and
POE. PAM launches POE and collects resource usage for all running tasks in the
parallel job.

Syntax
bsub -a poe [bsub_options] mpirun.lsf program_name [program_options]
[poe_options]

where:

-a poe Invokes esub.poe.

Examples

Running US jobs

To submit an POE job in US mode, and runs on six processors:
bsub -a poe -n 6 mpirun.lsf my_prog -euilib us -euidevice css0

Running IP jobs

To run POE jobs in IP mode, MP_EUILIB (or -euilib) must be set to IP (Internet
Protocol communication subsystem). For example:
bsub -a poe -n 6 mpirun.lsf my_prog -euilib ip ...

POE -procs option The POE -procs option is ignored by esub.poe. Use the bsub -n option to specify the
number of processors required for the job. The default if -n is not specified is 1.

Submitting POE jobs with a job script
A wrapper script is often used to call the POE script. You can submit a job using a job
script as an embedded script or directly as a job, for example:
bsub -a -n 4 poe < embedded_jobscript

bsub -a -n 4 poe jobscript

For information on generic PJL wrapper script components, see Chapter 2, “Running
Parallel Jobs”.
See Administering Platform LSF for information about submitting jobs with job scripts.
Using Platform LSF HPC Features 77

78
IBM SP Switch2 support
The SP Switch2 switch should be correctly installed and operational. By default, LSF
only supports homogeneous clusters of IBM SP PSSP 3.4 or PSSP 3.5 SP Swich2
systems.
To verify the version of PSSP, run:
lslpp -l | grep ssp.basic

Output should look something like:
lslpp -l | grep ssp.basic
ssp.basic 3.2.0.9 COMMITTED SP System Support Package
ssp.basic 3.2.0.9 COMMITTED SP System Support Package

To verify the switch type, run:
SDRGetObjects Adapter css_type

SP_Switch2_Adapter indicates that you are using SP Switch2.
Use these values to configure the device_type variable in the script
LSF_BINDIR/poejob. The default for device_type is 3.

IBM High Performance Switch (HPS) support

Running US jobs Tasks of a parallel job running in US mode use the IBM pSeries High Performance
Switch (HPS) exclusively for communication. HPS resources are referred to as network
table windows. For US jobs to run, network table windows must be allocated ahead of
the actual application startup.
You can run US jobs through LSF control (Load Leveler (LL) is not used). Job execution
for US jobs has two stages:
1 Load HPS network table windows using ntbl_api HPS support via The AIX

Switch Network Interface (SNI)
2 Optional. Start the application using the POE wrapper poe_w command

Running IP jobs

IP jobs do not require loading of network table windows. You just start poe or poe_w
with the proper host name list file supplied.

How jobs start Starting a parallel job on a pSeries HPS system is similar to starting jobs on an
SP Switch2 system:
1 Load a table file to connect network table windows allocated to a task
2 Launch the task over network table windows connected
3 Unload the same table file to disconnect the network table window allocated to the

task

Switch type Value

SP_Switch_Adapter 2
SP_Switch_MX_Adapter 3
SP_Switch_MX2_Adapter 3
SP_Switch2_Adapter 5
Using Platform LSF HPC Features

Migrating IBM Load Leveler Job Scripts to Use LSF
Options

You can integrate LSF with your POE jobs by modifying your job scripts to convert
POE Load Leveler options to LSF options. After modifying your job scripts, your LSF
job submission will be equivalent to a POE job submission:
bsub < jobscript becomes equivalent to Llsubmit jobCmdFile
The following POE options are handled differently when converting to LSF options:
◆ US (User Space) options
◆ IP (Internet Protocol) options
◆ -nodes combinations
◆ Other Load Leveler directives

US options
Use the following combinations of US options as a guideline for converting them to LSF
options.

-cpu_use unique

-cpu_use multiple

IP options
For IP jobs that do not use a switch, adapter_use does not apply. Use the following
combinations of IP options as a guideline for converting them to LSF options.

-cpu_use unique

-cpu_use multiple

-adapter_use dedicated -adapter_use shared

bsub -a poe -R "select[adapter_windows>0
&& us_tasks==0]
rusage[adapter_windows=1: us_tasks=1:
dedicated_tasks=1]

bsub -a poe -R "select[adapter_windows>0
&&
dedicated_tasks==0]rusage[adapter_window
s=1: us_tasks=1]"
◆ Set MXJ to ! for the hosts on which these

jobs will run
◆ The slots can only run these jobs

-adapter_use dedicated -adapter_use shared

bsub -a poe -R "select[adapter_windows>0
&& us_tasks=0]
rusage[adapter_windows=1: us_tasks=1:
dedicated_tasks=1]"

bsub -a poe -R "select[adapter_windows>0
&&
dedicated_tasks==0]"Rusage[adapter_windo
ws=1:us_tasks=1]"
◆ Set MXJ () for the hosts on which these

jobs will run
◆ The hosts can only run these jobs

bsub -R "rusage[ip_tasks=1]" ◆ Set MXJ to ! for the hosts on which these
jobs will run

◆ The slots can only run these jobs

bsub -R "rusage[ip_tasks=1]" ◆ Set MXJ () for the hosts on which these
jobs will run

◆ The hosts can only run these jobs
Using Platform LSF HPC Features 79

80
-nodes combinations

Load Leveler directives
Load Leveler job commands are handled as follows:
◆ Ignored by LSF
◆ Converted to bsub options (or queue options in lsb.queues)
◆ Require special handling in your job script

-nodes -tasks_per_nodes -nodes combination -nodes -procs

Cannot convert to LSF. You
must use span[host=1]

bsub -n a*b -R "span[ptile=b]"
◆ Only use if the poe options are:
poe -nodes a -tasks_per_nodes b -nodes b

bsub -n a*b -R "span[ptile=b]"
◆ Only use if the poe options are:
poe -nodes a -tasks_per_nodes b -procs
a*b

Load Leveler
Command

Ignored bsub option Special Handling

account_no Y Use LSF accounting.
arguments Y Place job arguments in the job

command line
blocking bsub -n with span[ptile]
all checkpoint
commands

Y

class bsub -P or -J
comment Y
core_limit bsub -C
cpu_limit bsub -c or -n
data_limit bsub -D
dependency bsub -w
environment Set in job script or in esub.poe
error bsub -e
executable Y Enter the job name in the job script
file_limit bsub -F
group Y
hold bsub -H
image_size bsub -v or -M
initialdir Y The working directory is the current

directory
input bsub -i
job_cpu_limit bsub -c
job_name bsub -J
job_type Y Handled by esub.poe
max_processors bsub -n min, max
min_processors bsub -n min, max
network bsub -R
node combinations See “-nodes combinations” on page 80
notification Set in lsf.conf
Using Platform LSF HPC Features

Simple job script modifications
The following example shows how to convert the POE options in a Load Leveler
command file to LSF options in your job scripts for a non-shared US or IP job.

Assumptions ◆ Only one job at a time can run on a non-shared node
◆ An IP job can share a node with a dedicated US job (-adapter_use is dedicated)
◆ The POE job always runs one task per CPU, so the -cpu_use option is not used

Example Load
Leveler command

file

This example uses following POE job script to run an executable named mypoejob:
#!/bin/csh
#@ shell = /bin/csh
#@ environment = ENVIRONMENT=BATCH; COPY_ALL;\
MP_EUILIB=us; MP_STDOUTMODE=ordered; MP_INFOLEVEL=0;
#@ network.MPI = switch,dedicated,US
#@ job_type = parallel
#@ job_name = batch-test
#@ output = $(job_name).log
#@ error = $(job_name).log
#@ account_no = USER1
#@ node = 2
#@ tasks_per_node = 8
#@ node_usage = not_shared
#@ wall_clock_limit = 1:00:00
#@ class = batch

notify_user Set in lsf.conf
output bsub -o
parallel_path Y
preferences bsub -R "select[...]
queue bsub -q
requirements bsub -R and -m
resources bsub -R Set rusage for each task according to

the Load Leveler equivalent
rss_limit bsub -M
shell Y
stack_limit bsub -S
startdate bsub -b
step_name Y
task_geometry Use the

LSB_PJL_TASK_GEOMETRY
environment variable to specify task
geometry for your jobs.
LSB_PJL_TASK_GEOMETRY
overrides any mpirun n option.

total_tasks bsub -n
user_priority bsub -sp
wall_clock_limit bsub -W

Load Leveler
Command

Ignored bsub option Special Handling
Using Platform LSF HPC Features 81

82
#@ notification = never
#@ queue

Copy required workfiles to $WORKDIR, which is set
to /scr/$user under the large GPFS work filesystem,
named /scr.
cp ~/TESTS/mpihello $WORKDIR/mpihello

Change directory to $WORKDIR
cd $WORKDIR

Execute program mypoejob
poe mypoejob
poe $WORKDIR/mpihello

Copy output data from $WORKDIR to appropriate archive FS,
since we are currently running within a volatile
"scratch" filesystem.

Clean unneeded files from $WORKDIR after job ends.
rm -f $WORKDIR/mpihello
echo "Job completed at: `date`"

To convert POE options in a Load Leveler command file to LSF options
1 Make sure the queue hpc_ibm is available in lsb.queues.
2 Set the EXCLUSIVE parameter of the queue:

EXCLUSIVE=Y
3 Create the job script for the LSF job. For example:

#!/bin/csh
mypoe_jobscript
Start script ---------
#BSUB -a poe
#BSUB -n 16
#BSUB -x
#BSUB -o batch_test.%J_%I.out
#BSUB -e batch_test.%J_%I.err
#BSUB -W 60
#BSUB -J batch_test
#BSUB -q hpc_ibm
setenv ENVIRONMENT BATCH
setenv MP_EUILIB=us

Copy required workfiles to $WORKDIR, which is set
to /scr/$user under the large GPFS work filesystem,
named /scr.
cp ~/TESTS/mpihello $WORKDIR/mpihello

Change directory to $WORKDIR
cd $WORKDIR

Execute program mypoejob
mpirun.lsf mypoejob -euilib us
mpirun.lsf $WORKDIR/mpihello -euilib us
Using Platform LSF HPC Features

Copy output data from $WORKDIR to appropriate archive FS,
since we are currently running within a volatile
"scratch" filesystem.

Clean unneeded files from $WORKDIR after job ends.
rm -f $WORKDIR/mpihello
echo "Job completed at: `date`"
End script ---------

4 Submit the job script as a redirected job, specifying the appropriate resource
requirement string:

bsub -R "select[adapter_windows>0] rusage[adapter_windows=1] span[ptile=8]" <
mypoe_jobscript

Comparing some of the converted options

Submitting the job Compare the job script submission with the equivalent job submitted with all the LSF
options on the command line:

bsub -x -a poe -q hpc_ibm -n 16 -R "select[adapter_windows>0]
rusage[adapter_windows=1] span[ptile=8]" mpirun.lsf mypoejob -euilib us

To submit the same job as an IP job, substitute ip for us, and remove the select and
rusage statements:

bsub -x -a poe -q hpc_ibm -n 16 -R "span[ptile=8]" mpirun.lsf mypoejob
-euilib ip

To submit the job as a shared US or IP job, remove the bsub -x option from the job
script or command line. This allows other jobs to run on the host your job is running on:

bsub -a poe -q hpc_ibm -n 16 -R "span[ptile=8]" mpirun.lsf mypoejob -euilib us

or
bsub -a poe -q hpc_ibm -n 16 -R "span[ptile=8]" mpirun.lsf mypoejob -euilib ip

Advanced job script modifications
If your environment runs any of the following:
◆ A mix of IP and US jobs,
◆ A combinations of dedicated and shared -adapter_use
◆ Unique and multiple -cpu_use
your job scripts must use the us_tasks and dedicated_tasks LSF resources.

POE LSF

#@ environment = ENVIRONMENT=BATCH; MP_EUILIB=us setenv ENVIRONMENT BATCH
setenv MP_EUILIB=us

#@wall_clock_limit = 1:00:00 #BSUB - W 60
#@ output = $(job_name).log #BSUB -o batch_test.%J_%I.out
#@ error = $(job_name).log #BSUB -e batch_test.%J_%I.err
#@node =2
#@tasks_per_node =8

#BSUB -n 16 -R "span[ptile=8]"

Execute programs:
poe mypoejob
poe $WORKDIR/mpihello

#Execute programs:
mpirun.lsf mypoejob -euilib us
mpirun.lsf $WORKDIR/mpihello -euilib us
Using Platform LSF HPC Features 83

84
The following examples show how to convert the POE options in a Load Leveler
command file to LSF options in your job scripts for several kinds of jobs.

-adapter_use dedicated and -cpu_use unique
◆ This example uses following POE job script:

#!/bin/csh
#@ shell = /bin/csh
#@ environment = ENVIRONMENT=BATCH; COPY_ALL;\
MP_EUILIB=us; MP_STDOUTMODE=ordered; MP_INFOLEVEL=0;
#@ network.MPI = switch,dedicated,US
#@ job_type = parallel
#@ job_name = batch-test
#@ output = $(job_name).log
#@ error = $(job_name).log
#@ account_no = USER1
#@ node = 2
#@ tasks_per_node = 8
#@ node_usage = not_shared
#@ wall_clock_limit = 1:00:00
#@ class = batch
#@ notification = never
#@ queue

Copy required workfiles to $WORKDIR, which is set
to /scr/$user under the large GPFS work filesystem,
named /scr.
cp ~/TESTS/mpihello $WORKDIR/mpihello

Change directory to $WORKDIR
cd $WORKDIR

Execute program(s)
poe mypoejob
poe $WORKDIR/mpihello

Copy output data from $WORKDIR to appropriate archive FS,
since we are currently running within a volatile
"scratch" filesystem.

Clean unneeded files from $WORKDIR after job ends.
rm -f $WORKDIR/mpihello
echo "Job completed at: `date`"

◆ The job script for the LSF job is:
#!/bin/csh
mypoe_jobscript
#BSUB -a poe
#BSUB -n 16
#BSUB -x
#BSUB -o batch_test.%J_%I.out
#BSUB -e batch_test.%J_%I.err
#BSUB -W 60
#BSUB -J batch_test
Using Platform LSF HPC Features

#BSUB -q hpc_ibm
setenv ENVIRONMENT BATCH
setenv MP_EUILIB us
Copy required workfiles to $WORKDIR, which is set
to /scr/$user under the large GPFS work filesystem,
named /scr.
cp ~/TESTS/mpihello $WORKDIR/mpihello

Change directory to $WORKDIR
cd $WORKDIR

Execute program(s)
mpirun.lsf mypoejob -euilib us
mpirun.lsf $WORKDIR/mpihello -euilib us
Copy output data from $WORKDIR to appropriate archive FS,
since we are currently running within a volatile
"scratch" filesystem.

Clean unneeded files from $WORKDIR after job ends.
rm -f $WORKDIR/mpihello
echo "Job completed at: `date`"
End of script ---------

Submitting the job ◆ Submit the job script as a redirected job, specifying the appropriate resource
requirement string:

bsub -R "select[adapter_windows>0] rusage[adapter_windows=1] span[ptile=8]" <
mypoe_jobscript

◆ Submit mypoejob as a single exclusive job:
bsub -x -a poe -q hpc_ibm -n 16 -R "select[adapter_windows>0]
rusage[adapter_windows=1] span[ptile=8]" mpirun.lsf mypoejob -euilib us
Using Platform LSF HPC Features 85

86
Controlling Allocation and User Authentication for
IBM POE Jobs

About POE authentication
Establishing authentication for POE jobs means ensuring that users are permitted to
run parallel jobs on the nodes they intend to use. POE supports two types of user
authentication:
◆ AIX authentication (the default)

Uses /etc/hosts.equiv or $HOME/.rhosts
◆ DFS/DCE authentication
When interactive remote login to HPS execution nodes is not allowed, you can still run
parallel jobs under Parallel Environment (PE) through LSF. PE jobs under LSF on the
system with restricted access to the execution nodes uses two wrapper programs to allow
user authentication:
◆ poe_w—wrapper for the poe driver program
◆ pmd_w—wrapper for pmd (PE Partition Manager Daemon)

Enabling user authentication for POE jobs
To enable user authentication through the poe_w and pmd_w wrappers, you must set
LSF_HPC_EXTENSIONS="LSB_POE_AUTHENTICATION" in
/etc/lsf.conf.

Enforcing node and CPU allocation for POE jobs
To enable POE Allocation control, use
LSF_HPC_EXTENSIONS="LSB_POE_ALLOCATION" in /etc/lsf.conf.
poe_w enforces the LSF allocation decision from mbatchd.
For US jobs, swtbl_api and ntbl_api validates network table windows data files
with mbatchd. For IP and US jobs, poe_wrapper validates the POE host file with the
information from mbatchd. If the information does not match with the information
from mbatchd, the job is terminated.
When LSF_HPC_EXTENSIONS="LSB_POE_ALLOCATION" is set:
◆ poe_w parses the POE host file and validates its contents with information from

mbatchd.
◆ ntbl_api and swtbl_api parse the network table and switch table data files and

validate their contents with information from mbatchd.

Validation rules ◆ Host names from data files must match host names as allocated by LSF
◆ The number of tasks per node cannot exceed the number of tasks per node as

allocated by LSF
◆ Total number of tasks cannot exceed the total number of tasks requested at job

submission (bsub -n)
Using Platform LSF HPC Features

Configuring POE allocation and authentication support

Configure services 1 Register pmv4lsf (pmv3lsf) service with inetd:
a Add the following line to /etc/inetd.conf:

pmv4lsf stream tcp nowait root /etc/pmdv4lsf pmdv4lsf

b Make a symbolic link from pmd_w to /etc/pmdv4lsf.
For example:
ln -s $LSF_BINDIR/pmd_w /etc/pmdv4lsf

Both $LSF_BINDIR and /etc must be owned by root for the symbolic link to
work. Symbolic links are not allowed under /etc on some AIX 5.3 systems, so
you may need to copy $LSF_BINDIR/pmd_w to /etc/pmdv4lsf:
cp -f $LSF_BINDIR/pmd_w /etc/pmdv4lsf

c Add pmv4lsf to /etc/services.
For example:
pmv4lsf 6128/tcp #pmd wrapper

2 Add poelsf service to /etc/services.
The port defined for this service will be used by pmd_w and poe_w for
communication with each other.
poelsf 6129/tcp #pmd_w - poe_w communication port

3 Run one of the following commands to restart inetd:
refresh -s inetd

kill -1 "inetd_pid"

Configure
parameters

1 Create /etc/lsf.conf file if does not exist already and add the following
parameter:

LSF_HPC_EXTENSIONS="LSB_POE_ALLOCATION LSB_POE_AUTHENTICATION"

2 (Optional) Two optional parameters can be added to the lsf.conf file:
❖ LSF_POE_TIMEOUT_BIND—time in seconds for poe_w to keep trying to

set up a server socket to listen on.
Default: 120 seconds.

❖ LSF_POE_TIMEOUT_SELECT—time in seconds for poe_w to wait for
connections from pmd_w.
Default: 160 seconds.

Both LSF_POE_TIMEOUT_BIND and LSF_POE_TIMEOUT_SELECT can also be set as
environment variables for poe_w to read.
Using Platform LSF HPC Features 87

88
Example job scripts

For IP jobs For the following job script:
mypoe_jobscript
#!/bin/sh
#BSUB -o out.%J
#BSUB -n 2
#BSUB -m "hostA"
#BSUB -a poe

export MP_EUILIB=ip

mpirun.lsf ./hmpis

Submit the job script as a redirected job, specifying the appropriate resource
requirement string:

bsub -R "select[poe>0]" < mypoe_jobscript

For US jobs: For the following job script:
mypoe_jobscript
#!/bin/sh
#BSUB -o out.%J
#BSUB -n 2
#BSUB -m "hostA"
#BSUB -a poe

export MP_EUILIB=us

mpirun.lsf ./hmpis

Submit the job script as a redirected job, specifying the appropriate resource
requirement string:

bsub -R "select[ntbl_windows>0] rusage[ntbl_windows=1] span[ptile=1]" <
mypoe_jobscript

Limitations
◆ POE authentication for LSF jobs is supported on PE 3.x or PE 4.x. It is assumed

that only one pmd version is installed on each node in the default location:
/usr/lpp/ppe.poe/bin/pmdv3 for PE 3.x
or
/usr/lpp/ppe.poe/bin/pmdv4 for PE 4.x
If both pmdv3 and pmdv4 are available in /usr/lpp/ppe.poe/bin, pmd_w
launches pmdv3.
Using Platform LSF HPC Features

Submitting IBM POE Jobs over InfiniBand
Platform LSF installation adds a shared nrt_windows resource to run and monitor POE
jobs over the InfiniBand interconnect.

lsb.shared Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
...
poe Numeric 30 N (poe availability)
dedicated_tasks Numeric () Y (running dedicated
tasks)
ip_tasks Numeric () Y (running IP tasks)
us_tasks Numeric () Y (running US tasks)
nrt_windows Numeric 30 N (free nrt windows on
IBM poe over IB)
...
End Resource

lsf.cluster.cluster_name
Begin ResourceMap
RESOURCENAME LOCATION
poe [default]
nrt_windows [default]
dedicated_tasks (0@[default])
ip_tasks (0@[default])
us_tasks (0@[default])
End ResourceMap

Job Submission
Run bsub -a poe to submit an IP mode job:

bsub -a poe mpirun.lsf job job_options -euilib ip poe_options

Run bsub -a poe to submit a US mode job:
bsub -a poe mpirun.lsf job job_options -euilib us poe_options

If some of the AIX hosts do not have InfiniBand support (for example, hosts that still
use HPS), you must explicitly tell LSF to exclude those hosts:

bsub -a poe -R "select[nrt_windows>0]" mpirun.lsf job job_options poe_options

Job monitoring
Run lsload to display the nrt_windows and poe resources:

lsload -l
HOST_NAME status r15s r1m r15m ut pg io ls it tmp swp mem nrt_windows poe
hostA ok 0.0 0.0 0.0 1% 8.1 4 1 0 1008M 4090M 6976M 128.0 1.0
hostB ok 0.0 0.0 0.0 0% 0.7 1 0 0 1006M 4092M 7004M 128.0 1.0
Using Platform LSF HPC Features 89

90
 Using Platform LSF HPC Features

C H A P T E R

5
Using Platform LSF with

SGI Cpusets

Platform LSF makes use of SGI cpusets to enforce processor limits for LSF jobs. When
a job is submitted, LSF creates a cpuset and attaches it to the job before the job starts
running, After the job finishes, LSF deallocates the cpuset. If no host meets the CPU
requirements, the job remains pending until processors become available to allocate the
cpuset.

Contents ◆ “About SGI cpusets” on page 92
◆ “Configuring LSF with SGI Cpusets” on page 95
◆ “Using LSF with SGI Cpusets” on page 102
◆ “Using SGI Comprehensive System Accounting facility (CSA)” on page 112
◆ “Using SGI User Limits Database (ULDB—IRIX only)” on page 114
◆ “SGI Job Container and Process Aggregate Support” on page 116
Using Platform LSF HPC Features 91

92
About SGI cpusets
An SGI cpuset is a named set of CPUs. The processes attached to a cpuset can only run
on the CPUs belonging to that cpuset.

Dynamic cpusets Jobs are attached to a cpuset dynamically created by LSF. The cpuset is deleted when the
job finishes or exits. If not specified, the default cpuset type is dynamic.

Static cpusets Jobs are attached to a static cpuset specified by users at job submission. This cpuset is
not deleted when the job finishes or exits. Specifying a cpuset name at job submission
implies that the cpuset type is static. If the static cpuset does not exist, the job will remain
pending until LSF detects a static cpuset with the specified name.

System architecture

How LSF uses cpusets

CPU containment
and reservation

On systems running IRIX 6.5.24 and up or SGI Altix or AMD64 (x86-64) ProPack 3.0
and up, cpusets can be created and deallocated dynamically out of available machine
resources. Not only does the cpuset provide containment, so that a job requiring a
specific number of CPUs will only run on those CPUs, but also reservation, so that the
required number of CPUs are guaranteed to be available only for the job they are
allocated to.

Cpuset creation
and deallocation

LSF can be configured to make use of SGI cpusets to enforce processor limits for LSF
jobs. When a job is submitted, LSF creates a cpuset and attaches it to the job when the
job is scheduled. After the job finishes, LSF deallocates the cpuset. If no host meets the
CPU requirements, the job remains pending until processors become available to
allocate the cpuset.

Assumptions and limitations

◆ When LSF selects cpuset jobs to preempt, MINI_JOB and LEAST_RUN_TIME
are ignored in the PREEMPT_FOR parameter in lsb.params
Using Platform LSF HPC Features

◆ When using cpusets, LSF schedules jobs based on the number of slots assigned to
the hosts instead of the number of CPUs. The lsb.params parameter setting
PARALLEL_SCHED_BY_SLOTS=N has no effect.

