IBM Platform LSF Configuration Reference

IBM Platform LSF Version 8.3 May 2012

Copyright

Note:

Before using this information and the product it supports, read the information in *Notices* on page 531.

 $This \ edition\ applies\ to\ version\ 8,\ release\ 3,\ modification\ 0\ of\ IBM\ Platform\ LSF\ (product\ number\ 5725G82)\ and\ to\ all\ subsequent\ releases\ and\ modifications\ until\ otherwise\ indicated\ in\ new\ editions.$

 $US\ Government\ Users\ Restricted\ Rights-Use,\ duplication\ or\ disclosure\ restricted\ by\ GSA\ ADP\ Schedule\ Contract\ with\ IBM\ Corp.$

 $^{^{\}odot}$ Copyright Platform Computing Inc., an IBM Company 1992, 2012.

Contents

Pa	art I: Configuration Files 5
cshrc.lsf and profile.lsf	7
hosts	16
install.config	19
lim.acct	28
lsb.acct	
lsb.applications	39
lsb.events	
lsb.hosts	
lsb.modules	
lsb.params	
lsb.queues	
lsb.resources	235
lsb.serviceclasses	265
lsb.users	276
Isf.acct	284
lsf.cluster	287
lsf.conf	
lsf.licensescheduler	420
lsf.shared	
lsf.sudoers	
lsf.task	
setup.config	478
slave.config	481
Part II: E	Environment Variables 487
Environment variables set for job execution	489
Environment variables for resize notification command	490
Environment variable reference	491
ices	531
Trademarks	533

Configuration Files

Important:

Specify any domain names in all uppercase letters in all configuration files.

Configuration Files

cshrc.lsf and profile.lsf

About cshrc.lsf and profile.lsf

The user environment shell files cshrc. 1sf and profile. 1sf set the LSF operating environment on an LSF host. They define machine-dependent paths to LSF commands and libraries as environment variables:

- cshrc. 1 sf sets the C shell (csh or tcsh) user environment for LSF commands and libraries
- profile. 1 sf sets and exports the Bourne shell/Korn shell (sh, ksh, or bash) user environment for LSF commands and libraries

Tip:

LSF Administrators should make sure that $cshrc.\,lsf$ or $profile.\,lsf$ are available for users to set the LSF environment variables correctly for the host type running LSF.

Location

cshrc. 1 sf and profile. 1 sf are created by 1 sf install during installation. After installation, they are located in LSF_CONFDIR (LSF_TOP/conf/).

Format

cshrc. 1 sf and profile. 1 sf are conventional UNIX shell scripts:

- cshrc. l sf runs under /bi n/csh
- profile.lsf runs under /bi n/sh

What cshrc.lsf and profile.lsf do

cshrc. 1 sf and profile. 1 sf determine the binary type (BINARY_TYPE) of the host and set environment variables for the paths to the following machine-dependent LSF directories, according to the LSF version (LSF_VERSION) and the location of the top-level installation directory (LSF_TOP) defined at installation:

- LSF_BINDIR
- LSF_SERVERDIR
- LSF_LIBDIR
- XLSF_UIDDIR

cshrc. 1 sf and profile. 1 sf also set the following user environment variables:

- LSF ENVDIR
- LD_LIBRARY_PATH
- PATH to include the paths to:
 - LSF_BINDIR
 - LSF_SERVERDIR
- MANPATH to include the path to the LSF man pages

If EGO is enabled

If EGO is enabled in the LSF cluster (LSF_ENABLE_EGO=Y and LSF_EGO_ENVDIR are defined in 1 sf. conf), cshrc. 1 sf and profile. 1 sf set the following environment variables.

- EGO BINDIR
- EGO CONFDIR
- EGO ESRVDIR
- EGO LIBDIR
- EGO LOCAL CONFDIR
- EGO_SERVERDIR
- EGO_TOP

Setting the LSF environment with cshrc.lsf and profile.lsf

Before using LSF, you must set the LSF execution environment.

After logging on to an LSF host, use one of the following shell environment files to set your LSF environment:

For example, in csh or tcsh:

source /usr/lsf/lsf 8/conf/cshrc.lsf

For example, in sh, ksh, or bash:

. /usr/lsf/lsf_8/conf/profile.lsf

Making your cluster available to users with cshrc.lsf and profile.lsf

To set the LSF user environment, run one of the following two shell files:

- LSF_CONFDIR/cshrc.lsf (for csh, tcsh)
- LSF_CONFDIR/profile.lsf (for sh, ksh, or bash)

Tip:

LSF administrators should make sure all LSF users include one of these files at the end of their own . cshrc or . profile file, or run one of these two files before using LSF.

For csh or tcsh

Add cshrc. 1 sf to the end of the . cshrc file for all users:

- Copy the cshrc. 1 sf file into . cshrc, or
- Add a line similar to the following to the end of . cshrc:

source /usr/lsf/lsf_8/conf/cshrc.lsf

After running cshrc. 1 sf, use set env to see the environment variable settings. For example:

setenv

 $PATH=/usr/lsf/lsf_8/8.3/linux2.6-glibc2.3-x86/bin$

. . .

 $MANPATH=/usr/lsf/lsf_8/8.3/man$

. .

LSF_BI NDI R=/usr/l sf/l sf_8/8. 3/l i nux2. 6- gl i bc2. 3- x86/bi n

LSF_SERVERDIR=/usr/lsf/lsf_8/8.3/linux2.6-glibc2.3-x86/etc

LSF_LIBDIR=/usr/lsf/lsf_8/8.3/linux2.6-glibc2.3-x86/lib

LD_LIBRARY_PATH=/usr/lsf/lsf_8/8.3/linux2.6-glibc2.3-x86/lib

XLSF_UI DDI R=/usr/l sf/l sf_8/8. 3/l i nux2. 6- gl i bc2. 3-x86/l i b/ui d

LSF_ENVDIR=/usr/lsf/lsf_8/conf

Note:

These variable settings are an example only. Your system may set additional variables.

For sh, ksh, or bash

Add profile. 1 sf to the end of the . profile file for all users:

- Copy the profile. 1 sf file into . profile, or
- Add a line similar to following to the end of . profile:

. /usr/lsf/lsf_8/conf/profile.lsf

After running profile. lsf, use the set command to see the environment variable settings. For example:

set

. . .

LD_LI BRARY_PATH=/usr/lsf/lsf_8/8.3/linux2.6-glibc2.3-x86/lib

LSF_BI NDI R=/usr/l sf/l sf_8/8. 3/l i nux2. 6- gl i bc2. 3- x86/bi n

LSF_ENVDIR=/usr/lsf/lsf_8/conf

LSF_LI BDI R=/usr/l sf/l sf_8/8. 3/l i nux2. 6- gl i bc2. 3- x86/l i b

LSF_SERVERDIR=/usr/lsf/lsf_8/8.3/linux2.6-glibc2.3-x86/etc

MANPATH=/usr/lsf/lsf_8/8.3/man

PATH=/usr/l sf/l sf_8/8. 3/l i nux2. 6- gl i bc2. 3- x86/bi n

. .

XLSF_UI DDI R=/usr/l sf/l sf_8/8. 3/l i nux2. 6-gl i bc2. 3-x86/l i b/ui d

. . .

Note:

These variable settings are an example only. Your system may set additional variables.

cshrc.lsf and profile.lsf on dynamically added LSF slave hosts

Dynamically added LSF hosts that will not be master candidates are *slave hosts*. Each dynamic slave host has its own LSF binaries and local $l\,sf$. conf and shell environment scripts (cshrc. $l\,sf$ and profile. $l\,sf$).

LSF environment variables set by cshrc.lsf and profile.lsf

LSF_BINDIR

Syntax

LSF BINDIR=dir

Description

Directory where LSF user commands are installed.