◆ Preemptable queue preference is not supported
◆ Before upgrading from a previous version, clusters must be drained of all running

jobs (especially cpuset hosts)
◆ The new cpuset integration cannot coexist with the old integration within the same

cluster
◆ Under the MultiCluster lease model, both clusters must use the same version of the

cpuset integration
◆ LSF supports up to ProPack 6.0.
◆ LSF will not create a cpuset on hosts of different ProPack versions.

Backfill and slot
reservation

Since backfill and slot reservation are based on an entire host, they may not work
correctly if your cluster contains hosts that use both static and dynamic cpusets or
multiple static cpusets.

Chunk jobs Jobs submitted to a chunk job queue are not chunked together, but run as individual LSF
jobs inside a dynamic cpuset.

Preemption ◆ When LSF selects cpuset jobs to preempt, specialized preemption preferences, such
as MINI_JOB and LEAST_RUN_TIME in the PREEMPT_FOR parameter in
lsb.params, and others are ignored when slot preemption is required.

◆ Preemptable queue preference is not supported.

Pre-execution and
post-execution

Job pre-execution programs run within the job cpuset, since they are part of the job. By
default, post-execution programs run outside of the job cpuset.
If JOB_INCLUDE_POSTPROC=Y is specified in lsb.applications, post-
execution processing is not attached to the job cpuset, and Platform LSF does not
release the cpuset until post-execution processing has finished.

Suspended jobs Jobs suspended (for example, with bstop) will release their cpusets.

Cpuset memory
options

◆ SGI Altix Linux ProPack versions 4 and lower do not support memory
migration; you must define RESUME_OPTION=ORIG_CPUS to force LSF to
recreate the original cpuset when LSF resumes a job.

◆ SGI Altix Linux ProPack 5 supports memory migration and does not require
additional configuration to enable this feature. If you submit and then suspend a job
using a dynamic cpuset, LSF will create a new dynamic cpuset when the job resumes.
The memory pages for the job are migrated to the new cpuset as required.

◆ SGI Altix Linux ProPack 3 only supports
CPUSET_OPTIONS=CPUSET_MEMORY_LOCAL. If the cpuset job runs on
an Altix host, other cpuset attributes are ignored.

◆ SGI Altix Linux ProPack 4 and ProPack 5 do not support
CPUSET_OPTIONS=CPUSET_MEMORY_MANDATORY or
CPUSET_OPTIONS=CPUSET_CPU_EXCLUSIVE attributes. If the cpuset job
runs on an Altix host, the cpusets created on the Altix system will have their
memory usage restricted to the memory nodes containing the CPUs assigned to the
cpuset. The CPUSET_MEMORY_MANDATORY and
CPUSET_CPU_EXCLUSIVE attributes are ignored.
Using Platform LSF HPC Features 93

94
Static cpusets ◆ SGI Altix Linux ProPack 4 and ProPack 5 static cpuset definitions must include
both the cpus and the memory nodes on which the cpus reside. The memory node
assignments should be non-exclusive, which allows other cpusets to use the same
nodes. With non-exclusive assignment of memory nodes, the allocation of cpus will
succeed even if the cpuset definition does not correctly map cpus to memory nodes.

PAM jobs on IRIX PAM on IRIX cannot launch parallel processes within cpusets.

Array services
authentication

(Altix only)

For PAM jobs on Altix, the SGI Array Services daemon arrayd must be running and
AUTHENTICATION must be set to NONE in the SGI array services authentication
file /usr/lib/array/arrayd.auth (comment out the AUTHENTICATION
NOREMOTE method and uncomment the AUTHENTICATION NONE method).
To run a mulithost MPI applications, you must also enable rsh without password
prompt between hosts:
◆ The remote host must defined in the arrayd configuration.
◆ Configure .rhosts so that rsh does not require a password.
For more information about SGI Array Services, see “SGI Job Container and Process
Aggregate Support” on page 116.
For more information about PAM jobs, see “SGI Vendor MPI Support” on page 25.

Forcing a cpuset
job to run

The administrator must use brun -c to force a cpuset job to run. If job is forced to
run on non-cpuset hosts, or if any host in the host list specified with -m is not a cpuset
host, -extsched cpuset options are ignored and the job runs with no cpusets allocated.
If the job is forced to run on a cpuset host:
◆ For dynamic cpusets: LSF allocates a dynamic cpuset without any cpuset options

and runs the job inside the dynamic cpuset
◆ For static cpusets: LSF runs the job in static cpuset. If the specific static cpuset does

not exsit, the job is requeued.

Resizable jobs Jobs running in a cpuset cannot be resized.
Using Platform LSF HPC Features

Configuring LSF with SGI Cpusets

Automatic configuration at installation and upgrade

lsb.modules During installation and upgrade, lsfinstall adds the schmod_cpuset external
scheduler plugin module name to the PluginModule section of lsb.modules:
Begin PluginModule
SCH_PLUGIN RB_PLUGIN SCH_DISABLE_PHASES
schmod_default () ()
schmod_cpuset () ()
End PluginModule

The schmod_cpuset plugin name must be configured after the standard LSF plugin
names in the PluginModule list.

For upgrade, lsfinstall comments out the schmod_topology external scheduler
plugin name in the PluginModule section of lsb.modules

lsf.conf During installation and upgrade, lsfinstall sets the following parameters in
lsf.conf:
◆ LSF_ENABLE_EXTSCHEDULER=Y

LSF uses an external scheduler for cpuset allocation.
◆ LSB_CPUSET_BESTCPUS=Y

LSF schedules jobs based on the shortest CPU radius in the processor topology
using a best-fit algorithm for cpuset allocation.

LSF_IRIX_BESTCPUS is obsolete.

◆ LSB_SHORT_HOSTLIST=1
Displays an abbreviated list of hosts in bjobs and bhist for a parallel job where
multiple processes of a job are running on a host. Multiple processes are displayed
in the following format:
processes*hostA

For upgrade, lsfinstall comments out the following obsolete parameters in
lsf.conf, and sets the corresponding RLA configuration:
◆ LSF_TOPD_PORT=port_number, replaced by LSB_RLA_PORT=port_number,

using the same value as LSF_TOPD_PORT.
Where port_number is the TCP port used for communication between the LSF
topology adapter (RLA) and sbatchd.
The default port number is 6883.

◆ LSF_TOPD_WORKDIR=director y parameter, replaced by
LSB_RLA_WORKDIR=directory parameter, using the same value as
LSF_TOPD_WORKDIR
Where director y is the location of the status files for RLA. Allows RLA to recover
its original state when it restarts. When RLA first starts, it creates the directory
defined by LSB_RLA_WORKDIR if it does not exist, then creates subdirectories
for each host.
Using Platform LSF HPC Features 95

96
lsf.shared During installation and upgrade, lsfinstall defines the cpuset Boolean resource in
lsf.shared:
Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
...
cpuset Boolean () () (cpuset host)
...
End Resource

You should add the cpuset resource name under the RESOURCES column of the Host
section of lsf.cluster.cluster_name. Hosts without the cpuset resource
specified are not considered for scheduling cpuset jobs.

lsf.cluster.cluster_name

For each cpuset host, hostsetup adds the cpuset Boolean resource to the HOST
section of lsf.cluster.cluster_name.

For more
information

See the Platform LSF Configuration Reference for information about the
lsb.modules, lsf.conf, lsf.shared, and lsf.cluster.cluster_name
files.

Optional configuration

lsb.queues ◆ In some pre-defined LSF queues, such as normal, the default MEMLIMIT is set
to 5000 (5 MB). However, if ULDB is enabled (LSF_ULDB_DOMAIN is defined),
the MEMLIMIT should be set greater than 8000.

◆ MANDATORY_EXTSCHED=CPUSET[cpuset_options]
Sets required cpuset properties for the queue. MANDATORY_EXTSCHED
options override -extsched options used at job submission.

◆ DEFAULT_EXTSCHED=CPUSET[cpuset_options]
Sets default cpuset properties for the queue if the -extsched option is not used
at job submission. -extsched options override the options set in
DEFAULT_EXTSCHED.
See “Specifying cpuset properties for jobs” on page 102 for more information
about external scheduler options for setting cpuset properties.

lsf.conf ◆ LSB_RLA_UPDATE=seconds
Specifies how often the LSF scheduler refreshes cpuset information from RLA.
The default is 600 seconds.

◆ LSB_RLA_WORKDIR=directory parameter, where director y is the location of the
status files for RLA. Allows RLA to recover its original state when it restarts. When
RLA first starts, it creates the directory defined by LSB_RLA_WORKDIR if it does
not exist, then creates subdirectories for each host.
You should avoid using /tmp or any other directory that is automatically cleaned up
by the system. Unless your installation has restrictions on the LSB_SHAREDIR
directory, you should use the default:
LSB_SHAREDIR/cluster_name/rla_workdir
Using Platform LSF HPC Features

You should not use a CXFS file system for LSB_RLA_WORKDIR.

◆ LSF_PIM_SLEEPTIME_UPDATE=Y
On Altix hosts, use this parameter to improve job throughput and reduce a job’s
start time if there are many jobs running simultaneously on a host. This parameter
reduces communication traffic between sbatchd and PIM on the same host.
When this parameter is defined:
❖ sbatchd does not query PIM immediately as it needs information—it will only

query PIM every LSF_PIM_SLEEPTIME seconds.
❖ sbatchd may be intermittently unable to retrieve process information for jobs

whose run time is smaller than LSF_PIM_SLEEPTIME.
❖ It may take longer to view resource usage with bjobs -l.

Increase file
descriptor limit

for MPI jobs (Altix
only)

By default, Linux sets the maximum file descriptor limit to 1024. This value is too small
for jobs using more than 200 processes. To avoid MPI job failure, specify a larger file
descriptor limit. For example:
/etc/init.d/lsf stop
ulimit -n 16384
/etc/init.d/lsf start

Any host with more than 200 CPUs should start the LSF daemons with the larger file
descriptor limit. SGI Altix already starts the arrayd daemon with the same ulimit
specifier, so that MPI jobs run without LSF can start as well.

For more
information

See the Platform LSF Configuration Reference for information about the lsb.queues
and lsf.conf files.

Resources for dynamic and static cpusets
If your environment uses both static and dynamic cpusets or you have more than one
static cpuset configured, you must configure decreasing numeric resources to represent
the cpuset count, and use -R "rusage" in job submission. This allows preemption,
and also lets you control number of jobs running on static and dynamic cpusets or on
each static cpuset.

Configuring
cpuset resources

1 Edit lsf.shared and configure resources for cpusets and configure resources for
static cpusets and non-static cpusets. For example:

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION # Keywords
 ...
 dcpus Numeric () N
 scpus Numeric () N
End Resource

Where:
❖ dcpus is the number CPUs outside static cpusets (that is the total number of

CPUs minus the number of CPUs in static cpusets).
❖ scpus is the number of CPUs in static cpusets. For static cpusets, configure a

separate resource for each static cpuset. You should use the cpuset name as the
resource name.
Using Platform LSF HPC Features 97

98
The names dcpus and scpus can be any name you like.

2 Edit lsf.cluster.cluster_name to map the resources to hosts. For
example:

Begin ResourceMap
RESOURCENAME LOCATION
dcpus (4@[hosta]) # total cpus - cpus in static cpusets
scpus (8@[hostc]) # static cpusets
End ResourceMap

❖ For dynamic cpuset resources, the value of the resource should be the number
of free CPUs on the host; that is, the number of CPUs outside of any static
cpusets on the host.

❖ For static cpuset resources, the number of the resource should be the number
of CPUs in the static cpuset.

3 Edit lsb.params and configure your cpuset resources as preemptable. For
example:
Begin Parameters
...
PREEMPTABLE_RESOURCES = scpus dcpus
End Parameters

4 Edit lsb.hosts and set MXJ greater than or equal to the total number of CPUs
in static and dynamic cpusets you have configured resources for.

Viewing your
cpuset resources

Use the following commands to verify your configuration:
bhosts -s
RESOURCE TOTAL RESERVED LOCATION
dcpus 4.0 0.0 hosta
scpus 8.0 0.0 hosta

lshosts -s
RESOURCE VALUE LOCATION
dcpus 4 hosta
scpus 8 hosta

bhosts
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
hosta ok - - 1 1 0 0 0

Using preemption To use preemption on systems running IRIX or TRIX versions earlier than 6.5.24, use
cpusetscript as the job suspend action in lsb.queues:
Begin Queue
...
JOB_CONTROLS = SUSPEND[cpusetscript]
...
End Queue

To enable checkpointing before the job is migrated by the cpusetscript, specify the
CHKPNT=chkpnt_dir parameter in the configuration of the preemptable queue.

Submitting jobs You must use -R "rusage" in job submission. This allows preemption, and also lets
you control number of jobs running on static and dynamic cpusets or on each static
cpuset.
Using Platform LSF HPC Features

Configuring default and mandatory cpuset options
Use the DEFAULT_EXTSCHED and MANDATORY_EXTSCHED queue
paramters in lsb.queues to configure default and mandatory cpuset options.

Use keywords SGI_CPUSET[] or CPUSET[] to identify the external scheduler
parameters. The keyword SGI_CPUSET[] is deprecated. The keyword CPUSET[] is
preferred.

DEFAULT_EXTSCHED=[SGI_]CPUSET[cpuset_options]

Specifies default cpuset external scheduling options for the queue.
-extsched options on the bsub command are merged with
DEFAULT_EXTSCHED options, and -extsched options override any conflicting
queue-level options set by DEFAULT_EXTSCHED.
For example, if the queue specifies:

DEFAULT_EXTSCHED=CPUSET[CPUSET_OPTIONS=CPUSET_CPU_EXCLUSIVE]

and a job is submitted with:
-extsched "CPUSET[CPUSET_TYPE=dynamic;CPU_LIST=1,5,7-12;
CPUSET_OPTIONS=CPUSET_MEMORY_LOCAL]"

LSF uses the resulting external scheduler options for scheduling:
CPUSET[CPUSET_TYPE=dynamic;CPU_LIST=1, 5, 7-12;
CPUSET_OPTIONS=CPUSET_CPU_EXCLUSIVE CPUSET_MEMORY_LOCAL]

DEFAULT_EXTSCHED can be used in combination with
MANDATORY_EXTSCHED in the same queue. For example, if the job specifies:
-extsched "CPUSET[CPU_LIST=1,5,7-12;MAX_CPU_PER_NODE=4]"

and the queue specifies:
Begin Queue
...
DEFAULT_EXTSCHED=CPUSET[CPUSET_OPTIONS=CPUSET_CPU_EXCLUSIVE]
MANDATORY_EXTSCHED=CPUSET[CPUSET_TYPE=dynamic;MAX_CPU_PER_NODE=2]
...
End Queue

LSF uses the resulting external scheduler options for scheduling:
CPUSET[CPUSET_TYPE=dynamic;MAX_CPU_PER_NODE=2;CPU_LIST=1, 5,
7-12;CPUSET_OPTIONS=CPUSET_CPU_EXCLUSIVE]

If cpuset options are set in DEFAULT_EXTSCHED, and you do not want to specify
values for these options, use the keyword with no value in the -extsched option of
bsub. For example, if DEFAULT_EXTSCHED=CPUSET[MAX_RADIUS=2], and you do
not want to specify any radius option at all, use
-extsched "CPUSET[MAX_RADIUS=]".
See “Specifying cpuset properties for jobs” on page 102 for more information about
external scheduling options.

MANDATORY_EXTSCHED=[SGI_]CPUSET[cpuset_options]

Specifies mandatory cpuset external scheduling options for the queue.
Using Platform LSF HPC Features 99

100
-extsched options on the bsub command are merged with
MANDATORY_EXTSCHED options, and MANDATORY_EXTSCHED options
override any conflicting job-level options set by -extsched.
For example, if the queue specifies:

MANDATORY_EXTSCHED=CPUSET[CPUSET_TYPE=dynamic;MAX_CPU_PER_NODE=2]

and a job is submitted with:
-extsched "CPUSET[MAX_CPU_PER_NODE=4;CPU_LIST=1,5,7-12;]"

LSF uses the resulting external scheduler options for scheduling:
CPUSET[CPUSET_TYPE=dynamic;MAX_CPU_PER_NODE=2;CPU_LIST=1, 5, 7-12]

MANDATORY_EXTSCHED can be used in combination with
DEFAULT_EXTSCHED in the same queue. For example, if the job specifies:
-extsched "CPUSET[CPU_LIST=1,5,7-12;MAX_CPU_PER_NODE=4]"

and the queue specifies:
Begin Queue
...
DEFAULT_EXTSCHED=CPUSET[CPUSET_OPTIONS=CPUSET_CPU_EXCLUSIVE]
MANDATORY_EXTSCHED=CPUSET[CPUSET_TYPE=dynamic;MAX_CPU_PER_NODE=2]
...
End Queue

LSF uses the resulting external scheduler options for scheduling:
CPUSET[CPUSET_TYPE=dynamic;MAX_CPU_PER_NODE=2;CPU_LIST=1, 5,
7-12;CPUSET_OPTIONS=CPUSET_CPU_EXCLUSIVE]

If you want to prevent users from setting certain cpuset options in the -extsched
option of bsub, use the keyword with no value. For example, if the job is submitted with
-extsched "CPUSET[MAX_RADIUS=2]", use
MANDATORY_EXTSCHED=CPUSET[MAX_RADIUS=] to override this setting.
See “Specifying cpuset properties for jobs” on page 102 for more information about
external scheduling options.

Priority of
topology

scheduling
options

The options set by -extsched can be combined with the queue-level
MANDATORY_EXTSCHED or DEFAULT_EXTSCHED parameters. If
-extsched and MANDATORY_EXTSCHED set the same option, the
MANDATORY_EXTSCHED setting is used. If -extsched and
DEFAULT_EXTSCHED set the same options, the -extsched setting is used.
topology scheduling options are applied in the following priority order of level from
highest to lowest:
1 Queue-level MANDATORY_EXTSCHED options override ...
2 Job level -ext options, which override ...
3 Queue-level DEFAULT_EXTSCHED options
For example, if the queue specifies:
DEFAULT_EXTSCHED=CPUSET[MAX_CPU_PER_NODE=2]

and the job is submitted with:
bsub -n 4 -ext "CPUSET[MAX_CPU_PER_NODE=1]" myjob
Using Platform LSF HPC Features

The cpuset option in the job submission overrides the DEFAULT_EXTSCHED, so the
job will run in a cpuset allocated with a maximum of 1 CPU per node, honoring the job-
level MAX_CPU_PER_NODE option.
If the queue specifies:
MANDATORY_EXTSCHED=CPUSET[MAX_CPU_PER_NODE=2]
and the job is submitted with:
bsub -n 4 -ext "CPUSET[MAX_CPU_PER_NODE=1]" myjob

The job will run in a cpuset allocated with a maximum of 2 CPUs per node, honoring
the MAX_CPU_PER_NODE option in the queue.
Using Platform LSF HPC Features 101

102
Using LSF with SGI Cpusets

Specifying cpuset properties for jobs
To specify cpuset properties for LSF jobs, use:
◆ The -extsched option of bsub.
◆ DEFAULT_EXTSCHED or MANDATORY_EXTSCHED, or both, in the queue

definition (lsb.queues).
If a job is submitted with the -extsched option, LSF submits jobs with hold, then
resumes the job before dispatching it to give time for LSF to attach the -extsched
options. The job starts on the first execution host.
For more information about job operations, see Administering Platform LSF.
For more information about bsub, see the Platform LSF Command Reference.

Syntax -ext[sched] "[SGI_]CPUSET[cpuset_options]"

Specifies a list of CPUs and cpuset attributes used by LSF to allocate a cpuset for the job.

You can abbreviate the -extsched option to -ext. Use keywords SGI_CPUSET[] or
CPUSET[] to identify the external scheduler parameters. The keyword SGI_CPUSET[] is
deprecated. The keyword CPUSET[] is preferred.

where cpuset_options are:
◆ CPUSET_TYPE=static |dynamic | none;

Specifies the type of cpuset to be allocated.
If you specify none, no cpuset is allocated and you cannot specify any other cpuset
options, and the job runs outside of any cpuset.

◆ CPUSET_NAME=name;

name is the name of a static cpuset. If you specify CPUSET_TYPE=static, you must
provide a cpuset name. If you specify a cpuset name, but specify CPUSET_TYPE
that is not static, the job is rejected.

Options valid only
for dynamic

cpusets

◆ MAX_RADIUS=radius;

radius is the maximum cpuset radius the job can accept. If the radius requirement
cannot be satisfied the job remains pending. MAX_RADIUS implies that the job
cannot span multiple hosts. LSF puts each cpuset host into its own group to enforce
this when MAX_RADIUS is specified.

◆ RESUME_OPTION=ORIG_CPUS;

Specifies how LSF should recreate a cpuset when a job is resumed.
By default, LSF tries to create the original cpuset when a job resumes. If this fails,
LSF tries to create a new cpuset based on the default memory option.
❖ ORIG_CPUS specifies that the job must be run on the original cpuset when it

resumes. If this fails, the job remains suspended.

Because memory migration is not supported on Altix for ProPack versions 4 or
lower, you must define RESUME_OPTION=ORIG_CPUS to force LSF to recreate the
original cpuset when LSF resumes a job.
Using Platform LSF HPC Features

◆ CPU_LIST=cpu_ID_list;

cpu_ID_list is a list of CPU IDs separated by commas. The CPU ID is a positive
integer or a range of integers. If incorrect CPU IDs are specified, the job remains
pending until the specified CPUs are available.
You must specify at least as many CPU IDs as the number of CPUs the job requires
(bsub -n). If you specify more CPU IDs than the job requests, LSF selects the best
CPUs from the list.

◆ CPUSET_OPTIONS=option_list;

option_list is a list of cpuset attributes joined by a pipe (|). If incorrect cpuset
attributes are specified, the job is rejected. See “Cpuset attributes” on page 104 for
supported cpuset options.

◆ MAX_CPU_PER_NODE=max_num_cpus;

max_num_cpus is the maximum number of CPUs on any one node that will be used
by this job. Cannot be used with the NODE_EX option.

◆ MEM_LIST=mem_node_list;

(Altix ProPack 4 and ProPack 5) mem_node_list is a list of memory node IDs
separated by commas. The memory node ID is a positive integer or a range of
integers. For example:
"CPUSET[MEM_LIST=0,1-2]"

Incorrect memory node IDs or unavailable memory nodes are ignored when LSF
allocates the cpuset.

◆ NODE_EX=Y | N;

Allocates whole nodes for the cpuset job. This option cannot be used with the
MAX_CPU_PER_NODE option.

When a job is submitted using -extsched, LSF creates a cpuset with the specified
CPUs and cpuset attributes and attaches it to the processes of the job. The job is then
scheduled and dispatched.

Running jobs on specific CPUs
The CPUs available for your jobs may have specific features you need to take advantage
of (for example, some CPUs may have more memory, others have a faster processor).
You can partition your machines to use specific CPUs for your jobs, but the cpusets for
your jobs cannot cross hosts, and you must run multiple operating systems
You can create static cpusets with the particular CPUs your jobs need, but you cannot
control the specific CPUs in the cpuset that the job actually uses.
A better solution is to use the CPU_LIST external scheduler option to request specific
CPUs for your jobs. LSF can choose the best set of CPUs from the CPU list to create a
cpuset for the job. The best cpuset is the one with the smallest CPU radius that meets
the CPU requirements of the job. CPU radius is determined by the processor topology
of the system and is expressed in terms of the number of router hops between CPUs.

CPU_LIST
requirements

To make job submission easier, you should define queues with the specific CPU_LIST
requirements. Set CPU_LIST in MANDATORY_EXTSCHED or DEFAULT_EXTSCHED
option in your queue definitions in lsb.queues.
Using Platform LSF HPC Features 103

104
span[ptile]
resource

requirement

CPU_LIST is interpreted as a list of possible CPU selections, not a strict requirement.
For example, if you subit a job with the the -R "span[ptile]" option:
bsub -R "span[ptile=1]" -ext "CPUSET[CPU_LIST=1,3]" -n2 ...

the following combination of CPUs is possible:

Cpuset attributes
The following cpuset attributes are supported in the list of cpuset options specified by
CPUSET_OPTIONS:
◆ CPUSET_CPU_EXCLUSIVE—defines a restricted cpuset
◆ CPUSET_MEMORY_LOCAL—threads assigned to the cpuset attempt to assign

memory only from nodes within the cpuset. Overrides the MEM_LIST cpuset
option.

◆ CPUSET_MEMORY_EXCLUSIVE—threads not assigned to the cpuset do not
use memory from within the cpuset unless no memory outside the cpuset is
available

◆ CPUSET_MEMORY_KERNEL_AVOID—kernel attempts to avoid allocating
memory from nodes contained in this cpuset

◆ CPUSET_MEMORY_MANDATORY—kernel limits all memory allocations to
nodes contained in this cpuset

◆ CPUSET_POLICY_PAGE—Causes the kernel to page user pages to the swap file
to free physical memory on the nodes contained in this cpuset. This is the default
policy if no other policy is specified. Requires
CPUSET_MEMORY_MANDATORY.