Examples

Set in csh and tcsh by cshrc. lsf:

setenv LSF_BINDIR /usr/lsf/lsf_8/8.3/linux2.6-glibc2.3-x86/bin

Set and exported in sh, ksh, or bash by profile. lsf:
 LSF_BINDIR=/usr/lsf/lsf_8/8. 3/linux2. 6-glibc2. 3-x86/bin

Values

- In cshrc. l sf for csh and tcsh: setenv LSF_BINDIR \$LSF_TOP/\$LSF_VERSION/\$BINARY_TYPE/bin
- Set and exported in profile.lsf for sh, ksh, or bash:
 LSF_BI NDI R=\$LSF_TOP/\$LSF_VERSI ON/\$BI NARY_TYPE/bi n

LSF ENVDIR

Syntax

LSF_ENVDIR=dir

Description

Directory containing the 1 sf. conf file.

By default, $l \ sf.\ conf$ is installed by creating a shared copy in LSF_CONFDIR and adding a symbolic link from $/et\ c/l\ sf.\ conf$ to the shared copy. If LSF_ENVDIR is set, the symbolic link is installed in LSF_ENVDI R/l sf. conf.

The l sf. conf file is a global environment configuration file for all LSF services and applications. The LSF default installation places the file in LSF_CONFDIR.

Examples

 Set in csh and tcsh by cshrc. lsf: setenv LSF_ENVDIR /usr/lsf/lsf_8/conf - Set and exported in sh, ksh, or bash by profile. lsf:

LSF_ENVDIR=/usr/lsf/lsf_8/conf

Values

- In cshrc. 1 sf for csh and tcsh:
 - setenv LSF_ENVDIR \$LSF_TOP/conf
- Set and exported in profile. lsf for sh, ksh, or bash:

LSF_ENVDI R=\$LSF_TOP/conf

LSF_LIBDIR

Syntax

LSF_LIBDIR=dir

Description

Directory where LSF libraries are installed. Library files are shared by all hosts of the same type.

Examples

Set in csh and tcsh by cshrc. lsf:

setenv LSF_LIBDIR /usr/lsf/lsf_8/8.3/linux2.6-glibc2.3-x86/lib

Set and exported in sh, ksh, or bash by profile. lsf:

LSF_LIBDIR=/usr/lsf/lsf_8/8.3/linux2.6-glibc2.3-x86/lib

Values

- In cshrc. l sf for csh and tcsh:
 - setenv LSF_LIBDIR \$LSF_TOP/\$LSF_VERSION/\$BINARY_TYPE/lib
- Set and exported in profile. lsf for sh, ksh, or bash:
 LSF_LIBDIR=\$LSF_TOP/\$LSF_VERSION/\$BINARY_TYPE/lib

LSF_SERVERDIR

Syntax

LSF_SERVERDIR=dir

Description

Directory where LSF server binaries and shell scripts are installed.

These include lim, res, nios, sbatchd, mbatchd, and mbschd. If you use elim, eauth, eexec, esub, etc, they are also installed in this directory.

Examples

Set in csh and tcsh by cshrc. lsf:

setenv LSF_SERVERDIR /usr/lsf/lsf_8/8.3/linux2.6-glibc2.3-x86/etc

Set and exported in sh, ksh, or bash by profile. lsf:
 LSF_SERVERDI R=/usr/lsf/lsf_8/8. 3/linux2. 6-glibc2. 3-x86/etc

Values

- In cshrc. l sf for csh and tcsh: setenv LSF_SERVERDIR \$LSF_TOP/\$LSF_VERSION/\$BINARY_TYPE/etc
- Set and exported in profile. lsf for sh, ksh, or bash:
 LSF_SERVERDIR=\$LSF_TOP/\$LSF_VERSION/\$BINARY_TYPE/etc

XLSF UIDDIR

Syntax

 $XLSF_UIDDIR=dir$

Description

(UNIX and Linux only) Directory where Motif User Interface Definition files are stored.