◆ CPUSET_POLICY_KILL—The kernel attempts to free as much space as possible
from kernel heaps, but will not page user pages to the swap file. Requires
CPUSET_MEMORY_MANDATORY.

See the SGI resource administration documentation and the man pages for the cpuset
command for information about these cpuset attributes.

SGI Altix ◆ SGI Altix Linux ProPack versions 4 and lower do not support memory
migration; you must define RESUME_OPTION=ORIG_CPUS to force LSF to
recreate the original cpuset when LSF resumes a job.

◆ SGI Altix Linux ProPack 5 supports memory migration and does not require
additional configuration to enable this feature. If you submit and then suspend a job
using a dynamic cpuset, LSF will create a new dynamic cpuset when the job resumes.
The memory pages for the job are migrated to the new cpuset as required.

◆ SGI Altix Linux ProPack 3 only supports
CPUSET_OPTIONS=CPUSET_MEMORY_LOCAL. If the cpuset job runs on
an Altix host, other cpuset attributes are ignored.

CPUs on host 1 CPUs on host 2

1 1
1 3
3 1
3 3
Using Platform LSF HPC Features

◆ SGI Altix Linux ProPack 4 and ProPack 5 do not support
CPUSET_OPTIONS=CPUSET_MEMORY_MANDATORY or
CPUSET_OPTIONS=CPUSET_CPU_EXCLUSIVE attributes. If the cpuset job
runs on an Altix host, the cpusets created on the Altix system will have their
memory usage restricted to the memory nodes containing the CPUs assigned to the
cpuset. The CPUSET_MEMORY_MANDATORY and
CPUSET_CPU_EXCLUSIVE attributes are ignored.

Restrictions on CPUSET_MEMORY_MANDATORY
◆ CPUSET_OPTIONS=CPUSET_MEMORY_MANDATORY implies node-level

allocation
◆ CPUSET_OPTIONS=CPUSET_MEMORY_MANDATORY cannot be used

together with MAX_CPU_PER_NODE=max_num_cpus

Restrictions on CPUSET_CPU_EXCLUSIVE

The scheduler will not use CPU 0 when determining an allocation on IRIX or TRIX.
You must not include CPU 0 in the list of CPUs specified by CPU_LIST.

MPI_DSM_MUSTRUN environment variable

You should not use the MPI_DSM_MUSTRUN=ON environment variable. If a job is
suspended through preemption, LSF can ensure that cpusets are recreated with the same
CPUs, but it cannot ensure that a certain task will run on a specific CPU. Jobs running
with MPI_DSM_MUSTRUN cannot migrate to a different part of the machine.
MPI_DSM_MUSTRUN also interferes with job checkpointing.

Including memory nodes in the allocation (Altix ProPack4 and Propack
5)

When you specify a list of memory node IDs with the cpuset external scheduler option
MEM_LIST, LSF creates a cpuset for the job that includes the memory nodes specified
by MEM_LIST in addition to the local memory attached to the CPUs allocated for the
cpuset. For example, if "CPUSET[MEM_LIST=30-40]", and a 2-CPU parallel job is
scheduled to run on CPU 0-1 (physically located on node 0), the job is able to use
memory on node 0 and nodes 30-40.
Unavailable memory nodes listed in MEM_LIST are ignored when LSF allocates the
cpuset. For example, a 4-CPU job across two hosts (hostA and hostB) that specifies
MEM_LIST=1 allocates 2 CPUs on each host. The job is scheduled as follows:
◆ CPU 0 and CPU 1 (memory=node 0, node 1) on hostA
◆ CPU 0 and CPU 1 (memory=node 0, node 1) on hostB
If hostB only has 2 CPUs, only node 0 is available, and the job will only use the memory
on node 0.
MEM_LIST is only available for dynamic cpuset jobs at both the queue level and the
command level.

CPUSET_MEMORY_LOCAL

When both MEM_LIST and CPUSET_OPTIONS=CPUSET_MEMORY_LOCAL
are both specified for the job, the root cpuset nodes are included as the memory nodes
for the cpuset. MEM_LIST is ignored, and CPUSET_MEMORY_LOCAL overrides
MEM_LIST.
Using Platform LSF HPC Features 105

106
CPU radius and processor topology
If LSB_CPUSET_BESTCPUS is set in lsf.conf, LSF can choose the best set of
CPUs that can create a cpuset. The best cpuset is the one with the smallest CPU radius
that meets the CPU requirements of the job. CPU radius is determined by the processor
topology of the system and is expressed in terms of the number of router hops between
CPUs.
For better performance, CPUs connected by metarouters are given a relatively high
weights so that they are the last to be allocated

Best-fit and first-fit CPU list
By default, LSB_CPUSET_BESTCPUS=Y is set in lsf.conf. LSF applies a best-fit
algorithm to select the best CPUs available for the cpuset.

Example For example, the following command creates an exclusive cpuset with the 8 best CPUs
if available:

bsub -n 8 -extsched "CPUSET[CPUSET_OPTIONS=CPUSET_CPU_EXCLUSIVE]" myjob

If LSB_CPUSET_BESTCPUS is not set in lsf.conf, LSF builds a CPU list on a first-
fit basis; in this example, the first 8 available CPUs are used.

Maximum radius for dynamic cpusets
Use the MAX_RADIUS cpuset external scheduler option to specify the maximum
radius for dynamic cpuset allocation. If LSF cannot allocate a cpuset with radius less
than or equal to MAX_RADIUS, the job remains pending.
MAX_RADIUS implies that the job cannot span multiple hosts. LSF puts each cpuset
host into its own group to enforce this when MAX_RADIUS is specified.

How the best CPUs are selected

Allocating cpusets on multiple hosts (Altix only)
On SGI Altix systems, if a single host cannot satisfy the cpuset requirements for the job,
LSF will try to allocate cpusets on multiple hosts, and the parallel job will be launched
within the cpuset.

CPU_LIST MAX_RADIUS LSB_CPUSET_BESTCPUS Algorithm used Applied to

specified specified or
not specified

N first fit cpus in
CPU_LIST

not
specified

specified or
not specified

N first fit all cpus in
system

specified specified Y max radius cpus in
CPU_LIST

not
specified

specified Y max radius all cpus in
system

specified not specified Y best fit cpus in
CPU_LIST

not
specified

not specified Y best fit all cpus in
system
Using Platform LSF HPC Features

If you define the external scheduler option CPUSET[CPUSET_TYPE=none], no
cpusets are allocated and the job is dispatched and run outside of any cpuset.

Spanning multiple hosts is not supported on TRIX. Platform HPC creates cpusets on a
single host (or on the first host in the allocation.)

LSB_HOST_CPUSETS environment variable

After dynamic cpusets are allocated and before the job starts running LSF sets the
LSB_HOST_CPUSETS environment variable. LSB_HOST_CPUSETS has the
following format:
number_hosts host1_name cpuset1_name host2_name
cpuset2_name ...

For example, if hostA and hostB have 2 CPUs, and hostC has 4 CPUs, cpuset 1-0 is
created on hostA, hostB and hostC, and LSB_HOST_CPUSETS set to:
3 hostA 1-0 hostB 1-0 hostC 1-0

LSB_HOST_CPUSETS is only set for jobs that allocate dynamic cpusets.

LSB_CPUSET_DEDICATED environment variable

When a static or dynamic cpuset is allocated, LSF sets the
LSB_CPUSET_DEDICATED environment variable. For CPUSET_TYPE=none,
LSB_CPUSET_DEDICATED is not set.
The LSB_CPUSET_DEDICATED variable is set by LSF as follows:
◆ For CPUSET_TYPE=dynamic cpusets, LSB_CPUSET_DEDICATED=YES.

This implies MPI_DISTRIBUTE=ON to get good NUMA placement in MPI jobs.
The cpusets assigned to this job are not intended to be shared with other jobs or
other users.

◆ For CPUSET_TYPE=static cpusets, LSB_CPUSET_DEDICATED=NO.
Static cpusets are typically used to run a number of jobs concurrently. The cpusets
assigned to this job are intended to be shared with other jobs, or it is unknown
whether the cpusets assigned are intended to be shared.

How cpuset jobs are suspended and resumed
When a cpuset job is suspended (for example, with bstop), job processes are moved out
of the cpuset and the job cpuset is destroyed. LSF keeps track of which processes belong
to the cpuset, and attempts to recreate a job cpuset when a job is resumed, and binds
the job processes to the cpuset.
When a job is resumed, regardless of how it was suspended, the RESUME_OPTION
is honored. If RESUME_OPTION=ORIG_CPUS then LSF first tries to get the
original CPUs from the same nodes as the original cpuset in order to use the same
memory. If this does not get enough CPUs to resume the job, LSF tries to get any CPUs
in an effort to get the job resumed.

SGI Altix Linux ProPack 5 supports memory migration and does not require
additional configuration to enable this feature. If you submit and then suspend a job
using a dynamic cpuset, LSF will create a new dynamic cpuset when the job resumes.
The memory pages for the job are migrated to the new cpuset as required.
Using Platform LSF HPC Features 107

108
Example Assume a host with 2 nodes, 2 CPUs per node (total of 4 CPUs)

When a job running within a cpuset that contains cpu 1 is suspended:
1 The job processes are detached from the cpuset and suspended
2 The cpuset is destroyed
When the job is resumed:
1 A cpuset with the same name is recreated
2 The processes are resumed and attached to the cpuset
The RESUME_OPTION parameter determines which CPUs are used to recreate the
cpuset:
◆ If RESUME_OPTION=ORIG_CPUS, only CPUs from the same nodes originally

used are selected.
◆ If RESUME_OPTION is not ORIG_CPUS LSF will first attempt to use cpus from

the original nodes to minimize memory latency. If this is not possible, any free CPUs
from the host will be considered.

If the job originally had a cpuset containing cpu 1, the possibilities when the job is
resumed are:

Viewing cpuset information for your jobs

bacct, bjobs, bhist The bacct -l, bjobs -l, and bhist -l commands display the following
information for jobs:
◆ CPUSET_TYPE=static | dynamic | none
◆ NHOSTS=number
◆ HOST=host_name
◆ CPUSET_NAME=cpuset_name
◆ NCPUS=num_cpus —the number of actual CPUs in the cpuset; can be greater than

the number of slots
bjobs -l 221

Job <221>, User <user1>, Project <default>, Status <DONE>, Queue <normal>, Com
 mand <myjob>
Thu Dec 15 14:19:54 2009: Submitted from host <hostA>, CWD <$HOME
 >, 2 Processors Requested;
Thu Dec 15 14:19:57 2009: Started on 2 Hosts/Processors <2*hostA>
 , Execution Home </home/user1>, Execution CWD
 </home/user1>;
Thu Dec 15 14:19:57 2009: CPUSET_TYPE=dynamic;NHOSTS=1;HOST=hostA;CPUSET_NAME=

Node CPUs

0 0 1
1 2 3

RESUME_OPTION Eligible CPUs

ORIG_CPUS 0 1
not ORIG_CPUS 0 1 2 3
Using Platform LSF HPC Features

 /reg62@221;NCPUS=2;
Thu Dec 15 14:20:03 2009: Done successfully. The CPU time used is 0.0 seconds.

 SCHEDULING PARAMETERS:
 r15s r1m r15m ut pg io ls it tmp swp mem
 loadSched - - - - - - - - - - -
 loadStop - - - - - - - - - - -

 EXTERNAL MESSAGES:
 MSG_ID FROM POST_TIME MESSAGE ATTACHMENT
 0 - - - -
 1 - - - -
 2 root Dec 15 14:19 JID=0x118f; ASH=0x0 N

bhist -l 221
Job <221>, User <user1>, Project <default>, Command <myjob>
Thu Dec 15 14:19:54 2009: Submitted from host <hostA>, to Queue <
 normal>, CWD <$HOME>, 2 Processors Requested;
Thu Dec 15 14:19:57 2009: Dispatched to 2 Hosts/Processors <2*hostA>;
Thu Dec 15 14:19:57 2009: CPUSET_TYPE=dynamic;NHOSTS=1;HOST=hostA
 ;CPUSET_NAME=/reg62@221;NCPUS=2;
Thu Dec 15 14:19:57 2009: Starting (Pid 4495);
Thu Dec 15 14:19:57 2009: External Message "JID=0x118f; ASH=0x0" was posted
from "ro
 ot" to message box 2;
Thu Dec 15 14:20:01 2009: Running with execution home </home/user1>, Execution
CWD
 </home/user1>, Execution Pid <4495>;
Thu Dec 15 14:20:01 2009: Done successfully. The CPU time used is 0.0 seconds;
Thu Dec 15 14:20:03 2009: Post job process done successfully;

Summary of time in seconds spent in various states by Thu Dec 15 14:20:03
 PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL
 3 0 4 0 0 0 7

bacct -l 221
Accounting information about jobs that are:
 - submitted by all users.
 - accounted on all projects.
 - completed normally or exited
 - executed on all hosts.
 - submitted to all queues.
 - accounted on all service classes.
--

Job <221>, User <user1>, Project <default>, Status <DONE>, Queue <normal>, Com
 mand <myjob>
Thu Dec 15 14:19:54 2009: Submitted from host <hostA>, CWD <$HOME>;
Thu Dec 15 14:19:57 2009: Dispatched to 2 Hosts/Processors <2*hostA>;
Thu Dec 15 14:19:57 2009: CPUSET_TYPE=dynamic;NHOSTS=1;HOST=hostA;CPUSET_NAME=
 /reg62@221;NCPUS=2;
Thu Dec 15 14:20:01 2009: Completed <done>.
Using Platform LSF HPC Features 109

110
Accounting information about this job:
 CPU_T WAIT TURNAROUND STATUS HOG_FACTOR MEM SWAP
 0.03 3 7 done 0.0042 0K 0K
--

SUMMARY: (time unit: second)
 Total number of done jobs: 1 Total number of exited jobs: 0
 Total CPU time consumed: 0.0 Average CPU time consumed: 0.0
 Maximum CPU time of a job: 0.0 Minimum CPU time of a job: 0.0
 Total wait time in queues: 3.0
 Average wait time in queue: 3.0
 Maximum wait time in queue: 3.0 Minimum wait time in queue: 3.0
 Average turnaround time: 7 (seconds/job)
 Maximum turnaround time: 7 Minimum turnaround time: 7
 Average hog factor of a job: 0.00 (cpu time / turnaround time)
 Maximum hog factor of a job: 0.00 Minimum hog factor of a job: 0.00

brlainfo Use brlainfo to display topology information for a cpuset host. It displays
◆ Cpuset host name
◆ Cpuset host type
◆ Total number of CPUs
◆ Free CPUs
◆ Total number of nodes
◆ Free CPUs per node
◆ Available CPUs with a given radius
◆ List of static cpusets

brlainfo
HOSTNAME CPUSET_OS NCPUS NFREECPUS NNODES NCPU/NODE NSTATIC_CPUSETS
hostA SGI_TRIX 2 2 1 2 0
hostB PROPACK_4 4 4 2 2 0
hostC PROPACK_4 4 3 2 2 0

brlainfo -l
HOST: hostC
CPUSET_OS NCPUS NFREECPUS NNODES NCPU/NODE NSTATIC_CPUSETS
PROPACK_4 4 3 2 2 0
FREE CPU LIST: 0-2
NFREECPUS ON EACH NODE: 2/0,1/1
STATIC CPUSETS: NO STATIC CPUSETS
CPU_RADIUS: 2,3,3,3,3,3,3,3

Examples
◆ Specify a dynamic cpuset:

bsub -n 8 -extsched "CPUSET[CPUSET_TYPE=dynamic;CPU_LIST=1, 5, 7-12;]" myjob

If CPUSET_TYPE is not specified, the default cpuset type is dynamic:
bsub -R "span[hosts=1]" -n 8 -extsched "CPUSET[CPU_LIST=1, 5, 7-12;]" myjob
Using Platform LSF HPC Features

Jobs are attached to a cpuset dynamically created by LSF. The cpuset is deleted
when the job finishes or exits.

◆ Specify a list of CPUs for an exclusive cpuset:
bsub -n 8 -extsched "CPUSET[CPU_LIST=1, 5, 7-12;
CPUSET_OPTIONS=CPUSET_CPU_EXCLUSIVE|CPUSET_MEMORY_LOCAL]" myjob

The job myjob will succeed if CPUs 1, 5, 7, 8, 9, 10, 11, and 12 are available.
◆ Specify a static cpuset:

bsub -n 8 -extsched "CPUSET[CPUSET_TYPE=static; CPUSET_NAME=MYSET]" myjob

Specifying a cpuset name implies that the cpuset type is static:
bsub -n 8 -extsched "CPUSET[CPUSET_NAME=MYSET]" myjob

Jobs are attached to a static cpuset specified by users at job submission. This cpuset
is not deleted when the job finishes or exits.

◆ Run a job without using any cpuset:
bsub -n 8 -extsched "CPUSET[CPUSET_TYPE=none]" myjob

Using preemption
◆ Jobs requesting static cpusets:

bsub -n 4 -q low rusage[scpus=4]" -extsched "CPUSET[CPUSET_NAME=MYSET]"
sleep 1000

bsub -n 4 -q low rusage[scpus=4]" -extsched "CPUSET[CPUSET_NAME=MYSET]"
sleep 1000

After these two jobs start running, submit a job to a high priority queue:
bsub -n 4 -q high rusage[scpus=4]" -extsched "CPUSET[CPUSET_NAME=MYSET]"
sleep 1000

The most recent job running on the low priority queue (job 102) is preempted by
the job submitted to the high priority queue (job 103):

bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
103 user1 RUN high hosta 4*hosta *eep 1000 Jan 22 08:24
101 user1 RUN low hosta 4*hosta *eep 1000 Jan 22 08:23
102 user1 SSUSP low hosta 4*hosta *eep 1000 Jan 22 08:23

bhosts -s
RESOURCE TOTAL RESERVED
LOCATION
dcpus 4.0 0.0 hosta
scpus 0.0 8.0 hosta

◆ Jobs request dynamic cpusets:
bsub -q high rusage[dcpus=1]" -n 3 -extsched "CPUSET[CPU_LIST=1,2,3]" sleep
1000

bhosts -s
RESOURCE TOTAL RESERVED
LOCATION
dcpus 3.0 1.0 hosta
scpus 8.0 0.0 hosta
Using Platform LSF HPC Features 111

112
Using SGI Comprehensive System Accounting facility
(CSA)

The SGI Comprehensive System Accounting facility (CSA) provides data for collecting
per-process resource usage, monitoring disk usage, and chargeback to specific login
accounts. If is enabled on your system, LSF writes records for LSF jobs to CSA.
SGI CSA writes an accounting record for each process in the pacct file, which is
usually located in the /var/adm/acct/day directory. SGI system administrators then
use the csabuild command to organize and present the records on a job by job basis.
For each job running on the SGI system, LSF writes an accounting record to CSA when
the job starts and when the job finishes. LSF daemon accounting in CSA starts and stops
with the LSF daemon.
See the SGI resource administration documentation for information about CSA.

Setting up SGI CSA
1 Set the following parameters in /etc/csa.conf to on:

❖ CSA_START
❖ WKMG_START

2 Run the csaswitch command to turn on the configuration changes in
/etc/csa.conf.

See the SGI resource administration documentation for information about the
csaswitch command.

Information written to the pacct file
LSF writes the following records to the pacct file when a job starts and when it exits:
◆ Job record type (job start or job exit)
◆ Current system clock time
◆ Service provider (LSF)
◆ Submission time of the job (at job start only)
◆ User ID of the job owner
◆ Array Session Handle (ASH) of the job (not available on Altix)
◆ SGI job container ID (PAGG job ID on Altix)
◆ SGI project ID (not available on Altix)
◆ LSF job name if it exists
◆ Submission host name
◆ LSF queue name
◆ LSF external job ID
◆ LSF job array index
◆ LSF job exit code (at job exit only)
◆ NCPUS—number of CPUs the LSF job has been using

Viewing LSF job information recorded in CSA
Use the SGI csaedit command to see the ASCII content of the pacct file. For
example:
Using Platform LSF HPC Features

csaedit -P /var/csa/day/pacct -A

For each LSF job, you should see two lines similar to the following:

37 Raw-Workld-Mgmt user1 0x19ac91ee000064f2 0x0000000000000000 0
REQID=1771 ARRAYID=0 PROV=LSF START=Jun 4 15:52:01 ENTER=Jun 4 15:51:49
TYPE=INIT SUBTYPE=START MACH=hostA REQ=myjob QUE=normal
…
39 Raw-Workld-Mgmt user1 0x19ac91ee000064f2 0x0000000000000000 0
REQID=1771 ARRAYID=0 PROV=LSF START=Jun 4 16:09:14 TYPE=TERM SUBTYPE=EXIT
MACH=hostA REQ=myjob QUE=normal--

The REQID is the LSF job ID (1771).
See the SGI resource administration documentation for information about the
csaedit command.
Using Platform LSF HPC Features 113

114
Using SGI User Limits Database (ULDB—IRIX only)
The SGI user limits database (ULDB) allows user-specific limits for jobs. If no ULDB
is defined, job limits are the same for all jobs. If you use ULDB, you can configures LSF
so that jobs submitted to a host with the SGI job limits package installed are subject to
the job limits configured in the ULDB.
Set LSF_ULDB_DOMAIN=domain_name in lsf.conf to specify the name of the
LSF domain in the ULDB domain directive. A domain definition of name domain_name
must be configured in the jlimit.in input file.
The ULDB contains job limit information that system administrators use to control
access to a host on a per user basis. The job limits in the ULDB override the system
default values for both job limits and process limits. When a ULDB domain is
configured, the limits will be enforced as SGI job limits.
If the ULDB domain specified in LSF_ULDB_DOMAIN is not valid or does not exist,
LSF uses the limits defined in the domain named batch. If the batch domain does not
exist, then the system default limits are set.
When an LSF job is submitted, an SGI job is created, and the job limits in the ULDB
are applied.
Next, LSF resource usage limits are enforced for the SGI job under which the LSF job
is running. LSF limits override the corresponding SGI job limits. The ULDB limits are
used for any LSF limits that are not defined. If the job reaches the SGI job limits, the
action defined in the SGI system is used.
SGI job limits in the ULDB apply only to batch jobs.
You can also define resource limits (rlimits) in the ULDB domain. One advantage to
defining rlimits in ULDB as opposed to in LSF is that rlimits can be defined per user
and per domain in ULDB, whereas in LSF, limits are enforced per queue or per job.
See the SGI resource administration documentation for information about configuring
ULDB domains in the jlimit.in file.

SGI Altix SGI ULDB is not supported on Altix systems, so no process aggregate (PAGG) job-level
resource limits are enforced for jobs running on Altix. Other operating system and
LSF resource usage limits are still enforced.

LSF resource usage limits controlled by ULDB job limits
◆ PROCESSLIMIT—Corresponds to SGI JLIMIT_NUMPROC; fork(2) fails, but

the existing processes continue to run
◆ MEMLIMIT—Corresponds to JLIMIT_RSS; Resident pages above the limit

become prime swap candidates
◆ DATALIMIT—Corresponds to LIMIT_DATA; malloc(3) calls in the job fail with

errno set to ENOMEM
◆ CPULIMIT—Corresponds to JLIMIT_CPU; a SIGXCPU signal is sent to the job,

then after the grace period expires, SIGINT, SIGTERM, and SIGKILL are sent
◆ FILELIMIT—No corresponding limit; use process limit RLIMIT_FSIZE
◆ STACKLIMIT—No corresponding limit; use process limit RLIMIT_STACK
◆ CORELIMIT—No corresponding limit; use process limit RLIMIT_CORE
Using Platform LSF HPC Features

◆ SWAPLIMIT—Corresponds to JLIMIT_VMEM; use process limit
RLIMIT_VMEM

Increasing the default MEMLIMIT for ULDB
In some pre-defined LSF queues, such as normal, the default MEMLIMIT is set to
5000 (5 MB). However, if ULDB is enabled (LSF_ULDB_DOMAIN is defined) the
MEMLIMIT should be set greater than 8000 in lsb.queues.

Example ULDB domain configuration
The following steps enable the ULDB domain LSF for user user1:
1 Define the LSF_ULDB_DOMAIN parameter in lsf.conf:

...
LSF_ULDB_DOMAIN=LSF
...

Note You can set the LSF_ULDB_DOMAIN to include more than one domain. For
example:
LSF_ULDB_DOMAIN="lsf:batch:system"

2 Configure the domain directive LSF in the jlimit.in file:
domain <LSF> { # domain for LSF
 jlimit_numproc_cur = unlimited
 jlimit_numproc_max = unlimited # JLIMIT_NUMPROC
 jlimit_nofile_cur = unlimited
 jlimit_nofile_max = unlimited # JLIMIT_NOFILE
 jlimit_rss_cur = unlimited
 jlimit_rss_max = unlimited # JLIMIT_RSS
 jlimit_vmem_cur = 128M
 jlimit_vmem_max = 256M # JLIMIT_VMEM
 jlimit_data_cur = unlimited
 jlimit_data_max =unlimited # JLIMIT_DATA
 jlimit_cpu_cur = 80
 jlimit_cpu_max = 160 # JLIMIT_CPU
}

3 Configure the user limit directive for user1 in the jlimit.in file:
user user1 {
 LSF {
 jlimit_data_cur = 128M
 jlimit_data_max = 256M
 }
}

4 Use the IRIX genlimits command to create the user limits database:
genlimits -l -v
Using Platform LSF HPC Features 115

116
SGI Job Container and Process Aggregate Support
An SGI job contains all processes created in a login session, including array sessions and
session leaders. Job limits set in ULDB are applied to SGI jobs either at creation time or
through the lifetime of the job. Job limits can also be reset on a job during its lifetime.

SGI IRIX job containers
If SGI Job Limits is installed, LSF creates a job container when starting a job, uses the
job container to signal all processes in the job, and uses the SGI job ID to collect job
resource usage for a job.
If LSF_ULDB_DOMAIN is defined in lsf.conf, ULDB job limits are applied to the
job.
The SGI job ID is also used for kernel-level checkpointing.

SGI Altix Process Aggregates (PAGG)
Similar to an SGI job container, a process aggregate (PAGG) is a collection of processes.
A child process in a PAGG inherits membership, or attachment, to the same process
aggregate containers as the parent process. When a process inherits membership, the
process aggregate containers are updates for the new process member. When a process
exits, the process leaves the set of process members and the aggregate containers are
updated again.

SGI Altix Since SGI ULDB is not supported on Altix systems, no PAGG job-level resource limits
are enforced for jobs running on Altix. Other operating system level and LSF resource
limits are still enforced.

Viewing SGI job ID and Array Session Handle (ASH)
Use bjobs and bhist to display SGI job ID and Array Session Handle.

SGI Altix On Altix systems, the array session handle is not available. It is displayed as ASH=0x0.

bjobs -l 640
Job <640>, User <user1>, Project <default>, Status <RUN>, Queue <normal>,
 Command <pam -mpi -auto_place myjob>
Tue Jan 20 12:37:18 2009: Submitted from host <hostA>, CWD <$HOME>, 2
Processors Re
 quested;
Tue Jan 20 12:37:29 2009: Started on 2 Hosts/Processors <2*hostA>,
 Execution Home </home/user1>, Execution CWD </home/user1>;
Tue Jan 20 12:37:29 2009: CPUSET_TYPE=dynamic;NHOSTS=1;ALLOCINFO=hostA 640-0;
Tue Jan 20 12:38:22 2009: Resource usage collected.
 MEM: 1 Mbytes; SWAP: 5 Mbytes; NTHREAD: 1
 PGID: 5020232; PIDs: 5020232

 SCHEDULING PARAMETERS:
 r15s r1m r15m ut pg io ls it tmp swp mem
 loadSched - - - - - - - - - - -
 loadStop - - - - - - - - - - -
Using Platform LSF HPC Features

 EXTERNAL MESSAGES:
 MSG_ID FROM POST_TIME MESSAGE ATTACHMENT

 0 - - - -
 1 - - - -
 2 root Jan 20 12:41 JID=0x2bc0000000001f7a; ASH=0x2bc0f N

bhist -l 640
Job <640>, User <user1>, Project <default>, Command
 <pam -mpi -auto_place myjob>
Sat Oct 19 14:52:14 2009: Submitted from host <hostA>, to Queue <normal>, CWD
 <$HOME>, Requested Resources <unclas>;
Sat Oct 19 14:52:22 2009: Dispatched to <hostA>;
Sat Oct 19 14:52:22 2009: CPUSET_TYPE=none;NHOSTS=1;ALLOCINFO=hostA;
Sat Oct 19 14:52:23 2009: Starting (Pid 5020232);
Sat Oct 19 14:52:23 2009: Running with execution home </home/user1>, Execution
CWD
 </home/user1>, Execution Pid <5020232>;
Sat Oct 19 14:53:22 2009: External Message "JID=0x2bc0000000001f7a;
ASH=0x2bc0f" was
 posted from "root" to message box 2;

Summary of time in seconds spent in various states by Sat Oct 19 14:54:00
 PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL
 8 0 98 0 0 0 106
Using Platform LSF HPC Features 117

118
 Using Platform LSF HPC Features

C H A P T E R

6
Using Platform LSF with LAM/MPI

Contents ◆ “About Platform LSF and LAM/MPI” on page 120
◆ “Configuring LSF to work with LAM/MPI” on page 122
◆ “Submitting LAM/MPI Jobs” on page 123
Using Platform LSF HPC Features 119

120
About Platform LSF and LAM/MPI
LAM (Local Area Multicomputer) is an MPI programming environment and
development system for heterogeneous computers on a network. With LAM, a
dedicated cluster or an existing network computing infrastructure can act as one parallel
computer solving one problem.

System requirements
❏ LAM/MPI version 6.5.7 or higher

Assumptions
◆ LAM/MPI is installed and configured correctly
◆ The user's current working directory is part of a shared file system reachable by all

hosts

Glossary

 LAM (Local Area Multicomputer) An MPI programming environment and development
system for heterogeneous computers on a network.

 MPI (Message Passing Interface) A message passing standard. It defines a message passing
API useful for parallel and distributed applications.

PAM (Parallel Application Manager) The supervisor of any parallel job.

PJL (Parallel Job Launcher) Any executable script or binary capable of starting parallel tasks
on all hosts assigned for a parallel job.

RES (Remote Execution Server) An LSF daemon residing on each host. It monitors and
manages all LSF tasks on the host.

TS (TaskStarter) An executable responsible for starting a task on the local host and
reporting the process ID and host name to the PAM.

Files installed by lsfinstall
During installation, lsfinstall copies these files to the following directories:

Resources and parameters configured by lsfinstall
◆ External resources in lsf.shared:

These files... Are installed to...

TaskStarter LSF_BINDIR

pam LSF_BINDIR

esub.lammpi LSF_SERVERDIR

lammpirun_wrapper LSF_BINDIR

mpirun.lsf LSF_BINDIR

pjllib.sh LSF_BINDIR
Using Platform LSF HPC Features

Begin Resource
RESOURCE_NAME TYPE INTERVAL INCREASING DESCRIPTION
...
lammpi Boolean () () (LAM MPI)
...
End Resources

The lammpi Boolean resource is used for mapping hosts with LAM/MPI available.

You should add the lammpi resource name under the RESOURCES column of the
Host section of lsf.cluster.cluster_name.

◆ Parameter to lsf.conf:
LSB_SUB_COMMANDNAME=y
Using Platform LSF HPC Features 121

122
Configuring LSF to work with LAM/MPI

System setup
1 For troubleshooting LAM/MPI jobs, edit the

LSF_BINDIR/lammpirun_wrapper script, and specify a log directory that all
users can write to. For example:
LOGDIR="/mylogs"

Do not use LSF_LOGDIR for this log directory.

2 Add the LAM/MPI home directory to your path. The LAM/MPI home directory
is the directory that you specified as the prefix during LAM/MPI installation.

3 Add the path to the LAM/MPI commands to the $PATH variable in your shell
startup files ($HOME/.cshrc or $HOME/.profile).

4 Edit lsf.cluster.cluster_name and add the lammpi resource for each
host with LAM/MPI available. For example:
Begin Host
HOSTNAME model type server r1m mem swp RESOURCES
...
hosta ! ! 1 3.5 () () (lammpi)
...
End Host
Using Platform LSF HPC Features

Submitting LAM/MPI Jobs

bsub command
Use bsub to submit LAM/MPI jobs:
bsub -a lammpi -n number_cpus [-q queue_name] mpirun.lsf
[-pam "pam_options"] [mpi_options] job [job_options]

◆ -a lammpi tells esub the job is a LAM/MPI job and invokes esub.lammpi.
◆ -n number_cpus specifies the number of processors required to run the job
◆ -q queue_name specifies a LAM/MPI queue that is configured to use the

custom termination action. If no queue is specified, the hpc_linux queue is used.
◆ mpirun.lsf reads the environment variable LSF_PJL_TYPE=lammpi set by

esub.lammpi, and generates the appropriate pam command line to invoke
LAM/MPI as the PJL

Examples ◆ % bsub -a lammpi -n 3 -q hpc_linux mpirun.lsf /examples/cpi

A job named cpi is submitted to the hpc_linux queue. It will be dispatched and
run on 3 CPUs in parallel.

◆ % bsub -a lammpi -n 3 -R "select[mem>100]
rusage[mem=100:duration=5]" -q hpc_linux mpirun.lsf
/examples/cpi

A job named cpi is submitted to the hpc_linux queue. It will be dispatched and
run on 3 CPUs in parallel. Memory is reserved for 5 minutes.

Submitting a job with a job script
A wrapper script is often used to call the LAM/MPI script. You can submit a job using
a job script as an embedded script or directly as a job, for example:
% bsub -a lammpi -n 4 < embedded_jobscript

% bsub -a lammpi -n 4 jobscript

Your job script must use mpirun.lsf in place of the mpirun command.
For information on generic PJL wrapper script components, see Chapter 2, “Running
Parallel Jobs”.
See Administering Platform LSF for information about submitting jobs with job scripts.

Job placement with LAM/MPI jobs
The mpirun -np option is ignored. You should use the
LSB_PJL_TASK_GEOMETRY environment variable for consistency with other
Platform LSF MPI integrations. LSB_PJL_TASK_GEOMETRY overrides the
mpirun -np option.
The environment variable LSB_PJL_TASK_GEOMETRY is checked for all parallel
jobs. If LSB_PJL_TASK_GEOMETRY is set users submit a parallel job (a job that
requests more than 1 slot), LSF attempts to shape LSB_MCPU_HOSTS accordingly.
Using Platform LSF HPC Features 123

124
Log files
For troubleshooting LAM/MPI jobs, define LOGDIR in the
LSF_BINDIR/lammpirun_wrapper script. Log files
(lammpirun_wrapper.job[job_ID].log) are written to the LOGDIR directory.
If LOGDIR is not defined, log messages are written to /dev/null.
For example, the log file for the job with job ID 123 is:
lammpirun_wrapper.job123.log
Using Platform LSF HPC Features

C H A P T E R

7
Using Platform LSF with MPICH-

GM

Contents ◆ “About Platform LSF and MPICH-GM” on page 126
◆ “Configuring LSF to Work with MPICH-GM” on page 128
◆ “Submitting MPICH-GM Jobs” on page 130
◆ “Using AFS with MPICH-GM” on page 131
Using Platform LSF HPC Features 125

126
About Platform LSF and MPICH-GM
MPICH is a freely available, portable implementation of the MPI Standard for message-
passing libraries, developed jointly with Mississippi State University. MPICH is designed
to provide high performance, portability, and a convenient programming environment.
MPICH-GM is used with high performance Myrinet networks. Myrinet is a high-speed
network which allows OS-bypass communications in large clusters. MPICH-GM
integrates with Platform LSF so users can run parallel jobs on hosts with at least one
free port.

Requirements
❏ MPICH version 1.2.6 or later

You should upgrade all your hosts to the same version of MPICH-GM.

❏ GM versions 1.5.1, and 1.6.3 or later

Assumptions
◆ MPICH-GM is installed and configured correctly
◆ The user's current working directory is part of a shared file system reachable by all

hosts

Glossary

MPI (Message Passing Interface) A message passing standard. It defines a message passing
API useful for parallel and distributed applications.

MPICH A portable implementation of the MPI standard.

GM A message based communication system developed for Myrinet.

MPICH-GM An MPI implementation based on MPICH for Myrinet.

PAM (Parallel Application Manager) The supervisor of any parallel job.

PJL (Parallel Job Launcher) Any executable script or binary capable of starting parallel tasks
on all hosts assigned for a parallel job.

RES (Remote Execution Server) An LSF daemon residing on each host. It monitors and
manages all LSF tasks on the host.

TS (TaskStarter) An executable responsible for starting a task on the local host and
reporting the process ID and host name to the PAM.

For more information
◆ See the Myricom Web site at www.myrinet.com for software distribution and

documentation on Myrinet clusters.
◆ See the Mathematics and Computer Science Division (MCS) of Argonne National

Laboratory (ANL) MPICH Web page at
www-unix.mcs.anl.gov/mpi/mpich/ for more information about MPICH.

Files installed by lsfinstall
During installation, lsfinstall copies these files to the following directories:
Using Platform LSF HPC Features

http://www.myrinet.com/
http://www-unix.mcs.anl.gov/mpi/mpich/

Resources and parameters configured by lsfinstall
◆ External resources in lsf.shared:

Begin Resource
RESOURCE_NAME TYPE INTERVAL INCREASING DESCRIPTION
...
mpich_gm Boolean () () (MPICH GM MPI)
...
End Resources

The mpich_gm Boolean resource is used for mapping hosts with MPICH-GM
available.

You should add the mpich_gm resource name under the RESOURCES column of
the Host section of lsf.cluster.cluster_name.

◆ Parameter to lsf.conf:
LSB_SUB_COMMANDNAME=y

These files... Are installed to...

TaskStarter LSF_BINDIR

pam LSF_BINDIR

esub.mpich_gm LSF_SERVERDIR

gmmpirun_wrapper LSF_BINDIR

mpirun.lsf LSF_BINDIR

pjllib.sh LSF_BINDIR
Using Platform LSF HPC Features 127

128
Configuring LSF to Work with MPICH-GM

Configure GM port resources (optional)
If there are more processors on a node than there are available GM ports, you should
configure the external static resource name gm_ports to limit the number of jobs that
can launch on that node.

lsf.shared Add the external static resource gm_ports in lsf.shared to keep track of the
number of free Myrinet ports available on a host:

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING RELEASE DESCRIPTION
...
gm_ports Numeric () N N (number of free myrinet ports)
...
End Resource

lsf.cluster.cluster_name

Edit the resource map in lsf.cluster.cluster_name to configure hosts in the
cluster able to collect gm_ports. For example, the following configures 13 GM ports
available for GM 2.0 and 5 GM ports are available for mGM 1.x.
Begin ResourceMap
RESOURCENAME LOCATION
...
gm_ports 13@[default]
...
End ResourceMap

lsb.resources Configure the gm_ports resource as PER_SLOT in a ReservationUsage section in
lsb.resources:
Begin ReservationUsage
RESOURCE METHOD
...
gm_port PER_SLOT
...
End ReservationUsage

gmmpirun_wrapper script
Modify the gmmpirun_wrapper script in LSF_BINDIR so that the mpirun.ch_gm
command in the scripts point to:
MPIRUN_CMD="/path/mpirun.ch_gm"
where path is the path to the directory where the mpirun.ch_gm command is stored.
Using Platform LSF HPC Features

lsf.conf (optional)

LSF_STRIP_DOMAIN

If the gm_board_info command returns host names that include domain names you
cannot define LSF_STRIP_DOMAIN in lsf.conf. If the gm_board_info
command returns host names without domain names, but LSF commands return host
names that include domain names, you must define LSF_STRIP_DOMAIN in
lsf.conf.

Performance
tuning

To improve performance and scalability for large parallel jobs, tune the following
parameters as described in “Tuning PAM Scalability and Fault Tolerance” on page 41:
◆ LSF_HPC_PJL_LOADENV_TIMEOUT
◆ LSF_PAM_RUSAGE_UPD_FACTOR
The user's environment can override these.
Using Platform LSF HPC Features 129

130
Submitting MPICH-GM Jobs

bsub command
Use bsub to submit MPICH-GM jobs.
bsub -a mpich_gm -n number_cpus mpirun.lsf
[-pam "pam_options"] [mpi_options] job [job_options]

◆ -a mpich_gm tells esub the job is an MPICH-GM job and invokes
esub.mpich_gm.

◆ -n number_cpus specifies the number of processors required to run the job
◆ mpirun.lsf reads the environment variable LSF_PJL_TYPE=mpich_gm set by

esub.mpich_gm, and generates the appropriate pam command line to invoke
MPICH-GM as the PJL

For example:
% bsub -a mpich_gm -n 3 mpirun.lsf /examples/cpi

A job named cpi will be dispatched and run on 3 CPUs in parallel.
To limit the number of jobs using GM ports, specify a resource requirement in your job
submission:
-R "rusage[gm_ports=1]

Submitting a job with a job script
You can use a wrapper script to call the MPICH-GM job launcher. You can submit a job
using a job script as an embedded script or directly as a job, for example:
% bsub -a mpich_gm -n 4 < embedded_jobscript

% bsub -a mpich_gm -n 4 jobscript

Your job script must use mpirun.lsf in place of the mpirun command.
For information on generic PJL wrapper script components, see Chapter 2, “Running
Parallel Jobs”.
See Administering Platform LSF for information about submitting jobs with job scripts.
Using Platform LSF HPC Features

Using AFS with MPICH-GM
Complete the following steps only if you are planning to use AFS with
MPICH-GM.

The MPICH-GM package contains an esub.afs file which combines the esub for
MPICH-GM and the esub for AFS so that MPICH-GM and AFS can work together.

Steps
1 Install and configure LSF for AFS.
2 Edit mpirun.ch_gm. The location of this script is defined with the

MPIRUN_CMD parameter in the script LSF_BINDIR/gmmpirun_wrapper.
3 Replace the following line:

exec($rsh,'-n',$_,$cmd_ln);

with:
exec($lsrun,'-m',$_,'/bin/sh','-c',"$cmd_ln < /dev/null");

4 Add the following line to mpirun.ch_gm before the line $rsh="rsh";
replacing $LSF_BINDIR by the actual path:
$lsrun=”$LSF_BINDIR/lsrun”;

$rsh="rsh";

For example:
$lsrun="/usr/local/lsf/7.0/linux2.4-glibc2.1-
x86/bin/lsrun";

5 Comment out the following line:
#$rsh="rsh";

6 Replace the following line:
exec($rsh,$_,$cmdline);

with:
exec($lsrun,'-m',$_,'/bin/sh','-c',$cmdline);

7 Replace the following line:
exec($rsh,'-n',$_,$cmdline);

with:
exec($lsrun,'-m',$_,'/bin/sh','-c',"$cmdline</dev/null");

8 Replace the following line:
die "$rsh $_ $argv{$lnode}->[0]:$!\n"

with:
die "$lsrun -m $_ sh -c $argv{$lnode}->[0]:$!\n"

9 Save the mpirun.ch_gm file.
Using Platform LSF HPC Features 131

132
 Using Platform LSF HPC Features

C H A P T E R

8
Using Platform LSF with MPICH-P4

Contents ◆ “About Platform LSF and MPICH-P4” on page 134
◆ “Configuring LSF to Work with MPICH-P4” on page 136
◆ “Submitting MPICH-P4 Jobs” on page 137
Using Platform LSF HPC Features 133

134
About Platform LSF and MPICH-P4
MPICH is a freely available, portable implementation of the MPI Standard for message-
passing libraries, developed jointly with Mississippi State University. MPICH is designed
to provide high performance, portability, and a convenient programming environment.
MPICH-P4 is an MPICH implementation for the ch_p4 device, which supports SMP
nodes, MPMD programs, and heterogeneous collections of systems.

Requirements
❏ MPICH version 1.2.5 or later

You should upgrade all your hosts to the same version of MPICH-P4.

Assumptions and limitations
◆ MPICH-P4 is installed and configured correctly
◆ The user's current working directory is part of a shared file system reachable by all

hosts
◆ The directory specified by the MPICH_HOME variable is accessible by the same

path on all hosts
◆ Process group files are not supported. The mpich.ch_p4 p4pg option is

ignored.

Glossary

MPI (Message Passing Interface) A message passing standard. It defines a message passing
API useful for parallel and distributed applications.

MPICH A portable implementation of the MPI standard.

MPICH-P4 An MPI implementation based on MPICH for the chp4 device.

PAM (Parallel Application Manager) The supervisor of any parallel job.

PJL (Parallel Job Launcher) Any executable script or binary capable of starting parallel tasks
on all hosts assigned for a parallel job.

RES (Remote Execution Server) An LSF daemon residing on each host. It monitors and
manages all LSF tasks on the host.

TS (TaskStarter) An executable responsible for starting a task on the local host and
reporting the process ID and host name to the PAM.

For more information
◆ See the Mathematics and Computer Science Division (MCS) of Argonne National

Laboratory (ANL) MPICH Web page at
www-unix.mcs.anl.gov/mpi/mpich/ for more information about MPICH
and MPICH-P4.

Files installed by lsfinstall
During installation, lsfinstall copies these files to the following directories:
Using Platform LSF HPC Features

http://www-unix.mcs.anl.gov/mpi/mpich/

Resources and parameters configured by lsfinstall
◆ External resources in lsf.shared:

Begin Resource
RESOURCE_NAME TYPE INTERVAL INCREASING DESCRIPTION
...
mpichp4 Boolean () () (MPICH P4 MPI)
...
End Resources

The mpichp4 Boolean resource is used for mapping hosts with MPICH-P4
available.

You should add the mpichp4 resource name under the RESOURCES column of the
Host section of lsf.cluster.cluster_name.

◆ Parameter to lsf.conf:
LSB_SUB_COMMANDNAME=y

These files... Are installed to...

TaskStarter LSF_BINDIR

pam LSF_BINDIR

esub.mpichp4 LSF_SERVERDIR

mpichp4_wrapper LSF_BINDIR

mpirun.lsf LSF_BINDIR

pjllib.sh LSF_BINDIR
Using Platform LSF HPC Features 135

136
Configuring LSF to Work with MPICH-P4

mpichp4_wrapper script
Modify the mpichp4_wrapper script in LSF_BINDIR to set MPICH_HOME. The
default is:
MPICH_HOME="/opt/mpich-1.2.5.2-ch_p4/"
Using Platform LSF HPC Features

Submitting MPICH-P4 Jobs

bsub command
Use bsub to submit MPICH-P4 jobs.
bsub -a mpichp4 -n number_cpus mpirun.lsf
[-pam "pam_options"] [mpi_options] job [job_options]

◆ -a mpichp4 tells esub the job is an MPICH-P4 job and invokes esub.mpichp4.
◆ -n number_cpus specifies the number of processors required to run the job
◆ mpirun.lsf reads the environment variable LSF_PJL_TYPE=mpichp4 set by

esub.mpichp4, and generates the appropriate pam command line to invoke
MPICH-P4 as the PJL

For example:
% bsub -a mpichp4 -n 3 mpirun.lsf /examples/cpi

A job named cpi will be dispatched and run on 3 CPUs in parallel.

P4 secure-server
jobs

1 To start the P4 secure-server, run the following command:
% $MPICH_HOME/bin/serv_p4 -o -p port

where port is the port number of the MPICH-P4 secure server.
2 Submit your job with the -p4ssport option using the following syntax:

bsub -a mpichp4 -n number_cpus mpirun.lsf [-pam "pam_options"] [mpi_options]
-p4ssport port job [job_options]

where port is the port number of the MPICH-P4 secure server.

You must specify full path for the job.

See the MPICH-P4 documentation for more information about the p4ssport secure
server mpirun.ch_p4 command option.

Task geometry with MPICH-P4 jobs
MPICH-P4 mpirun requires the first task to run on local node OR all tasks to run on
remote node (-nolocal). If the LSB_PJL_TASK_GEOMETRY environment
variable is set, mpirun.lsf makes sure the task group that contains task 0 in
LSB_PJL_TASK_GEOMETRY runs on the first node.
The environment variable LSB_PJL_TASK_GEOMETRY is checked for all parallel
jobs. If LSB_PJL_TASK_GEOMETRY is set users submit a parallel job (a job that
requests more than 1 slot), LSF attempts to shape LSB_MCPU_HOSTS accordingly.

Submitting a job with a job script
You can submit a job using a job script as an embedded script or directly as a job, for
example:
% bsub -a mpichp4 -n 4 < embedded_jobscript

% bsub -a mpichp4 -n 4 jobscript

Your job script must use mpirun.lsf in place of the mpirun command.
Using Platform LSF HPC Features 137

138
For information on generic PJL wrapper script components, see Chapter 2, “Running
Parallel Jobs”.
See Administering Platform LSF for information about submitting jobs with job scripts.
Using Platform LSF HPC Features

C H A P T E R

9
Using Platform LSF with MPICH2

Contents ◆ “About Platform LSF and MPICH2” on page 140
◆ “Configuring LSF to Work with MPICH2” on page 142
◆ “Building Parallel Jobs” on page 144
◆ “Submitting MPICH2 Jobs” on page 145
Using Platform LSF HPC Features 139

140
About Platform LSF and MPICH2
MPICH is a freely available, portable implementation of the MPI Standard for message-
passing libraries, developed jointly with Mississippi State University. MPICH is designed
to provide a high performance, portable, and convenient programming environment.
MPICH2 implements both MPI-1 and MPI-2.
The mpiexec command of MPICH2 spawns all tasks, while LSF retains full control
over the tasks spawned. Specifically, LSF collects rusage information, performs job
control (signal), and cleans up after the job is finished. Jobs run within LSF allocation,
controlled by LSF.