These files are platform-specific.

Examples

Set in csh and tcsh by cshrc. lsf:

setenv XLSF_UIDDIR /usr/lsf/lsf_8/8.3/linux2.6-glibc2.3-x86/lib/uid

Set and exported in sh, ksh, or bash by profile. lsf:
 XLSF_UI DDI R=/usr/lsf/lsf_8/8. 3/linux2. 6-glibc2. 3-x86/lib/uid

Values

- In cshrc. lsf for csh and tcsh: setenv XLSF_UIDDIR \$LSF_TOP/\$LSF_VERSION/\$BINARY_TYPE/lib/uid
- Set and exported in profile.lsf for sh, ksh, or bash: XLSF_UI DDI R=\$LSF_TOP/\$LSF_VERSI ON/\$BI NARY_TYPE/lib/uid

EGO environment variables set by cshrc.lsf and profile.lsf

EGO_BINDIR

Syntax

EGO_BINDIR=dir

Description

Directory where EGO user commands are installed.

Examples

• Set in csh and tcsh by cshrc. 1 sf:

setenv EGO_BINDIR /usr/lsf/lsf_8/8.3/linux2.6-glibc2.3-x86/bin

• Set and exported in sh, ksh, or bash by profile. 1sf: EGO_BINDIR=/usr/lsf/lsf_8/8.3/linux2.6-glibc2.3-x86/bin

Values

- In cshrc. lsf for csh and tcsh: setenv EGO_BINDIR \$LSF_BINDIR
- Set and exported in profile. lsf for sh, ksh, or bash: EGO_BINDIR=\$LSF_BINDIR

EGO_CONFDIR

Syntax

 $EGO_CONFDIR=dir$

Description

Directory containing the ego. conf file.

Examples

- Set in csh and tcsh by cshrc. lsf: setenv EGO_CONFDIR /usr/lsf/lsf_8/conf/ego/lsf1.2.3/kernel
- Set and exported in sh, ksh, or bash by profile. lsf:
 EGO_CONFDIR=/usr/lsf/lsf_8/conf/ego/lsf1. 2. 3/kernel

Values

- In cshrc. lsf for csh and tcsh: setenv EGO_CONFDIR /usr/lsf/lsf_8/conf/ego/lsf1.2.3/kernel
- Set and exported in profile.lsf for sh, ksh, or bash: EGO_CONFDIR=/usr/lsf/lsf_8/conf/ego/lsf1.2.3/kernel

EGO ESRVDIR

Syntax

EGO_ESRVDIR=dir

Description

Directory where the EGO the service controller configuration files are stored.

Examples

- Set in csh and tcsh by cshrc. lsf: setenv EGO_ESRVDIR /usr/lsf/lsf_8/conf/ego/lsf702/eservice
- Set and exported in sh, ksh, or bash by profile.lsf:
 EGO_ESRVDI R=/usr/lsf/lsf_8/conf/ego/lsf702/eservice

Values

- In cshrc. l sf for csh and tcsh:
 setenv EGO_ESRVDIR /usr/lsf/lsf_8/conf/ego/lsf702/eservice
- Set and exported in profile. lsf for sh, ksh, or bash: EGO_ESRVDIR=/usr/lsf/lsf_8/conf/ego/lsf702/eservice

EGO_LIBDIR

Syntax

EGO_LIBDIR=dir

Description

Directory where EGO libraries are installed. Library files are shared by all hosts of the same type.