Requirements
❏ MPICH2 version 1.0.4 or later

You should upgrade all your hosts to the same version of MPICH2.

Assumptions and limitations
◆ MPICH2 is installed and configured correctly
◆ The user's current working directory is part of a shared file system reachable by all

hosts
◆ Currently, mpiexec -file filename (XML job description) is not supported.

Glossary

MPI (Message Passing Interface) A message passing standard. It defines a message passing
API useful for parallel and distributed applications.

MPICH A portable implementation of the MPI standard.

MPICH2 An MPI implementation that implements both MPI-1 and MPI-2.

PAM (Parallel Application Manager) The supervisor of any parallel job.

PJL (Parallel Job Launcher) Any executable script or binary capable of starting parallel tasks
on all hosts assigned for a parallel job.

RES (Remote Execution Server) An LSF daemon residing on each host. It monitors and
manages all LSF tasks on the host.

TS (TaskStarter) An executable responsible for starting a task on the local host and
reporting the process ID and host name to the PAM.

For more information
See the Mathematics and Computer Science Division (MCS) of Argonne National
Laboratory (ANL) MPICH Web page at www-unix.mcs.anl.gov/mpi/mpich/ for
more information about MPICH and MPICH2.

Files installed by lsfinstall
During installation, lsfinstall copies these files to the following directories:
Using Platform LSF HPC Features

http://www-unix.mcs.anl.gov/mpi/mpich/

Resources and parameters configured by lsfinstall
◆ External resources in lsf.shared:

Begin Resource
RESOURCE_NAME TYPE INTERVAL INCREASING DESCRIPTION
...
mpich2 Boolean () () (MPICH2 MPI)
...
End Resources

The mpich2 Boolean resource is used for mapping hosts with MPICH2 available.

You should add the mpich2 resource name under the RESOURCES column of the
Host section of lsf.cluster.cluster_name.

◆ Parameter to lsf.conf:
LSB_SUB_COMMANDNAME=y

These files... Are installed to...

TaskStarter LSF_BINDIR

pam LSF_BINDIR

esub.mpich2 LSF_SERVERDIR

mpich2_wrapper LSF_BINDIR

mpirun.lsf LSF_BINDIR

pjllib.sh LSF_BINDIR
Using Platform LSF HPC Features 141

142
Configuring LSF to Work with MPICH2
1 Make sure MPICH2 commands are in the PATH environment variable. MPICH2

commands include mpiexec, mpd, mpdboot, mpdtrace, and mpdexit.
For example:

[174]- which mpiexec /pcc/app/mpich2/kernel2.4-glibc2.3-x86/bin/mpiexec

2 Add an mpich2 boolean resource to the $LSF_ENVDIR/lsf.shared file.
For example:

hmmer Boolean () () (hmmer availability)
lammpi Boolean () () (lam-mpi available host)
mpich2 Boolean () () (mpich2 available host) <====
End Resource

3 Add mpich2 to each host that an mpich2 parallel job may run on.
For example:

Begin Host
HOSTNAME model type server r1m mem swp RESOURCES #Keywords
qat20 ! ! 1 3.5 () () (mpich2)
qat21 ! ! 1 3.5 () () (mpich2)
qat22 ! ! 1 3.5 () () (mpich2)
End Host

4 Run lsadmin reconfig and badmin mbdrestart as root.
5 Run lshosts to confirm that an mpich2 resource is configured on all hosts on

which you would like to run mpich2 parallel jobs.
For example:

[173]- lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
qat20 LINUX86 PC1133 23.1 1 310M - Yes (mpich2)
qat21.lsf.p LINUX86 PC1133 23.1 1 311M 635M Yes (mpich2)
qat22.lsf.p UNKNOWN UNKNOWN_ 1.0 - - - Yes (mpich2)

6 Configure and start an MPD ring.
a If you want to start an MPD ring per job, this is the default and recommended

mechanism, and you do not need to do any extra configuration.
b If you want to start an MPD ring for all users, use the mpdboot command as

root on all machines.
To check if mpdboot ran successfully, use the mpdtrace command

[root@qat20 test]# mpdtrace -l

qat20_37272
qat21_52535

i For MPICH2 1.0.3 only, add the following lines to $HOME/.mpd.conf for
all users.

[61]- cat .mpd.conf
MPD_USE_ROOT_MPD=Y <==========
secretword=123579a
Using Platform LSF HPC Features

ii Make sure $HOME/.mpd.conf has a permission mode of 600 after you
finish the modification.

iii Set LSF_START_MPD_RING=N in your job script or in the
environment for all users.

c If you want to start an MPD ring on all hosts, follow the steps described in the
MPICH2 documentation to start an MPD ring across all LSF hosts for each
user. The user MPD ring must be running all the time, and you must set
LSF_START_MPD_RING=N in your job script or in the environment for all
users.

Do not run mpdallexit or mpdcleanup to terminate the MPD ring.

7 Make sure LSF uses system host official names (/etc/hosts): this will prevent
problems when you run the application.

i Configure the $LSF_CONFDIRDIR/hosts file and the
$LSF_ENVDIR/lsf.cluster.<clustername> file.
For example:

172.25.238.91 scali scali.lsf.platform.com
172.25.238.96 scali1 scali1.lsf.plaform.com

ii If the official host name returned to LSF is a short name, but LSF
commands display host names that include domain names, you can use
LSF_STRIP_DOMAIN in lsf.conf to display the short names.

8 Change the $LSF_BINDIR/mpich2_wrapper script to make sure MPI_TOPDIR=
points to the MPICH2 install directory.
Using Platform LSF HPC Features 143

144
Building Parallel Jobs
1 Use mpicc -o to compile your source code.

For example:
[178]- which mpicc /pcc/app/mpich2/kernel2.4-glibc2.3-
x86/bin/mpicc
5:19pm Mon, Sep-19-2005 qat21:~/milkyway/bugfix/test
[179]- mpicc -o hw.mpich2 hw.c 3.2

2 Make sure the compiled binary can run under the root MPD ring outside Platform
LSF.
For example:
[180]- mpiexec -np 2 hw.mpich2

Process 0 is printing on qat21 (pid =16160):

Greetings from process 1 from qat20 pid 24787!
Using Platform LSF HPC Features

Submitting MPICH2 Jobs

bsub command
Use the bsub command to submit MPICH2 jobs.
1 Submit a job from the console command line:

bsub <bsub_options> -n <###> -a mpich2 mpirun.lsf <mpiexec_options> job
<job_options>

Note that -np options of mpiexec will be ignored.

For example:
bsub -I -n 8 -R "span[ptile=4]" -a mpich2 -W 2 mpirun.lsf -np 3 ./hw.mpich2

1 Submit a job using a script:
bsub < myjobscript.sh

where myjobscript.sh looks like:
#!/bin/sh

#BSUB -n 8

#BSUB -a mpich2

mpirun.lsf ./hw.mpich2

The mpich2_wrapper script supports almost all original mpiexec options except
those that will affect job scheduling decisions, for example, -np (-n).
-n syntax is supported. If you use the -n option, you must either request enough CPUs
when the job is submitted, or set the environment variable
LSB_PJL_TASK_GEOMETRY. See “Running Jobs with Task Geometry” on page 42
for detailed usage of LSB_PJL_TASK_GEOMETRY.

Task geometry with MPICH2 jobs
MPICH2 mpirun requires the first task to run on the local node OR all tasks to run on
a remote node (-nolocal). If the LSB_PJL_TASK_GEOMETRY environment
variable is set, mpirun.lsf makes sure the task group that contains task 0 in
LSB_PJL_TASK_GEOMETRY runs on the first node.
The environment variable LSB_PJL_TASK_GEOMETRY is checked for all parallel
jobs. If LSB_PJL_TASK_GEOMETRY is set users submit a parallel job (a job that
requests more than 1 slot), LSF attempts to shape LSB_MCPU_HOSTS accordingly.
Using Platform LSF HPC Features 145

146
 Using Platform LSF HPC Features

C H A P T E R

10
Using Platform LSF with MVAPICH

Contents ◆ “About Platform LSF and MVAPICH” on page 148
◆ “Configuring LSF to Work with MVAPICH” on page 150
◆ “Submitting MVAPICH Jobs” on page 151
Using Platform LSF HPC Features 147

148
About Platform LSF and MVAPICH
MVAPICH is an open-source product developed in the Department of Computer and
Information Science, The Ohio State University. MVAPICH is MPI-1 over VAPI for
InfiniBand. It is an MPI-1 implementation on Verbs Level Interface (VAPI), developed
by Mellanox Technologies. The implementation is based on MPICH and MVICH.
The LSF MVAPICH MPI integration is based on the LSF generic PJL framework. It
supports the following MVAPICH variations:
◆ Generic MVAPICH (OSU)
◆ Cisco/Topspin® used in Platform OCS
◆ IBRIX™ roll used in Platform OCS

Requirements
❏ The latest release is MVAPICH 0.9.4 (includes MPICH 1.2.6). or later

You should upgrade all your hosts to the same version of MVAPICH.

Assumptions and limitations
◆ MVAPICH is installed and configured correctly
◆ The user's current working directory is part of a shared file system reachable by all

hosts
◆ The directory specified by the MVAPICH_HOME variable is accessible by the

same path on all hosts

Glossary

MPI (Message Passing Interface) A message passing standard. It defines a message passing
API useful for parallel and distributed applications.

MPICH A portable implementation of the MPI standard.

PAM (Parallel Application Manager) The supervisor of any parallel job.

PJL (Parallel Job Launcher) Any executable script or binary capable of starting parallel tasks
on all hosts assigned for a parallel job.

RES (Remote Execution Server) An LSF daemon residing on each host. It monitors and
manages all LSF tasks on the host.

TS (TaskStarter) An executable responsible for starting a task on the local host and
reporting the process ID and host name to the PAM.

For more information
◆ See the Mathematics and Computer Science Division (MCS) of Argonne National

Laboratory (ANL) MPICH Web page at
www-unix.mcs.anl.gov/mpi/mpich/ for more information about MPICH.

◆ MVAPICH HOME: nowlab.cis.ohio-state.edu/projects/mpi-iba/
◆ ROCKS HOME: www.rocksclusters.org/Rocks/
◆ Topspin (now Cisco): http://cisco.com/en/US/products/index.html
◆ IBRIX roll: http://www.rocksclusters.org/Rocks/
Using Platform LSF HPC Features

http://nowlab.cse.ohio-state.edu/projects/mpi-iba/
http://www.rocksclusters.org/Rocks/
http://cisco.com/en/US/products/index.html
http://www.rocksclusters.org/Rocks/
http://www-unix.mcs.anl.gov/mpi/mpich/

Files installed by lsfinstall
During installation, lsfinstall copies these files to the following directories:

Resources and parameters configured by lsfinstall
◆ External resources in lsf.shared:

Begin Resource
RESOURCE_NAME TYPE INTERVAL INCREASING DESCRIPTION
...
mvapich Boolean () () (Infiniband MPI)
...
End Resources

The mvapich Boolean resource is used for mapping hosts with MVAPICH
available.

You should add the mvapich resource name under the RESOURCES column of the
Host section of lsf.cluster.cluster_name.

◆ Parameter to lsf.conf:
LSB_SUB_COMMANDNAME=y

These files... Are installed to...

TaskStarter LSF_BINDIR

pam LSF_BINDIR

esub.mvapich—sets the mode: rsh ssh
or mpd

LSF_SERVERDIR

mvapich_wrapper LSF_BINDIR

mpirun.lsf LSF_BINDIR

pjllib.sh LSF_BINDIR
Using Platform LSF HPC Features 149

150
Configuring LSF to Work with MVAPICH

esub.mvapich script
Modify the esub.mvapich in LSF_SERVERDIR to set MVAPICH_START_CMD.to
one of ssh, rsh, or mpd. The default value is ssh.

mvapich_wrapper script
Modify the mvapich_wrapper script in LSF_BINDIR to set MVAPICH_HOME.
The defaults are:
◆ Topspin/Cisco MPI: MVAPICH_HOME="/usr/local/topspin
◆ IBRIX Roll MPI: MVAPICH_HOME="/opt/mpich/infiniband/gnu"
◆ Generic MVAPICH: defined by your site. For example:

MVAPICH_HOME="/opt/mvapich"

mpd command
location

Make sure the mpirun_rsh/ssh/mpd command is under MVAPICH_HOME/bin.
Using Platform LSF HPC Features

Submitting MVAPICH Jobs

bsub command
Use bsub -a mvapich to submit jobs:
If the starting command is mpd, you must submit your MVAPICH jobs as exclusive jobs
(bsub -x).
bsub -a mvapich -n number_cpus mpirun.lsf
[-pam "pam_options"] [mpi_options] job [job_options]

◆ -a mvapich tells esub the job is an MVAPICH job and invokes esub.mvapich.
◆ -n number_cpus specifies the number of processors required to run the job
◆ mpirun.lsf reads the environment variable LSF_PJL_TYPE=mvapich set by

esub.mvapich, and generates the appropriate pam command line to invoke
MVAPICH as the PJL

For example:
% bsub -a mvapich -n 3 mpirun.lsf /examples/cpi

A job named cpi will be dispatched and run on 3 CPUs in parallel.

Task geometry with MVAPICH jobs
MVAPICH supports the LSF task geometry feature except in MPD mode. When
running in MPD mode, the order of the hosts specified in the machine file is not
honored:

Submitting a job with a job script
A wrapper script is often used to call MVAPICH. You can submit a job using a job script
as an embedded script or directly as a job, for example:
% bsub -a mvapich -n 4 < embedded_jobscript

% bsub -a mvapich -n 4 jobscript

Your job script must use mpirun.lsf in place of the mpirun command.

For more information
◆ See Chapter 2, “Running Parallel Jobs” for information about generic PJL wrapper

script components
◆ See the Platform LSF Command Reference for information about the bsub

command
◆ See Administering Platform LSF for information about submitting jobs with job

scripts
Using Platform LSF HPC Features 151

152
 Using Platform LSF HPC Features

C H A P T E R

11
Using Platform LSF with

Intel® MPI

Contents ◆ “About Platform LSF and the Intel® MPI Library” on page 154
◆ “Configuring LSF to Work with Intel MPI” on page 156
◆ “Working with the Multi-purpose Daemon (MPD)” on page 157
◆ “Submitting Intel MPI Jobs” on page 158
Using Platform LSF HPC Features 153

154
About Platform LSF and the Intel® MPI Library
The Intel® MPI Library (“Intel MPI”) is a high-performance message-passing library
for developing applications that can run on multiple cluster interconnects chosen by the
user at runtime. It supports TCP, shared memory, and high-speed interconnects like
InfiniBand and Myrinet.
Intel MPI supports all MPI-1 features and many MPI-2 features, including file I/O,
generalized requests, and preliminary thread support. it is based on the MPICH2
specification.
The LSF Intel® MPI integration is based on the LSF generic PJL framework. It
supports the LSF task geometry feature.

Requirements
❏ Intel® MPI version 1.0.2 or later

You should upgrade all your hosts to the same version of Intel MPI.

Assumptions and limitations
◆ Intel MPI is installed and configured correctly
◆ When an Intel MPI job is killed, PAM reports exit status unknown
◆ When MPI tasks get killed, MPD automatically kills TaskStarter
◆ LSF host names must be the official host names recognized by the system

Glossary

MPD Multi-Purpose Daemon (MPD) job startup mechanism

MPI (Message Passing Interface) A message passing standard. It defines a message passing
API useful for parallel and distributed applications.

MPICH A portable implementation of the MPI standard.

MPICH2 An MPI implementation for platforms such as clusters, SMPs, and massively parallel
processors.

PAM (Parallel Application Manager) The supervisor of any parallel job.

PJL (Parallel Job Launcher) Any executable script or binary capable of starting parallel tasks
on all hosts assigned for a parallel job.

RES (Remote Execution Server) An LSF daemon residing on each host. It monitors and
manages all LSF tasks on the host.

TS (TaskStarter) An executable responsible for starting a task on the local host and
reporting the process ID and host name to the PAM.

For more information
◆ See the Mathematics and Computer Science Division (MCS) of Argonne National

Laboratory (ANL) MPICH Web pages:
❖ www-unix.mcs.anl.gov/mpi/mpich/ for more information about

MPICH.
Using Platform LSF HPC Features

http://www-unix.mcs.anl.gov/mpi/mpich/

❖ www-unix.mcs.anl.gov/mpi/mpich2/ for more information about
MPICH2.

◆ See the Intel Software Network > Software Products > Cluster Tools >
Intel MPI Library at www.intel.com for more information about the Intel MPI
Library.

◆ See Getting Started with the Intel® MPI Librar y (Getting_Started.pdf in the
Intel MPI installation documentation directory for more information about using
the Intel MPI library and commands.

Files installed by lsfinstall
During installation, lsfinstall copies these files to the following directories
:

Resources and parameters configured by lsfinstall
◆ External resources in lsf.shared:

Begin Resource
RESOURCE_NAME TYPE INTERVAL INCREASING DESCRIPTION
...
intelmpi Boolean () () (Intel MPI)
...
End Resources

The intelmpi Boolean resource is used for mapping hosts with Intel MPI
available.

You should add the intelmpi resource name under the RESOURCES column of
the Host section of lsf.cluster.cluster_name.

◆ Parameter to lsf.conf:
LSB_SUB_COMMANDNAME=y

These files... Are installed to...

TaskStarter LSF_BINDIR

pam LSF_BINDIR

esub.intelmpi LSF_SERVERDIR

intelmpi_wrapper LSF_BINDIR

mpirun.lsf LSF_BINDIR

pjllib.sh LSF_BINDIR
Using Platform LSF HPC Features 155

http://www.intel.com
http://www-unix.mcs.anl.gov/mpi/mpich2/

156
Configuring LSF to Work with Intel MPI

intelmpi_wrapper script
Modify the intelmpi_wrapper script in LSF_BINDIR to set MPI_TOPDIR The
default value is:
MPI_TOPDIR="/opt/intel/mpi/2.0"

lsf.conf (optional)
To improve performance and scalability for large parallel jobs, tune the following
parameters as described in “Tuning PAM Scalability and Fault Tolerance” on page 41:
◆ LSF_HPC_PJL_LOADENV_TIMEOUT
◆ LSF_PAM_RUSAGE_UPD_FACTOR
The user's environment can override these.
Using Platform LSF HPC Features

Working with the Multi-purpose Daemon (MPD)
The Intel® MPI Library (“Intel MPI”) uses a Multi-Purpose Daemon (MPD) job
startup mechanism. MPD daemons must be up and running on the hosts where an MPI
job is supposed to start before mpiexec is started.

How Platform LSF manages MPD rings
LSF manages MPD rings for users automatically using mpdboot and mpdtrace
commands.
Each MPI job running under LSF uses a uniquely labeled MPD ring. The ring is started
by the intelmpi_wrapper during job launch and terminated by the
intelmpi_wrapper after MPI application exits, either normally or abnormally. This
allows coexistence of multiple MPI jobs belonging to different users as well as multiple
jobs from the same user on the same set of hosts.

For more information
◆ See Getting Started with the Intel® MPI Librar y (Getting_Started.pdf) in

the Intel MPI installation documentation directory for more information about
using the Intel MPI library and commands

◆ See Administering Platform LSF for information about using job starters
Using Platform LSF HPC Features 157

158
Submitting Intel MPI Jobs

bsub command
Use bsub -a intelmpi to submit jobs.
If the starting command is mpd, you must submit your Intel MPI jobs as exclusive jobs
(bsub -x).
bsub -a intelmpi -n number_cpus mpirun.lsf
[-pam "pam_options"] [mpi_options] job [job_options]

◆ -a intelmpi tells esub the job is an Intel MPI job and invokes
esub.intelmpi.

◆ -n number_cpus specifies the number of processors required to run the job
◆ mpirun.lsf reads the environment variable LSF_PJL_TYPE=intelmpi set by

esub.intelmpi, and generates the appropriate pam command line to invoke
Intel MPI as the PJL

For example:
% bsub -a intelmpi -n 3 mpirun.lsf /examples/cpi

A job named cpi will be dispatched and run on 3 CPUs in parallel.

Task geometry with Intel MPI jobs
Intel MPI supports the LSF task geometry feature

Submitting a job with a job script
A wrapper script is often used to call Intel MPI. You can submit a job using a job script
as an embedded script or directly as a job, for example:
% bsub -a intelmpi -n 4 < embedded_jobscript

% bsub -a intelmpi -n 4 jobscript

Your job script must use mpirun.lsf in place of the mpirun command.

Using Intel MPI configuration files (-configfile)
All mpiexec -configfile options are supported. -configfile should be the
only option after the mpiexec command.
The placement options in the configuration file (-gn, -gnp, -n, -np, -host) must
agree with the value of the LSB_MCPU_HOSTS and LSB_HOSTS environment
variables.

mpiexec limitations

-file option is not
supported

The -file option of mpiexec is not supported. You can use the -configfile
option.
If you submit an Intel MPI job with -file, the intelmpi_wrapper will exit and fail
the job. If you specify the log file for intelmpi_wrapper, an error message is
appended to the log file:

Official host
names

mpiexec requires host names as they are returned by the hostname command or the
gethostname() system call. For example:
Using Platform LSF HPC Features

% hostname
hosta
% mpiexec -l -n 2 -host hosta.domain.com ./hmpi
mpdrun: unable to start all procs; may have invalid machine
names
 remaining specified hosts:
 hosta.domain.com

% mpiexec -l -n 2 -host hosta ./hmpi
0: myrank 0, n_processes 2
1: myrank 1, n_processes 2
0: From process 1: Slave process 1!

-genvlist option The -genvlist options does not work if the configuration file for -configfile has
more than one entry.

For more information
◆ See Chapter 2, “Running Parallel Jobs” for information about generic PJL wrapper

script components
◆ See the Platform LSF Command Reference for information about the bsub

command
◆ See Administering Platform LSF for information about submitting jobs with job

scripts
Using Platform LSF HPC Features 159

160
 Using Platform LSF HPC Features

C H A P T E R

12
Using Platform LSF with Open MPI

Contents ◆ “About Platform LSF and the Open MPI Library” on page 162
◆ “Configuring LSF to Work with Open MPI” on page 164
◆ “Submitting Open MPI Jobs” on page 165
Using Platform LSF HPC Features 161

162
About Platform LSF and the Open MPI Library
The Open MPI Library is a high-performance message-passing library for developing
applications that can run on multiple cluster interconnects chosen by the user at
runtime. Open MPI supports all MPI-1 and MPI-2 features.
The LSF Open MPI integration is based on the LSF generic PJL framework. It supports
the LSF task geometry feature.

Requirements
❏ Open MPI version 1.1 or later

You should upgrade all your hosts to the same version of Open MPI.

Assumptions and limitations
◆ Open MPI is installed and configured correctly
◆ The user-defined -app file option is not supported

Glossary

MPD Multi-Purpose Daemon (MPD) job startup mechanism

MPI (Message Passing Interface) A message passing standard. It defines a message passing
API useful for parallel and distributed applications.

MPICH A portable implementation of the MPI standard.

Open MPI An MPI implementation for platforms such as clusters, SMPs, and massively parallel
processors.

PAM (Parallel Application Manager) The supervisor of any parallel job.

PJL (Parallel Job Launcher) Any executable script or binary capable of starting parallel tasks
on all hosts assigned for a parallel job.

RES (Remote Execution Server) An LSF daemon residing on each host. It monitors and
manages all LSF tasks on the host.

TS (TaskStarter) An executable responsible for starting a task on the local host and
reporting the process ID and host name to the PAM.

For more information
◆ See the Open MPI Project web page at http://www.open-mpi.org/

Files installed by lsfinstall
During installation, lsfinstall copies these files to the following directories
:

These files... Are installed to...

TaskStarter LSF_BINDIR

pam LSF_BINDIR

esub.openmpi LSF_SERVERDIR

openmpi_wrapper LSF_BINDIR
Using Platform LSF HPC Features

http://www.open-mpi.org/

Resources and parameters configured by lsfinstall
◆ External resources in lsf.shared:

Begin Resource
RESOURCE_NAME TYPE INTERVAL INCREASING DESCRIPTION
...
openmpi Boolean () () (Open MPI)
...
End Resources

The openmpi Boolean resource is used for mapping hosts with Open MPI
available.

You should add the openmpi resource name under the RESOURCES column of the
Host section of lsf.cluster.cluster_name.