Examples

• Set in csh and tcsh by cshrc. lsf:

setenv EGO_LIBDIR /usr/lsf/lsf_8/8.3/linux2.6-glibc2.3-x86/lib

Set and exported in sh, ksh, or bash by profile. lsf:
 EGO_LIBDIR=/usr/lsf/lsf_8/8. 3/linux2. 6-glibc2. 3-x86/lib

Values

 In cshrc. lsf for csh and tcsh: setenv EGO_LIBDIR \$LSF_LIBDIR

 Set and exported in profile. lsf for sh, ksh, or bash: EGO_LIBDIR=\$LSF_LIBDIR

EGO_LOCAL_CONFDIR

Syntax

EGO_LOCAL_CONFDIR=dir

Description

The local EGO configuration directory containing the ego. conf file.

Examples

Set in csh and tcsh by cshrc. lsf:

setenv EGO_LOCAL_CONFDIR /usr/lsf/lsf_8/conf/ego/lsf1.2.3/kernel

• Set and exported in sh, ksh, or bash by profile. lsf:

EGO_LOCAL_CONFDIR=/usr/lsf/lsf_8/conf/ego/lsf1.2.3/kernel

Values

• In cshrc. 1 sf for csh and tcsh:

setenv EGO_LOCAL_CONFDIR /usr/lsf/lsf_8/conf/ego/lsf1.2.3/kernel

Set and exported in profile. lsf for sh, ksh, or bash:

EGO_LOCAL_CONFDIR=/usr/lsf/lsf_8/conf/ego/lsf1.2.3/kernel

EGO_SERVERDIR

Syntax

EGO_SERVERDIR=dir

Description

Directory where EGO server binaries and shell scripts are installed. These include vemkd, pem, egosc, and shell scripts for EGO startup and shutdown.

Examples

• Set in csh and tcsh by cshrc. lsf:

setenv EGO_SERVERDIR /usr/lsf/lsf_8/8.3/linux2.6-glibc2.3-x86/etc

Set and exported in sh, ksh, or bash by profile.lsf: EGO_SERVERDIR=/usr/lsf/lsf_8/8.3/linux2.6-glibc2.3-x86/etc

Values

 In cshrc. l sf for csh and tcsh: setenv EGO_SERVERDIR \$LSF_SERVERDIR

Set and exported in profile. lsf for sh, ksh, or bash:
 EGO SERVERDIR=SLSF SERVERDIR

EGO_TOP

Syntax

EGO TOP=dir

Description

The the top-level installation directory. The path to EGO_TOP must be shared and accessible to all hosts in the cluster. Equivalent to LSF_TOP.

Examples

Set in csh and tcsh by cshrc. lsf:

setenv EGO_TOP /usr/lsf/lsf_8

• Set and exported in sh, ksh, or bash by profile. lsf:

 $EGO_TOP = /usr/lsf/lsf_8$

Values

• In cshrc. 1 sf for csh and tcsh:

setenv EGO_TOP /usr/lsf/lsf_8

• Set and exported in profile. lsf for sh, ksh, or bash:

 $EGO_TOP = /usr/lsf/lsf_8$

hosts

For hosts with multiple IP addresses and different official host names configured at the system level, this file associates the host names and IP addresses in LSF.

By default, LSF assumes each host in the cluster:

- Has a unique "official" host name
- Can resolve its IP address from its name
- Can resolve its official name from its IP address

Hosts with only one IP address, or hosts with multiple IP addresses that already resolve to a unique official host name should not be configured in this file: they are resolved using the default method for your system (for example, local configuration files like /etc/hosts or through DNS.)

The LSF hosts file is used in environments where:

- Machines in cluster have multiple network interfaces and cannot be set up in the system with a unique official host name
- DNS is slow or not configured properly
- Machines have special topology requirements; for example, in HPC systems where it is desirable to map multiple actual hosts to a single "head end" host

The LSF hosts file is not installed by default. It is usually located in the directory specified by LSF_CONFDIR. The format of LSF_CONFDI R/hosts is similar to the format of the /etc/hosts file on UNIX machines.

hosts file structure

One line for each IP address, consisting of the IP address, followed by the official host name, optionally followed by host aliases, all separated by spaces or tabs. Each line has the form:

```
ip_address official_name [alias [alias ...]]
```

IP addresses can have either a dotted quad notation (IPv4) or IP Next Generation (IPv6) format. You can use IPv6 addresses if you define the parameter LSF_ENABLE_SUPPORT_IPV6 in 1 sf. conf; you do not have to map IPv4 addresses to an IPv6 format.