◆ Parameter to lsf.conf:
LSB_SUB_COMMANDNAME=y

mpirun.lsf LSF_BINDIR

pjllib.sh LSF_BINDIR

These files... Are installed to...
Using Platform LSF HPC Features 163

164
Configuring LSF to Work with Open MPI
◆ The mpirun command must be included in the $PATH environment variable on all

LSF hosts.
◆ Make sure LSF uses system host official names (/etc/hosts): this will prevent

problems when you run the application.
❖ Configure the $LSF_CONFDIRDIR/hosts file and the

$LSF_ENVDIR/lsf.cluster.<clustername> file.
For example:
172.25.238.91 scali scali.lsf.platform.com

172.25.238.96 scali1 scali1.lsf.plaform.com

❖ If the official host name returned to LSF is a short name, but LSF commands
display host names that include domain names, you can use
LSF_STRIP_DOMAIN in lsf.conf to display the short names.

No other configuration is required. Optionally, you can add the openmpi resource
name under the RESOURCES column of the Host section of
lsf.cluster.cluster_name to indicate the hosts in the cluster that have Open
MPI installed and enabled.
Using Platform LSF HPC Features

Submitting Open MPI Jobs

bsub command
Use bsub -a openmpi to submit jobs.
For example:
bsub -a openmpi -n number_cpus mpirun.lsf a.out

◆ -a openmpi tells esub the job is an Open MPI job and invokes esub.openmpi.
◆ -n number_cpus specifies the number of processors required to run the job
◆ mpirun.lsf reads the environment variable LSF_PJL_TYPE=intelmpi set by

esub.openmpi, and generates the appropriate pam command line to invoke
Open MPI as the PJL

Task geometry with Open MPI jobs
Open MPI supports the LSF task geometry feature

Submitting a job with a job script
A wrapper script is often used to call Open MPI. You can submit a job using a job script
as an embedded script or directly as a job, for example:
bsub -a < jobscript

Your job script must use mpirun.lsf in place of the mpirun command.

For more information
◆ See Chapter 2, “Running Parallel Jobs” for information about generic PJL wrapper

script components
◆ See the Platform LSF Command Reference for information about the bsub

command
◆ See Administering Platform LSF for information about submitting jobs with job

scripts
Using Platform LSF HPC Features 165

166
 Using Platform LSF HPC Features

C H A P T E R

13
Using Platform LSF Parallel

Application Integrations

Contents ◆ “Using LSF with ANSYS” on page 168
◆ “Using LSF with NCBI BLAST” on page 171
◆ “Using LSF with FLUENT” on page 172
◆ “Using LSF with Gaussian” on page 176
◆ “Using LSF with Lion Bioscience SRS” on page 177
◆ “Using LSF with LSTC LS-DYNA” on page 178
◆ “Using LSF with MSC Nastran” on page 184
Using Platform LSF HPC Features 167

168
Using LSF with ANSYS
LSF use supports various ANSYS solvers through a common integration console built-
in to the ANSYS GUI. The only change the average ANSYS user sees is the addition of
a Run using LSF? button on the standard ANSYS console.
Using ANSYS with LSF simplifies distribution of jobs, and improves throughput by
removing the need for engineers to worry about when or where their jobs run. They
simply request job execution and know that their job will be completed as fast as their
environment will allow.

Requirements ◆ LSF HPC features enabled
◆ ANSYS version 5.6 or higher, available from Ansys Incorporated.

Configuring LSF for ANSYS
During installation, lsfinstall adds the Boolean resource ansys to the Resource
section of lsf.shared.

Host
configuration

(optional)

If only some of your hosts can accept ANSYS jobs, configure the Host section of
lsf.cluster.cluster_name to identify those hosts.
Edit LSF_ENVDIR/conf/lsf.cluster.cluster_name file and add the ansys
resource to the hosts that can run ANSYS jobs:
Begin Host
HOSTNAME model type server r1m mem swp RESOURCES
...
hostA ! ! 1 3.5 () () ()
hostB ! ! 1 3.5 () () (ansys)
hostC ! ! 1 3.5 () () ()
...
End Host

Submitting jobs through ANSYS
To start a job, choose the Batch menu item. The following dialog is displayed:
Using Platform LSF HPC Features

Initial Jobname The name given to the job for easier recognition at runtime.

Input filename Specifies the file of ANSYS commands you are submitting for batch execution. You can
either type in the desired file name or click on the ... button, to display a file selection
dialog box.

Output filename Specifies the file to which ANSYS directs text output by the program. If the file name
already exists in the working directory, it will be overwritten when the batch job is
started.

Memory
requested

The memory requirements for the job.

Run using LSF? Launches ANSYS LSF, a separately licensed product.

Run in
background?

 Runs the ANSYS job in background or in foreground mode.

Include input
listing in output?

Includes or excludes the input file listing at the beginning of the output file.

Parameters to be
defined

Additional ANSYS parameters

Time[Date] to
execute

Specifies a start time and date to start the job. This option is active after Run in
background? has been changed to Yes. To use this option, you must have permission
to run the at command on UNIX systems.

Additional LSF
configuration

You can also configure additional options to specify LSF job requirements such as
queue, host, or desired host architecture:
Using Platform LSF HPC Features 169

170
Available Hosts Allows users to specify a specific host to run the job on.

Queue Allows users to specify which queue they desire instead of the default.

Host Types Allows users to specify a specific architecture for their job.

Submitting jobs through the ANSYS command-line
Submitting a command line job requires extra parameters to run correctly through LSF.

Syntax bsub -R ansys [bsub_options] ansys_command -b -p productvar
<input_name >&output_name

-R Run the job on hosts with the Boolean resource ansys configured

bsub_options Regular options to bsub that specify the job parameters

ansys_command The ANSYS executable to be executed on the host (for example, ansys57)

 -b Run the job in ANSYS batch mode

-p productvar ANSYS product to use with the job

<input_name ANSYS input file. (You can also use the bsub -i option.)

>&output_name ANSYS output file. (You can also use the bsub -o option.)
Using Platform LSF HPC Features

Using LSF with NCBI BLAST
LSF accepts jobs running NCBI BLAST (Basic Local Alignment Search Tool).

Requirements ◆ Platform LSF HPC features enabled
◆ BLAST, available from the National Center for Biotechnology Information (NCBI)

Configuring LSF for BLAST jobs
During installation, lsfinstall adds the Boolean resource blast to the Resource
section of lsf.shared.

Host
configuration

(optional)

If only some of your hosts can accept BLAST jobs, configure the Host section of
lsf.cluster.cluster_name to identify those hosts.
Edit LSF_ENVDIR/conf/lsf.cluster.cluster_name file and add the blast
resource to the hosts that can run BLAST jobs:
Begin Host
HOSTNAME model type server r1m mem swp RESOURCES
...
hostA ! ! 1 3.5 () () ()
hostB ! ! 1 3.5 () () (blast)
hostC ! ! 1 3.5 () () ()
...
End Host

Submitting BLAST jobs
Use BLAST parallel provided with LSF to submit BLAST jobs.
BLAST parallel is a PERL program that distributes BLAST searches across a cluster by
splitting both the query file and the reference database and merging the result files after
all BLAST jobs finish.
See the README in the LSF_MISC/examples/blastparallel/ for information
about installing, configuring, and using BLAST parallel.
Using Platform LSF HPC Features 171

172
Using LSF with FLUENT
LSF is integrated with FLUENT products from ANSYS Inc., allowing FLUENT jobs
to take advantage of the checkpointing and migration features provided by LSF. This
increases the efficiency of the software and means data is processed faster.
FLUENT 5 offers versions based on system vendors’ parallel environments (usually
MPI using the VMPI version of FLUENT 5.) Fluent also provides a parallel version of
FLUENT 5 based on its own socket-based message passing library (the NET version).
This chapter assumes you are already familiar with using FLUENT software and
checkpointing jobs in LSF.
See Administering Platform LSF for more information about checkpointing in LSF.

Requirements ◆ Platform LSF HPC features enabled
◆ FLUENT 5 or higher, available from ANSYS Inc.

Optional
requirements

◆ Hardware vendor-supplied MPI environment for network computing to use the
“vmpi” version of FLUENT 5.

Configuring LSF for FLUENT jobs
During installation, lsfinstall adds the Boolean resource fluent to the Resource
section of lsf.shared.
LSF also installs the echkpnt.fluent and erestart.fluent files in
LSF_SERVERDIR.

Host
configuration

(optional)

If only some of your hosts can accept FLUENT jobs, configure the Host section of
lsf.cluster.cluster_name to identify those hosts.
Edit LSF_ENVDIR/conf/lsf.cluster.cluster_name file and add the fluent
resource to the hosts that can run FLUENT jobs:
Begin Host
HOSTNAME model type server r1m mem swp RESOURCES
...
hostA ! ! 1 3.5 () () ()
hostB ! ! 1 3.5 () () (fluent)
hostC ! ! 1 3.5 () () ()
...
End Host

Checkpointing in FLUENT
FLUENT 5 is integrated with LSF to use the LSF checkpointing capability. At the end
of each iteration, FLUENT looks for the existence of a checkpoint file (check) or a
checkpoint exit file (exit). If it detects the checkpoint file, it writes a case and data file,
removes the checkpoint file, and continues iterating. If it detects a checkpoint exit file,
it writes a case and data file, then exits.
Use the bchkpnt command to create the checkpoint and checkpoint exit files, which
forces FLUENT to checkpoint, or checkpoint and exit itself. FLUENT also creates a
journal file with instructions to read the checkpointed case and data files, and continue
iterating. FLUENT uses this file when it is restarted with the brestart command.
Using Platform LSF HPC Features

echkpnt and
erestart

LSF installs echkpnt.fluent and erestart.fluent, which are special versions
of echkpnt and erestart to allow checkpointing with FLUENT. Use bsub -a
fluent to make sure your job uses these files.

Checkpoint directories
When you submit a checkpointing job, you specify a checkpoint directory.
Before the job starts running, LSF sets the environment variable LSB_CHKPNT_DIR.
The value of LSB_CHKPNT_DIR is a subdirectory of the checkpoint directory
specified in the command line. This subdirectory is identified by the job ID and only
contains files related to the submitted job.

Checkpoint trigger files
When you checkpoint a FLUENT job, LSF creates a checkpoint trigger file (check) in
the job subdirectory, which causes FLUENT to checkpoint and continue running. A
special option is used to create a different trigger file (exit) to cause FLUENT to
checkpoint and exit the job.
FLUENT uses the LSB_CHKPNT_DIR environment variable to determine the
location of checkpoint trigger files. It checks the job subdirectory periodically while
running the job. FLUENT does not perform any checkpointing unless it finds the LSF
trigger file in the job subdirectory. FLUENT removes the trigger file after checkpointing
the job.

Restarting jobs
If a job is restarted, LSF attempts to restart the job with the -restart option
appended to the original FLUENT command. FLUENT uses the checkpointed data
and case files to restart the process from that checkpoint, rather than repeating the entire
process.
Each time a job is restarted, it is assigned a new job ID, and a new job subdirectory is
created in the checkpoint directory. Files in the checkpoint directory are never deleted
by LSF, but you may choose to remove old files once the FLUENT job is finished and
the job history is no longer required.

Submitting FLUENT jobs
Use bsub to submit the job, including parameters required for checkpointing.

Syntax The syntax for the bsub command to submit a FLUENT job is:

bsub [-R fluent] -a fluent [-k checkpoint_dir | -k "checkpoint_dir
[checkpoint_period]" [bsub options] FLUENT command [FLUENT options] -lsf

-R fluent Optional. Specify the fluent shared resource if the FLUENT application is only
installed on certain hosts in the cluster

-a fluent Use the esub for FLUENT jobs, which automatically sets the checkpoint method to
fluent to use the checkpoint and restart programs for FLUENT jobs,
echkpnt.fluent and erestart.fluent.
The checkpointing feature for FLUENT jobs requires all of the following parameters:
Using Platform LSF HPC Features 173

174
-k checkpoint_dir

Regular option to bsub that specifies the name of the checkpoint directory.

checkpoint_period

Regular option to bsub that specifies the time interval in minutes that LSF will
automatically checkpoint jobs.

FLUENT command

Regular command used with FLUENT software.

-lsf Special option to the FLUENT command. Specifies that FLUENT is running under
LSF, and causes FLUENT to check for trigger files in the checkpoint directory if the
environment variable LSB_CHKPNT_DIR is set.

Examples ◆ Sequential FLUENT batch job
% bsub -a fluent fluent 3d -g -i journal_file -lsf

◆ Parallel FLUENT net version batch job on 4 CPUs
% bsub -a fluent -n 4 fluent 3d -t0 -pnet -g -i
journal_file -lsf

Note When using the net version of FLUENT 5, pam is not used to launch FLUENT, so the
JOB_STARTER argument of the queue should not be set. Instead, LSF sets an
environment variable to contain a list of hosts and FLUENT uses this list to launch
itself.

Checkpointing, restarting, and migrating FLUENT jobs

Checkpointing bchkpnt [bchkpnt_options] [-k] [job_ID]

◆ -k

Specifies checkpoint and exit. The job will be killed immediately after being
checkpointed. When the job is restarted, it continues from the last checkpoint.

◆ job_ID
Job ID of the FLUENT job. Specifies which job to checkpoint. Each time the job
is migrated, the job is restarted and assigned a new job ID.

Restarting brestart [brestart options] checkpoint_directory [job_ID]

◆ checkpoint_directory
Specifies the checkpoint directory, where the job subdirectory is located.

◆ job_ID
Job ID of the FLUENT job, specifies which job to restart. At this point, the
restarted job is assigned a new job ID, and the new job ID is used for checkpointing.
The job ID changes each time the job is restarted.

Migrating bmig [bsub_options] [job_ID]

◆ job_ID
Job ID of the FLUENT job, specifies which job to restart. At this point, the
restarted job is assigned a new job ID, and the new job ID is used for checkpointing.
The job ID changes each time the job is restarted.
Using Platform LSF HPC Features

Examples
◆ Sequential FLUENT batch job with checkpoint and restart

% bsub -a fluent -k "/home/username 60" fluent 3d -g -i
journal_file -lsf

Submits a job that uses the checkpoint/restart method echkpnt.fluent and
erestart.fluent, /home/username as the checkpoint directory, and a 60
minute duration between automatic checkpoints. FLUENT checks if there is a
checkpoint trigger file /home/username/exit or /home/username/check.
% bchkpnt job_ID

echkpnt creates the checkpoint trigger file /home/username/check and waits
until the file is removed and the checkpoint is successful. FLUENT writes a case
and data file, and a restart journal file at the end of its current iteration. The files are
saved in /home/username/job_ID and FLUENT continues to iterate.
Use bjobs to verify that the job is still running after checkpoint.
% bchkpnt -k job_ID

echkpnt creates the checkpoint trigger file /home/username/exit and waits
until the file is removed and the checkpoint is successful. FLUENT writes a case
and data file, and a restart journal file at the end of its current iteration. The files are
saved in /home/username/job_ID and FLUENT exits.
Use bjobs to verify that the job is not running after checkpoint.
% brestart /home/username/job_ID

Starts a FLUENT job using the latest case and data files in
/home/username/job_ID. The restart journal file
/home/username/job_ID/#restart.inp is used to instruct FLUENT to
read the latest case and data files and continue iterating.

◆ Parallel FLUENT VMPI version batch job with checkpoint and restart on 4 CPUs
% bsub -a fluent -k "/home/username 60" -n 4 fluent 3d -t4
-pvmpi -g -i journal_file -lsf

% bchkpnt -k job_ID

Forces FLUENT to write a case and data file, and a restart journal file at the end of
its current iteration. The files are saved in /home/username/job_ID and
FLUENT exits.
% brestart /home/username/job_ID

Starts a FLUENT job using the latest case and data files in
/home/username/job_ID. The restart journal file
/home/username/job_ID/#restart.inp is used to instruct FLUENT to
read the latest case and data files and continue iterating.
The parallel job is restarted using the same number of processors (4) requested in
the original bsub submission.
% bmig -m hostA 0

All jobs on hostA are checkpointed and moved to another host.
Using Platform LSF HPC Features 175

176
Using LSF with Gaussian
Platform LSF accepts jobs running the Gaussian electronic structure modeling
program.

Requirements ◆ Platform LSF HPC features enabled
◆ Gaussian 98, available from Gaussian, Inc.

Configuring LSF for Gaussian jobs
During installation, lsfinstall adds the Boolean resource gaussian to the
Resource section of lsf.shared.

Host
configuration

(optional)

If only some of your hosts can accept Gaussian jobs, configure the Host section of
lsf.cluster.cluster_name to identify those hosts.
Edit LSF_ENVDIR/conf/lsf.cluster.cluster_name file and add the
gaussian resource to the hosts that can run Gaussian jobs:
Begin Host
HOSTNAME model type server r1m mem swp RESOURCES
...
hostA ! ! 1 3.5 () () ()
hostB ! ! 1 3.5 () () (gaussian)
hostC ! ! 1 3.5 () () ()
...
End Host

Submitting Gaussian jobs
Use bsub to submit the job, including parameters required for Gaussian.
Using Platform LSF HPC Features

Using LSF with Lion Bioscience SRS
SRS is Lion Bioscience’s Data Integration Platform, in which data is extracted by all
other Lion Bioscience applications or third-party products. LSF works with the batch
queue feature of SRS to provide load sharing and allow users to manage their running
and completed jobs.

Requirements ◆ Platform LSF HPC features enabled
◆ SRS 6.1 and higher, available from Lion Bioscience

Configuring LSF for SRS jobs
During installation, lsfinstall adds the Boolean resource lion to the Resource
section of lsf.shared.

Host
configuration

(optional)

If only some of your hosts can accept SRS jobs, configure the Host section of
lsf.cluster.cluster_name to identify those hosts.
Edit LSF_ENVDIR/conf/lsf.cluster.cluster_name file and add the lion
resource to the hosts that can run SRS jobs:
Begin Host
HOSTNAME model type server r1m mem swp RESOURCES
...
hostA ! ! 1 3.5 () () ()
hostB ! ! 1 3.5 () () (lion)
hostC ! ! 1 3.5 () () ()
...
End Host

SRS batch queues You must also configure SRS for batch queues. When SRS batch queueing is enabled,
users select from the available batch queues displayed next to the application
button in the page.
See the SRS administration manual for information about setting up a batch queue
system. No additional configuration is required in LSF.

Submitting and monitoring SRS jobs

Submitting jobs Use bsub to submit the job, including parameters required for SRS.

Monitoring jobs As soon as the application is submitted, you can monitor the progress of the job. When
applications are launched and batch queues are in use, an icon appears. The icon looks
like a “new mail” icon in an email program when jobs are running, and looks like a “read
mail” icon when all launched jobs are complete. You can click this icon at any time to:
◆ Check the status of running jobs
◆ See which jobs have completed
◆ Delete jobs
◆ Kill running jobs
You can also view the application results or launch another application against those
results, using the results of the initial job as input for the next job.
See the SRS Administrator’s Manual for more information.
Using Platform LSF HPC Features 177

178
Using LSF with LSTC LS-DYNA
LSF is integrated with products from Livermore Software Technology Corporation
(LSTC). LS-DYNA jobs can use the checkpoint and restart features of LSF and take
advantage of both SMP and distributed MPP parallel computation.
To submit LS-DYNA jobs through LSF, you only need to make sure that your jobs are
checkpointable.
See Administering Platform LSF for more information about checkpointing in LSF.

Requirements ◆ Platform LSF HPC features enabled
◆ LS-DYNA version 960 and higher, available from LSTC

Optional
requirements

◆ Hardware vendor-supplied MPI environment for network computing
◆ LSF MPI integration

Configuring LSF for LS-Dyna jobs
During installation, lsfinstall adds the Boolean resource ls_dyna to the Resource
section of lsf.shared.
LSF also installs the echkpnt.ls_dyna and erestart.ls_dyna files in
LSF_SERVERDIR.

Host
configuration

(optional)

If only some of your hosts can accept LS-DYNA jobs, configure the Host section of
lsf.cluster.cluster_name to identify those hosts.
Edit LSF_ENVDIR/conf/lsf.cluster.cluster_name file and add the
ls_dyna resource to the hosts that can run LS-DYNA jobs:
Begin Host
HOSTNAME model type server r1m mem swp RESOURCES
...
hostA ! ! 1 3.5 () () ()
hostB ! ! 1 3.5 () () (ls_dyna)
hostC ! ! 1 3.5 () () ()
...
End Host

LS-DYNA integration with LSF checkpointing
LS-DYNA is integrated with LSF to use the LSF checkpointing capability. It uses
application-level checkpointing, working with the functionality implemented by LS-
DYNA. At the end of each time step, LS-DYNA looks for the existence of a checkpoint
trigger file, named D3KIL.

LS-DYNA jobs always exit with 0 even when checkpointing. LSF will report that the job
has finished when it has checkpointed.

Use the bchkpnt command to create the checkpoint trigger file, D3KIL, which LS-
DYNA reads. The file forces LS-DYNA to checkpoint, or checkpoint and exit itself. The
existence of a D3KIL file and the checkpoint information that LSF writes to the
checkpoint directory specified for the job are all LSF needs to restart the job.
Checkpointing and tracking of resources of SMP jobs is supported.
Using Platform LSF HPC Features

With pam and Task Starter, you can track resources of MPP jobs, but cannot
checkpoint. If you do not use pam and Task Starter, checkpointing of MPP jobs is
supported, but tracking is not.

echkpnt and
erestart

LSF installs echkpnt.ls_dyna and erestart.ls_dyna, which are special
versions of echkpnt and erestart to allow checkpointing with LS-DYNA. Use
bsub -a ls_dyna to make sure your job uses these files.
The method name ls_dyna, uses the esub for LS-DYNA jobs, which sets the
checkpointing method LSB_ECHKPNT_METHOD="ls_dyna" to use
echkpnt.ls_dyna and erestart.ls_dyna.

Checkpoint
directories

When you submit a checkpointing job, you specify a checkpoint directory.
Before the job starts running, LSF sets the environment variable LSB_CHKPNT_DIR
to a subdirectory of the checkpoint directory specified in the command line, or the
CHKPNT parameter in lsb.queues. This subdirectory is identified by the job ID and
only contains files related to the submitted job.
For checkpointing to work when running an LS-DYNA job from LSF, you must CD to
the directory that LSF sets in $LSB_CHKPNT_DIR after submitting LS-DYNA jobs.
You must change to this directory whether submitting a single job or multiple jobs. LS-
DYNA puts all its output files in this directory.

Checkpoint
trigger files

When you checkpoint a job, LSF creates a checkpoint trigger file named D3KIL in the
working directory of the job.
The D3KIL file contains an entry depending on the desired checkpoint outcome:
◆ sw1. causes the job to checkpoint and exit. LS-DYNA writes to a restart data file

d3dump and exits.
◆ sw3. causes the job to checkpoint and continue running. LS-Dyna writes to a

restart data file d3dump and continues running until the next checkpoint.

The other possible LS-Dyna switch parameters are not relevant to LSF checkpointing.

LS-DYNA does not remove the D3KIL trigger file after checkpointing the job.

Restarting Jobs If a job is restarted, LSF attempts to restart the job with the -r restart_file
option used to replace any existing -i or -r options in the original LS-DYNA
command. LS-DYNA uses the checkpointed data to restart the process from that
checkpoint point, rather than starting the entire job from the beginning.
Each time a job is restarted, it is assigned a new job ID, and a new job subdirectory is
created in the checkpoint directory. Files in the checkpoint directory are never deleted
by LSF, but you may choose to remove old files once the LS-DYNA job is finished and
the job history is no longer required.

Submitting LS-DYNA jobs
To submit DYNA jobs, redirect a job script to the standard input of bsub, including
parameters required for checkpointing. With job scripts, you can manage two limitations
of LS-DYNA job submissions:
Using Platform LSF HPC Features 179

180
◆ When LS-DYNA jobs are restarted from a checkpoint, the job will use the
checkpoint environment instead of the job submission environment. You can
restore your job submission environment if you submit your job with a job script
that includes your environment settings.

◆ LS-DYNA jobs must run in the directory that LSF sets in the LSB_CHKPNT_DIR
environment variable. This lets you submit multiple LS-DYNA jobs from the same
directory but is also required if you are submitting one job. If you submit a job from
a different directory, you must change to the $LSB_CHKPNT_DIR directory. You
can do this if you submit your jobs with a job script.

If you are running a single job or multiple jobs, all LS_DYNA jobs must run in the
$LSB_CHKPT_DIR directory.

To submit LS-DYNA jobs with job submission scripts, embed the LS-DYNA job in the
job script. Use the following format to run the script:
% bsub < jobscript

bsub syntax Inside your job scripts, the syntax for the bsub command to submit an LS-DYNA job
is either of the following:
[-R ls_dyna] -k "checkpoint_dir method=ls_dyna" | -k "checkpoint_dir
[checkpoint_period] method=ls_dyna" [bsub_options] LS_DYNA_command
[LS_DYNA_options]
OR:
[-R ls_dyna] -a ls_dyna -k "checkpoint_dir" | -k "checkpoint_dir
[checkpoint_period]" [bsub options] LS_DYNA_command [LS_DYNA_options]

-R ls_dyna Optional. Specify the ls_dyna shared resource if the LS-DYNA application is only
installed on certain hosts in the cluster.

method=ls_dyna Mandatory. Use the esub for LS-DYNA jobs, which automatically sets the checkpoint
method to ls_dyna to use the checkpoint and restart programs echkpnt.ls_dyna
and erestart.ls_dyna. Alternatively, use bsub -a to specify the ls_dyna esub.
The checkpointing feature for LS-DYNA jobs requires all of the following parameters:

-k checkpoint_dir

Mandatory. Regular option to bsub that specifies the name of the checkpoint directory.
Specify the ls_dyna method here if you do not use the bsub -a option.

checkpoint_period

Regular option to bsub that specifies the time interval in minutes that LSF will
automatically checkpoint jobs.

LS_DYNA_command

Regular LS-DYNA software command and options.

Preparing your job scripts

Environment
variables

Specify any environment variables required for your LS-DYNA jobs. For example:
LS_DYNA_ENV=VAL;export LS_DYNA_ENV
Using Platform LSF HPC Features

If you do not set your environment variables in the job script, then you must add some
lines to the script to restore environment variables. For example:
if [-f $LSB_CHKPNT_DIR/.envdump]; then
.$LSB_CHKPNT_DIR/.envdump
fi

Change directory Ensure that your jobs run in the checkpoint directory set by LSF, by adding the
following line after your bsub commands:
cd $LSB_CHKPNT_DIR

LS-DYNA
command

Write the LS-DYNA command you want to run. For example:
/usr/share/ls_dyna_path/ls960 endtime=2
i=/usr/share/ls_dyna_path/airbag.deploy.k ncpu=1

Example job scripts
All scripts must contain the ls_dyna method and the cd command to the checkpoint
directory set by LSF.
◆ Job scripts with SMP LS-DYNA job embedded in the script. Environment variables

are set in the script.
% bsub < jobscript

Example job submission script:
#!/bin/sh
#BSUB -J LS_DYNA
#BSUB -k "/usr/share/checkpoint_dir method=ls_dyna"
#BSUB -o "/usr/share/output/output.%J"
cd $LSB_CHKPNT_DIR
setenv LS_DYNA_VAR1 VAL1
setenv LS_DYNA_VAR2 VAL2
cp /usr/share/datapool/input.data /home/usr1/input.data
/full_path/ls960 i=/home/usr1/input.data

◆ Job scripts with SMP LS-DYNA job embedded in the script. Environment variables
are set in the script.
% bsub < jobscript

Example job submission script:
#!/bin/sh
#BSUB -J LS_DYNA
#BSUB -k "/usr/share/checkpoint_dir method=ls_dyna"
cd $LSB_CHKPNT_DIR
LS_DYNA_ENV=VAL;export LS_DYNA_ENV
/usr/share/ls_dyna_path/ls960 endtime=2
i=/usr/share/ls_dyna_path/airbag.deploy.k ncpu=1
exit $?

◆ Job scripts with SMP LS-DYNA job embedded in the script. Environment variables
are not set in the script, and the settings must be read from a hidden file, .envdump,
which the echkpnt.ls_dyna program creates in the $LSB_CHKPNT_DIR
directory. The script must source the ./envdump file.
% bsub < jobscript
Using Platform LSF HPC Features 181

182
Example job submission script:
#!/bin/sh
#BSUB -J LS_DYNA
#BSUB -k "/usr/share/checkpoint_dir method=ls_dyna"
cd $LSB_CHKPNT_DIR
#after the first checkpoint
if [-f $LSB_CHKPNT_DIR/.envdump]; then
.$LSB_CHKPNT_DIR/.envdump
fi
/usr/share/ls_dyna_path/ls960 endtime=2
i=/usr/share/ls_dyna_path/airbag.deploy.k ncpu=1
exit $?

◆ Job script running MPP LS-DYNA job embedded in the script. Without PAM and
TaskStarter, the job can be checkpointed, but not resource usage or job control are
available.
% bsub < jobscript

Example job submission script:

#!/bin/sh
#BSUB -J LS_DYNA
#BSUB -k "/usr/share/checkpoint_dir method=ls_dyna"
#BSUB -o "/usr/share/output/output.%J"
#BSUB -n 4
cd $LSB_CHKPNT_DIR
setenv ENV1 ENV1_VAL
setenv ENV2 ENV2_VAL
cp /usr/share/datapool/input.data /home/usr1/input.data
mpirun /ls_dyna_mpp_path/mpp960 i=/home/usr1/input.data

◆ Job script with lammpi wrapper running MPP LS-DYNA job embedded in the
script.PAM and TaskStarter ensures job control and resource usage information,
but the job cannot be checkpointed.
% bsub < jobscript

Example job submission script:
#!/bin/sh
#BSUB -J LS_DYNA
#BSUB -q priority
#BSUB -n 1
#BSUB -o /usr/share/output/output.%J
#BSUB -k "/usr/share/checkpoint_dir method=ls_dyna"
export PATH=/usr/share/jdk/bin:$PATH
cd $LSB_CHKPNT_DIR
pam -g 1 lammpirun_wrapper
/usr/share/ls_dyna_mpp_path/mpp960
i=/usr/share/DYNA/airbag.deploy.k

See Administering Platform LSF for information about submitting jobs with job scripts.

Checkpointing, restarting, and migrating LS-DYNA jobs

Checkpointing bchkpnt [bchkpnt_options] [-k] [job_ID]

◆ -k
Using Platform LSF HPC Features

Specifies checkpoint and exit. The job will be killed immediately after being
checkpointed. When the job is restarted, it continues from the last checkpoint.

◆ job_ID
Job ID of the LS-DYNA job. Specifies which job to checkpoint. Each time the job
is migrated, the job is restarted and assigned a new job ID.

See Platform LSF Command Reference for more information about bchkpnt.

Restarting brestart [brestart_options] checkpoint_directory [job_ID]

◆ checkpoint_directory
Specifies the checkpoint directory, where the job subdirectory is located. Each job
is run in a unique directory.
To change to the checkpoint directory for LSF to restart a job, place the following
line in your job script before the LS-DYNA command is called:
cd $LSB_CHKPNT_DIR

◆ job_ID
Job ID of the LS-DYNA job, specifies which job to restart. After the job is restarted,
it is assigned a new job ID, and the new job ID is used for checkpointing. A new job
ID is assigned each time the job is restarted.

See Platform LSF Command Reference for more information about brestart.

Migrating bmig [bsub_options] [job_ID]

◆ job_ID
Job ID of the LS-DYNA job, specifies which job to migrate. After the job is
migrated, it is restarted and assigned a new job ID. The new job ID is used for
checkpointing. A new job ID is assigned each time the job is migrated.

See Platform LSF Command Reference for more information about bmig.
Using Platform LSF HPC Features 183

184
Using LSF with MSC Nastran
MSC Nastran Version 70.7.2 (“Nastran”) runs in a Distributed Parallel mode, and
automatically detects a job launched by LSF, and transparently accepts the execution
host information from LSF.
The Nastran application checks if the LSB_HOSTS or LSB_MCPU_HOSTS
environment variable is set in the execution environment. If either is set, Nastran uses
the value of the environment variable to produce a list of execution nodes for the solver
command line. Users can override the hosts chosen by LSF to specify their own host list.

Requirements ◆ Platform LSF HPC features enabled
◆ Nastran version 70.7.2 and higher, available from MSC Software

Configuring LSF for Nastran jobs
During installation, lsfinstall adds the Boolean resource nastran to the Resource
section of lsf.shared.
No additional executable files are needed.

Host
configuration

(optional)

If only some of your hosts can accept Nastran jobs, configure the Host section of
lsf.cluster.cluster_name to identify those hosts.
Edit LSF_ENVDIR/conf/lsf.cluster.cluster_name file and add the
nastran resource to the hosts that can run Nastran jobs:
Begin Host
HOSTNAME model type server r1m mem swp RESOURCES
...
hostA ! ! 1 3.5 () () ()
hostB ! ! 1 3.5 () () (nastran)
hostC ! ! 1 3.5 () () ()
...
End Host

Submitting Nastran jobs
Use bsub to submit the job, including parameters required for the Nastran command
line.

Syntax bsub -n num_processors [-R nastran] bsub_options
nastran_command

◆ -n num_processors
Number of processors required to run the job

◆ -R nastran

Optional. Specify the nastran shared resource if the Nastran application is only
installed on certain hosts in the cluster.

Nastran dmp
variable

You must set the Nastran dmp variable to the same number as the number of processors
the job is requesting (-n option of bsub).

Examples ◆ Parallel job through LSF requesting 4 processors:
% bsub -n 4 -a nastran -R "nastran" nastran example dmp=4
Using Platform LSF HPC Features

Note that both the bsub -n 4 and Nastran dmp=4 options are used. The value
for -n and dmp must be the same.

◆ Parallel job through LSF requesting 4 processors, no more than 1 processor per
host:
% bsub -n 4 -a nastran -R "nastran span[ptile=1]"
nastran example dmp=4

Nastran on Linux using LAM/MPI
You must write a script that will pick up the LSB_HOSTS variable and provide the
chosen hosts to the Nastran program. You can then submit the script using bsub:

bsub -a nastran lammpi -q hpc_linux -n 2 -o out -e err -R "span[ptile=1]"
lsf_nast

This will submit a 2-way job which will put its standard output in the file named out
and standard error in a file named err. The ptile=1 option tells LSF to choose at
most 1 CPU per node chosen for the job.

Sample lsf_nast
script

The following sample lsf_nast script only represents a starting point, but deals with
the host specification for LAM/MPI. This script should be modified at your site before
use.
#! /bin/sh
#
lsf script to use with Nastran and LAM/MPI.
#
#
#Set information for Head node:
DAT=/home/user1/lsf/bc2.dat
#
#Set information for Cluster node:
TMPDIR=/home/user1/temp
#
LOG=${TMPDIR}/log
LSB_HOST_FILE=${TMPDIR}/lsb_hosts
:> ${LOG}
The local host MUST be in the host file.
echo ${LSB_SUB_HOST} > ${LSB_HOST_FILE}
#
#
Create the lam hosts file:
for HOST in $LSB_HOSTS
do
echo $HOST >> ${LSB_HOST_FILE}
done
#
cd ${TMPDIR}
rcp ${LSB_SUB_HOST}:${DAT} .
id
recon -v ${LSB_HOST_FILE}
cat ${LSB_HOST_FILE}
pwd
recon -v ${LSB_HOST_FILE} >> ${LOG} 2>&1
Using Platform LSF HPC Features 185

186
lamboot -v ${LSB_HOST_FILE} >> ${LOG} 2>&1
NDMP=`sed -n -e '$=' ${LSB_HOST_FILE}`
HOST="n0"
((i=1))
while ((i < $NDMP)) ; do
HOST="$HOST:n$i"
((i += 1))
done
echo DAT=${DAT##*/}
pwd
nast707t2 ${DAT##*/} dmp=${NDMP} scr=yes bat=no hosts=$HOST >>
${LOG}
2>&1
wipe -v ${LSB_HOST_FILE} >> ${LOG} 2>&1
#
Bring back files:
DATL=${DAT##*/}
rcp ${DATL%.dat}.log ${LSB_SUB_HOST}:${DAT%/*}
rcp ${DATL%.dat}.f04 ${LSB_SUB_HOST}:${DAT%/*}
rcp ${DATL%.dat}.f06 ${LSB_SUB_HOST}:${DAT%/*}
#
End
Using Platform LSF HPC Features

C H A P T E R

14
Using Platform LSF with the
Etnus TotalView® Debugger

Contents ◆ “How LSF Works with TotalView” on page 188
◆ “Running Jobs for TotalView Debugging” on page 190
◆ “Controlling and Monitoring Jobs Being Debugged in TotalView” on page 193
Using Platform LSF HPC Features 187

188
How LSF Works with TotalView
Platform LSF is integrated with Etnus TotalView® multiprocess debugger. You should
already be familiar with using TotalView software and debugging parallel applications.

Debugging LSF jobs with TotalView
Etnus TotalView is a source-level and machine-level debugger for analyzing, debugging,
and tuning multiprocessor or multithreaded programs. LSF works with TotalView two
ways:
◆ Use LSF to start TotalView together with your job
◆ Start TotalView separately, submit your job through LSF and attach the processes

of your job to TotalView for debugging
Once your job is running and its processes are attached to TotalView, you can debug
your program as you normally would.

For more
information

See the TotalView Users Guide for information about using TotalView.

Installing LSF for TotalView
lsfinstall installs the application-specific esub program esub.tvpoe for
debugging POE jobs in TotalView. It behaves like esub.poe and runs the poejob
script, but it also sets the appropriate TotalView options and environment variables for
POE jobs.
lsfinstall also configures hpc_ibm_tv queue for debugging POE jobs in
lsb.queues. The queue is not rerunnable, does not allow interactive batch jobs
(bsub -I), and specifies the following TERMINATE_WHEN action:
TERMINATE_WHEN=LOAD PREEMPT WINDOW

lsfinstall installs the following application-specific esub programs to use
TotalView with LSF:
◆ Configures hpc_linux_tv queue for debugging LAM/MPI and MPICH-GM

jobs in lsb.queues. The queue is not rerunnable, does not allow interactive
batch jobs (bsub -I), and specifies the following TERMINATE_WHEN action:
TERMINATE_WHEN=LOAD PREEMPT WINDOW

◆ esub.tvlammpi—for debugging LAM/MPI jobs in TotalView; behaves like
esub.lammpi, but also sets the appropriate TotalView options and environment
variables for LAM/MPI jobs, and sends the job to the hpc_linux_tv queue

◆ esub.tvmpich_gm—for debugging MPICH-GM jobs in TotalView; behaves like
esub,mpich_gm, but also sets the appropriate TotalView options and
environment variables for MPICH-GM jobs, and sends the job to the
hpc_linux_tv queue

Environment variables for TotalView
On the submission host, make sure that:
◆ The path to the TotalView binary is in your $PATH environment variable
◆ $DISPLAY is set to console_name:0.0
Using Platform LSF HPC Features

Setting TotalView preferences
Before running and debugging jobs with TotalView, you should set the following
options in your $HOME/.preferences.tvd file:
◆ dset ignore_control_c {false} to allow TotalView to respond to

<CTRL-C>
◆ dset ask_on_dlopen {false} to tell TotalView not to prompt about

stopping processes that use the dlopen system call

Limitations
While your job is running and you are using TotalView to debug it, you cannot use LSF
job control commands:
◆ bchkpnt and bmig are not supported
◆ Default TotalView signal processing prevents bstop and bresume from

suspending and resuming jobs, and bkill from terminating jobs
◆ brequeue causes TotalView to display all jobs in error status. Click and the jobs

will rerun.
◆ Load thresholds and host dispatch windows do not affect jobs running in TotalView
◆ Preemption is not visible to TotalView
◆ Rerunning jobs within TotalView is not supported
Using Platform LSF HPC Features 189

190
Running Jobs for TotalView Debugging
Submit jobs two ways:
◆ Start a job and TotalView together through LSF
◆ Start TotalView and attach the LSF job

You must set the path to the TotalView binary in the $PATH environment variable on
the submission host, and the $DISPLAY environment variable to
console_name:0.0.

Compiling your program for debugging
Before using submitting your job in LSF for debugging in TotalView, compile your
source code with the -g compiler option. This option generates the appropriate
debugging information in the symbol table.
Any multiprocess programs that call fork(), vfork(), or execve() should be
linked to the dbfork library.
See your compiler documentation and the TotalView Users Guide for more information
about compiling programs for debugging.

Starting a job and TotalView together through LSF

Syntax bsub -a tvapplication [bsub_options] mpirun.lsf job [job_options] [-tvopt
tv_options]

-a tvapplication Specifies the application you want to run through LSF and debug in TotalView.

-tvopt
tv_options

Specifies options to be passed to TotalView. Use any valid TotalView command option,
except -a (LSF uses this option internally). See the TotalView Users Guide for
information about TotalView command options and setting up parallel debugging
sessions.

Example To submit a POE job and run TotalView:
% bsub -a tvpoe -n 2 mpirun.lsf myjob -tvopt -no_ask_on_dlopen

The method name tvpoe, uses the special esub for debugging POE jobs with
TotalView (LSF_SERVERDIR/esub.tvpoe). -no_ask_on_dlopen is a TotalView
option that tells TotalView not to prompt about stopping processes that use the dlopen
system call.
To submit a LAM/MPI job and run TotalView:

% bsub -a tvlammpi -n 2 mpirun.lsf myjob -tvopt -no_ask_on_dlopen

The method name tvlammpi, uses the special esub for debugging LAM/MPI jobs
with TotalView (LSF_SERVERDIR/esub.tvlammpi). -no_ask_on_dlopen is a
TotalView option that tells TotalView not to prompt about stopping processes that use
the dlopen system call.
When the TotalView Root window opens:
1 TotalView automatically acquires the pam process and a Process window opens.
2 Click in the Process window to start debugging the process.
Using Platform LSF HPC Features

Depending on your TotalView preferences, you may see the Stop Before Going
Parallel dialog. Click Yes. Use the Parallel page on the File > Preferences dialog to
change the setting of When a job goes parallel or calls exec() radio buttons.

The process starts running and stops at the first breakpoint you set.

For MPICH-GM jobs, TotalView stops at two breakpoints: one in pam, and one in
MPI_init(). Click to continue debugging.

3 Debug your job as you would normally in TotalView.
When you are finished debugging your program, choose File > Exit to exit
TotalView, and click Yes in the Exit dialog. As TotalView exits it kills the pam
process. In a few moments, LSF detects that PAM has exited and your job exits as
Done successfully.

Running TotalView and attaching a LSF job

Syntax bsub -a application [bsub_options] mpirun.lsf job [job_options]

-a application Specifies the application you want to run through LSF and debug in TotalView.
See the TotalView Users Guide for information about attaching jobs in TotalView and
setting up parallel debugging sessions.

Example 1 Submit a job.
For example:
% bsub -a poe -n 2 mpirun.lsf myjob

The method name poe, uses the esub for running POE jobs
(LSF_SERVERDIR/esub.poe).
% bsub -a mpich_gm -n 2 mpirun.lsf myjob

The method name mpich_gm, uses the special esub for running MPICH-GM jobs
(LSF_SERVERDIR/esub.mpich_gm).

2 Start TotalView on the execution host.

For TotalView to load PAM, LSF_BINDIR must be in the $PATH environment
variable on the execution host, or use FIle > Search Path... in TotalView to set
the path to LSF_BINDIR.

The TotalView Root window opens, and pam appears in the Unattached page of the
TotalView Root window.

3 Double-click pam as the process to attach.
A Process window opens. Your jobs move from the Unattached page to the
Attached page.

You should see all of your job processes in the Unattached page; you can select
any process to attach, but to attach all parallel task on the local and remote hosts,
you must attach to pam.

4 Click Go in the Process window?
5 Debug your job as you would normally in TotalView.
Using Platform LSF HPC Features 191

192
When you are finished debugging your program, choose File > Exit to exit
TotalView, and click Yes in the Exit dialog. As TotalView exits it kills the pam
process. In a few moments, LSF detects that PAM has exited and your job exits as
Done successfully.

Viewing source code while debugging
Use View > Lookup Function to view the source code of your application while
debugging. Enter main in the Name field and click OK. TotalView finds the source code
for the main() function and displays it in the Source Pane.
See the TotalView Users Guide for information about displaying source code.
Using Platform LSF HPC Features

Controlling and Monitoring Jobs Being Debugged in
TotalView

Controlling jobs
While your job is running and you are using TotalView to debug it, you cannot use LSF
job control commands:
◆ bchkpnt and bmig are not supported
◆ Default TotalView signal processing prevents bstop and bresume from

suspending and resuming jobs, and bkill from terminating jobs
◆ brequeue causes TotalView to display all jobs in error status. Click Go and the jobs

will rerun.
◆ Job rerun within TotalView is not supported. Do not submit jobs for debugging to

a rerunnable queue.

Monitoring jobs
Use bjobs to see the resource usage of jobs running under TotalView:

bsub -n 2 -a tvmpich_gm mpirun.lsf ./cpi -tvopt -no_ask_on_dlopen
Job <365> is submitted to queue <hpc_linux>.

bjobs -l 365

Job <365>, User <user1>, Project <default>, Status <DONE>, Queue
<hpc_linux>,
 Command <totalview pam -no_ask_on_dlopen -a -g 1
-tv gmmpirun_wrapper ./cpi>
Fri Oct 11 15:46:47 2009: Submitted from host <hostA>, CWD <$HOME>, 2
Processors
 Requested, Requested Resources <select[(gm_ports >
0)] rusage[gm_ports=1:duration=10]>;
Fri Oct 11 15:46:58 2009: Started on 2 Hosts/Processors <hostA> <hostB>,
Execution Home </home/user1>, Execution CWD
</home/user1>;
Fri Oct 11 15:53:07 2009: Done successfully. The CPU time used is 69.7 seconds.

 SCHEDULING PARAMETERS:
 r15s r1m r15m ut pg io ls it tmp swp
mem
 loadSched - - - - - - - - - -
-
 loadStop - - - - - - - - - -
-

 adapter_windows
 loadSched - - -
 loadStop - - -

% bsub -a tvpoe -n 4 mpirun.lsf $JOB
Job <341> is submitted to queue <hpc_ibm>.
Using Platform LSF HPC Features 193

194
% bjobs -l 341
Job <341>, User <user1>, Project <default>, Status <DONE>, Queue <hpc_ibm>, Com
 mand <totalview pam -a -g 1 -tv poejob
/home/user1/cpi.poe >
Wed Oct 16 09:59:42 2009: Submitted from host <hostA>, CWD </home/user1,
 4 Processors Requested;
Wed Oct 16 09:59:53 2009: Started on 4 Hosts/Processors <hostA>
 <hostA> <hostA> <q
 ataix05.lsf.platform.com>, Execution Home </home/user1>, E
 xecution CWD </home/user1>;
Wed Oct 16 10:01:19 2009: Done successfully. The CPU time used is 97.0 seconds.

 SCHEDULING PARAMETERS:
 r15s r1m r15m ut pg io ls it tmp swp mem
 loadSched - - - - - - - - - - -
 loadStop - - - - - - - - - - -

 lammpi_load adapter_windows
 loadSched - - -
 loadStop - -
Using Platform LSF HPC Features

Index
A
account mapping

limitations 61
Altix process aggregates (PAGG) 116
ansys Boolean resource 168
ANSYS jobs

command-line submission 170
submitting 168

array session handle (ASH)
viewing 116

B
bacct command

viewing cpuset information 108
backfill

limitations 93
badmin ckconfig command 76
badmin reconfig command 76
batch jobs

pam command 26, 28
bchkpnt command

FLUENT jobs 174
LS-Dyna jobs 182

best-fit cpuset allocation 106
bhist command

viewing cpuset information 108
bjobs command

viewing cpuset information 108
blast Boolean resource 171
bmig command

FLUENT jobs 174
LS-Dyna jobs 183

brestart command
FLUENT jobs 174
LS-Dyna jobs 183

brlainfo command
viewing cpuset host topology information 110

bsub command
DEFAULT_EXTSCHED options

HP-UX psets 64
SGI cpusets 99

-extsched option
HP-UX psets 66

MANDATORY_EXTSCHED options
HP-UX psets 65
SGI cpusets 100

C
CELL_LIST pset external scheduler option 66
CELLS pset external scheduler option 66

check trigger file
FLUENT jobs 173

checkpointing
directories

FLUENT jobs 173
LS-Dyna jobs 179

LS-Dyna jobs 178
trigger files

FLUENT jobs 173
LS-Dyna jobs 179

chunk job limitations
HP-UX psets 61
SGI cpusets 93

CPU containment 60, 92
CPU radius 106
CPU_LIST cpuset external scheduler option

description 103
CPUs per cell

psets 66
cpuset command 104
CPUSET_CPU_EXCLUSIVE attribute

restrictions 105
CPUSET_MEMORY_MANDATORY attribute

restrictions 105
CPUSET_NAME cpuset external scheduler option 102
CPUSET_OPTIONS cpuset external scheduler option 103
CPUSET_TYPE cpuset external scheduler option 102
cpusets

attributes supported in CPUSET_OPTIONS 104
backfill and slot reservation 93
best-fit and first-fit allocation 106
chunk jobs 93
configuring 95
CPU radius 106
creation and deallocation 92
dynamic 102
job options 102
optional configuration 96
preemption 93, 97
processor topology

CPU radius 106
resizable jobs 94
submitting jobs 102
using 102

cpusetscript job control script 98
CSA (SGI Comprehensive System Accounting)

configuring and using 112
csabuild command 112
csaedit command 112
csaswitch command 112
css0 POE -euidevice option 77
Using Platform LSF HPC Features 195

196

csss POE -euidevice option 77
CXFS file system 97

D
D3KIL checkpoint trigger file 178
DEFAULT_EXTSCHED

lsb.queues file
HP-UX psets 64
SGI cpusets 99

directories for checkpointing
FLUENT jobs 173
LS-Dyna jobs 179

dynamic cpusets
external scheduler options 102
maximum radius 106
overview 92
preemption configuration 97

E
echkpnt.dyna file 179
echkpnt.fluent file 173
environment variables

for TotalView debugging 188
LSB_CHKPNT_DIR

for FLUENT 173
for LS-Dyna 179

LSB_CPUSET_DEDICATED 107
LSB_HOST_CPUSETS 107
LSB_JOBEXIT_INFO 45
LSB_JOBPGIDS 34
LSB_JOBPIDS 34
LSB_JOBRES_PID 34
LSB_MCPU_HOSTS 42
LSB_PAMPID 34
LSB_PJL_TASK_GEOMETRY 42
LSB_SUSP_REASONS 34
LSB_SUSP_SUBREASONS 34
LSF_PAM_HOSTLIST_USE 23
LSF_PJL_TYPE 11

Intel MPI jobs 158
LAM/MPI jobs 123
MPICH-GM jobs 130
MPICH-P4 jobs 137
MVAPICH jobs 151
Open MPI jobs 165
POE jobs 76

LSF_POE_TIMEOUT_BIND 87
LSF_POE_TIMEOUT_SELECT 87
LSF_TS_OPTIONS 39
MPI_DSM_MUSTRUN 105

erestart.dyna file 179
erestart.fluent file 173
esub.afs

MPICH-GM 131
esub.intelmpi 158
esub.lammpi 123
esub.mpich_gm 130
esub.mpichp4 137
esub.mvapich 150, 151
esub.openmp 23
esub.openmpi 165

esub.poe 76
esub.pvm 24
esub.tvlammpi 188
esub.tvmpich_gm 188
esub.tvpoe 188
euilib 77
-euilib POE option 77
euilib POE option 77
exit trigger file 173

F
file descriptor limit

MPI on Altix 97
first-fit CPU allocation 106
fluent Boolean resource 172
FLUENT jobs

checkpointing, migrating, and restarting 174
submitting 173

G
gaussian Boolean resource 176
Gaussian jobs

submitting 176
genlimits command 115
GM port resources

configuring 128
gm_ports static resource

configuring 128

H
HP vendor MPI support 28
hpc_ibm queue 72
hpc_ibm_tv queue 188
hpc_linux queue 123
hpc_linux_tv queue 188

I
Intel MPI

external resources in lsf.shared and
lsf.cluster.cluster_name 155

Intel MPI jobs
task geometry 158

intelmpi Boolean resource 155, 163
intelmpi_wrapper script 156
IRIX

CXFS file system 97

J
jlimit.in file

SGI ULDB 114
job container support 116
job termination

queue job control 35
jobs

checkpointing
in FLUENT 174
in LS-Dyna 182

migrating
in FLUENT 174
in LS-Dyna 182
Using Platform LSF HPC Features

MSC Nastran 184
NCBI BLAST 171
PVM 24
restarting

in FLUENT 174
in LS-Dyna 182

submitting
for TotalView debugging 190
HP-UX psets 66
in FLUENT 173
in Gaussian 176
Intel MPI 158
LAM/MPI 123
Lion Bioscience SRS 177
LS-Dyna 179
MPICH2 145
MPICH-GM 130
MPICH-P4 137
MVAPICH 151
Open MPI 165
SGI cpusets 102
through ANSYS 168

L
LAM/MPI

external resources in lsf.shared and
lsf.cluster.cluster_name 120

LAM/MPI jobs
LOGDIR directory 124
task geometry 43
troubleshooting 124

lammpi Boolean resource 121
lammpirun_wrapper script 122
LEAST_RUN_TIME

lsb.params file 61, 93
libmpirm.sl Platform MPI library 28
libxmpi.so SGI MPI library 25
lion Boolean resource 177
log files

LAM/MPI troubleshooting 124
LOGDIR directory

for LAM/MPI jobs 124
ls_dyna Boolean resource 178
lsb.hosts file

cpuset configuration 98
pset configuration 64

lsb.modules file
cpuset configuration 95
pset configuration 63

lsb.params file
preemptable cpuset resources 98
pset job preemption 61, 93

lsb.queues file
cpuset configuration 96
DEFAULT_EXTSCHED

HP-UX psets 64
SGI cpusets 99

hpc_ibm queue 72
hpc_ibm_tv queue 188
hpc_linux queue 123
hpc_linux_tv queue 188

MANDATORY_EXTSCHED
HP-UX psets 64
SGI cpusets 99

lsb.resources file
gm_ports resource 128

LSB_CHKPNT_DIR environment variable
for FLUENT 173
for LS-Dyna 179

LSB_CPUSET_DEDICATED environment variable 107
LSB_HOST_CPUSETS environment variable 107
LSB_JOB_MEMLIMIT

lsf.conf file 45
LSB_JOBEXIT_INFO environment variable 45
LSB_JOBPGIDS environment variable 34
LSB_JOBPIDS environment variable 34
LSB_JOBRES_PID environment variable 34
LSB_MCPU_HOSTS environment variable 42
LSB_MEMLIMIT_ENFORCE

lsf.conf file 45
LSB_PAMPID environment variable 34
LSB_PJL_TASK_GEOMETRY environment variable

blaunch framework 19
description 42
LAM/MPI jobs 123

LSB_RLA_WORKDIR
lsf.cont file

CXFS file system 97
LSB_SUB_COMMANDNAME

lsf.conf file
Intel MPI 155, 163
LAM/MPI 121
MPICH-GM 127
MPICH-P4 135, 141
MVAPICH 149

LSB_SUSP_REASONS environment variable 34
LSB_SUSP_SUBREASONS environment variable 34
LS-Dyna jobs

checkpointing, migrating, and restarting 178
submitting 179

lsf.cluster.cluster_name file
cpuset configuration 96
gm_ports resource 128
pset configuration 64

lsf.conf file
cpuset configuration 95
LSB_JOB_MEMLIMIT 45
LSB_MEMLIMIT_ENFORCE 45
LSB_SUB_COMMANDNAME

Intel MPI 155, 163
LAM/MPI 121
MPICH-GM 127
MPICH-P4 135, 141
MVAPICH 149

LSF_HPC_EXTENSIONS=LSB_POE_ALLOCATION 86
LSF_HPC_EXTENSIONS=LSB_POE_AUTHENTICATION

86
LSF_HPC_EXTENSIONS=TASK_MEMLIMIT 45
LSF_HPC_EXTENSIONS=TASK_SWAPLIMIT 45
LSF_HPC_PJL_LOADENV_TIMEOUT 41
LSF_PAM_RUSAGE_UPD_FACTOR 41
LSF_PAM_USE_ASH
Using Platform LSF HPC Features 197

198

SGI MPI 26
LSF_POE_TIMEOUT_BIND 87
LSF_POE_TIMEOUT_SELECT 87
LSF_STRIP_DOMAIN 129
LSF_ULDB_DOMAIN 114
LSF_VPLUGIN

Platform MPI 28
SGI MPI 25

optional cpuset configuration 96
pset configuration 63

lsf.shared file
cpuset configuration 96
external resources for Intel MPI 155
external resources for LAM/MPI 120
external resources for MPICH2 141
external resources for MPICH-GM 127
external resources for MPICH-P4 135
external resources for MVAPICH 149
external resources for Open MPI 163
gm_ports resource 128
pset configuration 63

LSF_HPC_EXTENSIONS=LSB_POE_ALLOCATION
lsf.conf file 86

LSF_HPC_EXTENSIONS=LSB_POE_AUTHENTICATION
lsf.conf file 86

LSF_HPC_EXTENSIONS=TASK_MEMLIMIT
lsf.conf file 45

LSF_HPC_EXTENSIONS=TASK_SWAPLIMIT
lsf.conf file 45

LSF_HPC_PJL_LOADENV_TIMEOUT
lsf.conf file 41

LSF_PAM_HOSTLIST_USE environment variable 23
LSF_PAM_RUSAGE_UPD_FACTOR

lsf.conf file 41
LSF_PAM_USE_ASH

lsf.conf file
SGI MPI 26

LSF_PJL_TYPE environment variable 11
Intel MPI jobs 158
LAM/MPI jobs 123
MPICH-GM jobs 130
MPICH-P4 jobs 137
MVAPICH jobs 151
Open MPI jobs 165
POE jobs 76

LSF_POE_TIMEOUT_BIND
environment variable 87
lsf.conf file 87

LSF_POE_TIMEOUT_SELECT
environment variable 87
lsf.conf file 87

LSF_STRIP_DOMAIN
lsf.conf file 129

LSF_TS_OPTIONS environment variable 39
LSF_ULDB_DOMAIN

lsf.conf file 114
LSF_VPLUGIN

lsf.conf file
Platform MPI 28
SGI MPI 25

M
MANDATORY_EXTSCHED

lsb.queues file
HP-UX psets 64
SGI cpusets 99

MAX_CPU_PER_NODE cpuset external scheduler
option 103

MAX_RADIUS cpuset external scheduler option 102
maximum radius

dynamic cpusets 106
MEM_LIST cpuset external scheduler option

description 103
MEMLIMIT

lsb.queues file
increasing for ULDB 115

MINI_JOB
lsb.params file 61, 93

MPI (Message Passing Interface)
HP 28
OpenMP 23
SGI 25

MPI jobs
Altix file descriptor limit 97

MPI_DSM_MUSTRUN environment variable 105
MPI_TOPDIR for Intel MPI 156
mpich_gm Boolean resource 127
MPICH2

external resources in lsf.shared and
lsf.cluster.cluster_name 141

mpich2 Boolean resource 141
MPICH2 jobs

task geometry 145
MPICH-GM

external resources in lsf.shared and
lsf.cluster.cluster_name 127

MPICH-P4
external resources in lsf.shared and

lsf.cluster.cluster_name 135
mpichp4 Boolean resource 135
MPICH-P4 jobs

task geometry 43, 137
mpichp4_wrapper script 136
mpirun.ch_gm command 128
mpirun.ch_gm file 131
mpirun.ch_p4 command 137
mpirun.lsf

Intel MPI jobs 158
LAM/MPI jobs 123
MPICH-GM jobs 130
MPICH-P4 jobs 137
MVAPICH jobs 151
Open MPI jobs 165
POE jobs 76
running parallel jobs 42
TotalView jobs 190

Multi-purpose Daemon (MPD) 157
MVAPICH

external resources in lsf.shared and
lsf.cluster.cluster_name 149

mvapich Boolean resource 149
Using Platform LSF HPC Features

MVAPICH jobs
task geometry 151

MVAPICH_HOME 150
MVAPICH_START_CMD 150
mvapich_wrapper script 150
Myrinet ports

configuring 128

N
nastran Boolean resource 184
Nastran jobs

submitting 184
NCBI BLAST jobs

submitting 171
NODE_EX cpuset external scheduler option 103
ntbl_status command 76

O
Open MPI

external resources in lsf.shared and
lsf.cluster.cluster_name 163

Open MPI jobs
task geometry 165

OpenMP MPI 23
OpenMPI jobs

task geometry 43

P
pacct file for SGI CSA

supported records 112
PAGG (Altix process aggregates) 116
pam command

HP vendor MPI 28
running parallel jobs 26
SGI vendor MPI 26

Parallel Virtual Machine (PVM)
submitting jobs to LSF 24

pmd_w wrapper script 86
POE options

-euidevice css0 77
-euidevice csss 77
-euidevice sn_all 77
-euidevice sn_single 77
-euilib 77
-procs 77

poe_w wrapper script 86
poe_wrapper script 86
PREEMPT_FOR

lsb.params file 61, 93
preemption

configuration for cpusets 97
cpusetscript job suspend action 98
limitations 61, 93

process aggregates (PAGG) 116
process group files

blaunch framework 19
processor distance 60
processor topology 66, 106
-procs POE option 77
pset Boolean resource 64

psets
account mapping 61
cell topology 66
chunk jobs 61
configuring 63
CPUs per cell 66
creation and deallocation 60
preemption 61
processor distance 60
processor typology 66
resource reservation 61
scheduling allocation domain 60
using 66

CPU_LIST cpuset external scheduler option
span 104

span 104
PTILE pset external scheduler option 66
PVM (Parallel Virtual Machine)

submitting jobs to LSF 24
pvmjob parallel job script 24

Q
queues

hpc_ibm 72
hpc_ibm_tv 188
hpc_linux 123
hpc_linux_tv 188

R
-r restart_file LS-Dyna option 179
resizable jobs

cpusets 94
limitations 10, 61

resource requirement 104
CPU_LIST cpuset option 104

resource reservation
limitations 61

resources
ansys 168
blast 171
fluent 172
gaussian 176
intelmpi 155
lammpi 121
lion 177
ls_dyna 178
mpich_gm 127
mpichp2 141
mpichp4 135
mvapich 149
nastran 184
openmpi 163
pset 64

-restart FLUENT option 173
RESUME_OPTION cpuset external scheduler option 102
RLA

topology adapter for HP+UX psets 61

S
scheduling allocation domain 60
schmod_cpuset
Using Platform LSF HPC Features 199

200

lsb.modules file 95
schmod_pset

lsb.modules 63
scripts

intelmpi_wrapper 156
job control

termination script for queue 35
job termination for queue job control 35
lammpirun_wrapper 122
mpichp4_wrapper 136
mvapich_wrapper 150
pmd_w wrapper 86
poe_w wrapper 86
poe_wrapper 86
pvmjob 24

SGI job ID
viewing 116

SGI job limits 116
SGI vendor MPI support 25
slot reservation

limitations 93
sn_all POE -euidevice option 77
sn_single POE -euidevice option 77
SRS jobs

submitting and monitoring 177
st_status command 76
static cpusets

limitations 94
overview 92
preemption configuration 97

suspended jobs
preemption limitation 93

T
task geometry

blaunch framework 19

examples 43
Intel MPI jobs 158
LAM/MPI jobs 43
MPICH2 jobs 145
MPICH-P4 jobs 43, 137
MVAPICH jobs 151
Open MPI jobs 165
OpenMPI jobs 43
planning 43
running jobs 42

topology adapter
for psets (RLA) 61

TotalView debugging
environment variables 188
submitting jobs 190

trigger files
for checkpointing FLUENT jobs 173
for checkpointing LS-Dyna jobs 179

TRIX 97

U
ULDB (SGI User Limits Database)

domain configuration 115
increasing MEMLIMIT in lsb.queues 115
jlimit.in file 114

W
wrapper scripts

intelmpi_wrapper 156
lammpirun_wrapper 122
mpichp4_wrapper 136
mvapich_wrapper 150
pmd_w 86
poe_w 86
poe_wrapper 86
pvmjob 24
Using Platform LSF HPC Features

	Using Platform LSF™ HPC Features
	About Platform LSF HPC Features
	What Are Platform LSF HPC Features?
	Advanced HPC scheduling policies
	Application integration support
	Parallel application support
	blaunch distributed application framework
	PAM
	Resizable jobs
	Resource requirements

	HPC Components

	Running Parallel Jobs
	blaunch Distributed Application Framework
	About the blaunch command
	LSF APIs for the blaunch distributed application framework
	The blaunch job environment
	Automatic generation of the job host file
	Configuring application profiles for the blaunch framework
	How blaunch supports task geometry and process group files
	Resource collection for all commands in a job script
	Resizable jobs and blaunch
	Submitting jobs with blaunch
	Example execution scripts

	OpenMP Jobs
	OpenMP esub
	Submitting OpenMP jobs

	PVM Jobs
	PVM esub
	pvmjob script
	Example

	SGI Vendor MPI Support
	Compiling and linking your MPI program
	System requirements
	Configuring LSF to work with SGI MPI
	The pam command
	Examples
	Limitations

	HP Vendor MPI Support
	Automatic Platform MPI library configuration
	The pam command
	Automatic host allocation by LSF
	How to run Platform MPI jobs

	LSF Generic Parallel Job Launcher Framework
	System requirements

	How the Generic PJL Framework Works
	Terminology
	Architecture
	Integration methods
	Error handling
	Using the pam -n option (SGI MPI only)
	Custom job controls for parallel jobs
	Sample job termination script for queue job control

	Integration Method 1
	When to use this integration method
	Using pam to call the PJL
	How PAM inserts TaskStarter

	Integration Method 2
	When to use this integration method
	Using pam to call the PJL
	Placing TaskStarter in your code
	Example

	Tuning PAM Scalability and Fault Tolerance
	Parameters for PAM (lsf.conf)

	Running Jobs with Task Geometry
	Syntax
	Planning your task geometry specification
	Usage notes and limitations
	Examples

	Enforcing Resource Usage Limits for Parallel Tasks
	Enabling resource usage limit enforcement for parallel tasks
	Assumptions and behavior

	Example Integration: LAM/MPI
	Example script

	Tips for Writing PJL Wrapper Scripts
	Other Integration Options
	Using a job starter
	Using external resources
	Using esub

	Using Platform LSF with HP-UX Processor Sets
	About HP-UX Psets
	How LSF uses psets
	Assumptions and limitations

	Configuring LSF with HP-UX Psets
	Automatic configuration at installation
	Configuring default and mandatory pset options

	Using LSF with HP-UX Psets
	Specifying pset topology options
	Priority of topology scheduling options
	Partitioning the system for specific jobs (CELL_LIST)
	Viewing pset allocations for jobs
	Examples

	Using Platform LSF with IBM POE
	Running IBM POE Jobs
	hpc_ibm queue for POE jobs
	Configuring LSF to run POE jobs
	POE ELIM (elim.hpc)
	POE esub (esub.poe)
	POE PJL wrapper (poejob)
	Submitting POE jobs
	Syntax
	Examples
	Submitting POE jobs with a job script
	IBM SP Switch2 support
	IBM High Performance Switch (HPS) support

	Migrating IBM Load Leveler Job Scripts to Use LSF Options
	US options
	IP options
	Load Leveler directives
	Simple job script modifications
	Advanced job script modifications

	Controlling Allocation and User Authentication for IBM POE Jobs
	About POE authentication
	Enabling user authentication for POE jobs
	Enforcing node and CPU allocation for POE jobs
	Configuring POE allocation and authentication support
	Example job scripts
	Limitations

	Submitting IBM POE Jobs over InfiniBand
	Job Submission
	Job monitoring

	Using Platform LSF with SGI Cpusets
	About SGI cpusets
	System architecture
	How LSF uses cpusets
	Assumptions and limitations

	Configuring LSF with SGI Cpusets
	Automatic configuration at installation and upgrade
	Optional configuration
	Resources for dynamic and static cpusets
	Configuring default and mandatory cpuset options

	Using LSF with SGI Cpusets
	Specifying cpuset properties for jobs
	Running jobs on specific CPUs
	Cpuset attributes
	Including memory nodes in the allocation (Altix ProPack4 and Propack 5)
	CPU radius and processor topology
	Best-fit and first-fit CPU list
	Maximum radius for dynamic cpusets
	How the best CPUs are selected
	Allocating cpusets on multiple hosts (Altix only)
	How cpuset jobs are suspended and resumed
	Viewing cpuset information for your jobs
	Examples

	Using SGI Comprehensive System Accounting facility (CSA)
	Setting up SGI CSA
	Information written to the pacct file
	Viewing LSF job information recorded in CSA

	Using SGI User Limits Database (ULDB - IRIX only)
	LSF resource usage limits controlled by ULDB job limits
	Increasing the default MEMLIMIT for ULDB
	Example ULDB domain configuration

	SGI Job Container and Process Aggregate Support
	SGI IRIX job containers
	SGI Altix Process Aggregates (PAGG)
	Viewing SGI job ID and Array Session Handle (ASH)

	Using Platform LSF with LAM/MPI
	About Platform LSF and LAM/MPI
	System requirements
	Assumptions
	Glossary
	Files installed by lsfinstall
	Resources and parameters configured by lsfinstall

	Configuring LSF to work with LAM/MPI
	System setup

	Submitting LAM/MPI Jobs
	bsub command
	Submitting a job with a job script
	Job placement with LAM/MPI jobs
	Log files

	Using Platform LSF with MPICH- GM
	About Platform LSF and MPICH-GM
	Requirements
	Assumptions
	Glossary
	For more information
	Files installed by lsfinstall
	Resources and parameters configured by lsfinstall

	Configuring LSF to Work with MPICH-GM
	Configure GM port resources (optional)
	gmmpirun_wrapper script
	lsf.conf (optional)

	Submitting MPICH-GM Jobs
	bsub command
	Submitting a job with a job script

	Using AFS with MPICH-GM
	Steps

	Using Platform LSF with MPICH-P4
	About Platform LSF and MPICH-P4
	Requirements
	Assumptions and limitations
	Glossary
	For more information
	Files installed by lsfinstall
	Resources and parameters configured by lsfinstall

	Configuring LSF to Work with MPICH-P4
	mpichp4_wrapper script

	Submitting MPICH-P4 Jobs
	bsub command
	Task geometry with MPICH-P4 jobs
	Submitting a job with a job script

	Using Platform LSF with MPICH2
	About Platform LSF and MPICH2
	Requirements
	Assumptions and limitations
	Glossary
	For more information
	Files installed by lsfinstall
	Resources and parameters configured by lsfinstall

	Configuring LSF to Work with MPICH2
	Building Parallel Jobs
	Submitting MPICH2 Jobs
	bsub command
	Task geometry with MPICH2 jobs

	Using Platform LSF with MVAPICH
	About Platform LSF and MVAPICH
	Requirements
	Assumptions and limitations
	Glossary
	For more information
	Files installed by lsfinstall
	Resources and parameters configured by lsfinstall

	Configuring LSF to Work with MVAPICH
	esub.mvapich script
	mvapich_wrapper script

	Submitting MVAPICH Jobs
	bsub command
	Task geometry with MVAPICH jobs
	Submitting a job with a job script
	For more information

	Using Platform LSF with Intel® MPI
	About Platform LSF and the Intel® MPI Library
	Requirements
	Assumptions and limitations
	Glossary
	For more information
	Files installed by lsfinstall
	Resources and parameters configured by lsfinstall

	Configuring LSF to Work with Intel MPI
	intelmpi_wrapper script
	lsf.conf (optional)

	Working with the Multi-purpose Daemon (MPD)
	How Platform LSF manages MPD rings
	For more information

	Submitting Intel MPI Jobs
	bsub command
	Task geometry with Intel MPI jobs
	Submitting a job with a job script
	Using Intel MPI configuration files (-configfile)
	mpiexec limitations
	For more information

	Using Platform LSF with Open MPI
	About Platform LSF and the Open MPI Library
	Requirements
	Assumptions and limitations
	Glossary
	For more information
	Files installed by lsfinstall
	Resources and parameters configured by lsfinstall

	Configuring LSF to Work with Open MPI
	Submitting Open MPI Jobs
	bsub command
	Task geometry with Open MPI jobs
	Submitting a job with a job script
	For more information

	Using Platform LSF Parallel Application Integrations
	Using LSF with ANSYS
	Configuring LSF for ANSYS
	Submitting jobs through ANSYS
	Submitting jobs through the ANSYS command-line

	Using LSF with NCBI BLAST
	Configuring LSF for BLAST jobs
	Submitting BLAST jobs

	Using LSF with FLUENT
	Configuring LSF for FLUENT jobs
	Checkpointing in FLUENT
	Checkpoint directories
	Checkpoint trigger files
	Restarting jobs
	Submitting FLUENT jobs
	Checkpointing, restarting, and migrating FLUENT jobs
	Examples

	Using LSF with Gaussian
	Configuring LSF for Gaussian jobs
	Submitting Gaussian jobs

	Using LSF with Lion Bioscience SRS
	Configuring LSF for SRS jobs
	Submitting and monitoring SRS jobs

	Using LSF with LSTC LS-DYNA
	Configuring LSF for LS-Dyna jobs
	LS-DYNA integration with LSF checkpointing
	Submitting LS-DYNA jobs
	Preparing your job scripts
	Example job scripts
	Checkpointing, restarting, and migrating LS-DYNA jobs

	Using LSF with MSC Nastran
	Configuring LSF for Nastran jobs
	Submitting Nastran jobs
	Nastran on Linux using LAM/MPI

	Using Platform LSF with the Etnus TotalView® Debugger
	How LSF Works with TotalView
	Debugging LSF jobs with TotalView
	Installing LSF for TotalView
	Environment variables for TotalView
	Setting TotalView preferences
	Limitations

	Running Jobs for TotalView Debugging
	Compiling your program for debugging
	Starting a job and TotalView together through LSF
	Running TotalView and attaching a LSF job
	Viewing source code while debugging

	Controlling and Monitoring Jobs Being Debugged in TotalView
	Controlling jobs
	Monitoring jobs

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