Use consecutive lines for IP addresses belonging to the same host. You can assign different aliases to different addresses.

Use a pound sign (#) to indicate a comment (the rest of the line is not read by LSF). Do not use #i f as this is reserved syntax for time-based configuration.

IP address

Written using an IPv4 or IPv6 format. LSF supports both formats; you do not have to map IPv4 addresses to an IPv6 format (if you define the parameter LSF_ENABLE_SUPPORT_IPV6 in 1 sf. conf).

- IPv4 format: nnn. nnn. nnn. nnn
- IPv6 format: nnnn: nnnn: nnnn: nnnn: nnnn: nnnn: nnnn

Official host name

The official host name. Single character names are not allowed.

Specify -GATEWAY or -GW as part of the host name if the host serves as a GATEWAY.

Specify -TAC as the last part of the host name if the host is a TAC and is a DoD host.

Specify the host name in the format defined in Internet RFC 952, which states:

A "name" (Net, Host, Gateway, or Domain name) is a text string up to 24 characters drawn from the alphabet (A-Z), digits (0-9), minus sign (-), and period (.). Periods are only allowed when they serve to delimit components of "domain style names". (See RFC 921, "Domain Name System Implementation Schedule", for background). No blank or space characters are permitted as part of a name. No distinction is made between upper and lower case. The first character must be an alpha character. The last character must not be a minus sign or a period.

RFC 952 has been modified by RFC 1123 to relax the restriction on the first character being a digit.

For maximum interoperability with the Internet, you should use host names no longer than 24 characters for the host portion (exclusive of the domain component).

Aliases

Optional. Aliases to the host name.

The default host file syntax

```
ip_address official_name [alias [alias ...]]
```

is powerful and flexible, but it is difficult to configure in systems where a single host name has many aliases, and in multihomed host environments.

In these cases, the hosts file can become very large and unmanageable, and configuration is prone to error.

The syntax of the LSF hosts file supports host name ranges as aliases for an IP address. This simplifies the host name alias specification.

To use host name ranges as aliases, the host names must consist of a fixed node group name prefix and node indices, specified in a form like:

```
host_name[index_x-index_y, index_m, index_a-index_b]

For example:
atlasD0[0-3, 4, 5-6, ...]
is equivalent to:
atlasD0[0-6, ...]
```

The node list does not need to be a continuous range (some nodes can be configured out). Node indices can be numbers or letters (both upper case and lower case).

For example, some systems map internal compute nodes to single LSF host names. A host file might contains 64 lines, each specifying an LSF host name and 32 node names that correspond to each LSF host:

```
... 177.16.1.1 atlasD0 atlasO atlasO
```

In the new format, you still map the nodes to the LSF hosts, so the number of lines remains the same, but the format is simplified because you only have to specify ranges for the nodes, not each node individually as an alias:

```
...
177. 16. 1. 1 atlasD0 atlas[0-31]
177. 16. 1. 2 atlasD1 atlas[32-63]
...
```

You can use either an IPv4 or an IPv6 format for the IP address (if you define the parameter LSF ENABLE SUPPORT IPV6 in 1 sf. conf).

IPv4 Example

192.168.1.1 hostA hostB 192.168.2.2 hostA hostC host-C

In this example, host A has 2 IP addresses and 3 aliases. The alias host B specifies the first address, and the aliases host C and host - C specify the second address. LSF uses the official host name, host A, to identify that both IP addresses belong to the same host.

IPv6 Example

3ffe: b80: 3: 1a91:: 2 hostA hostB 3ffe: b80: 3: 1a91:: 3 hostA hostC host-C

In this example, host A has 2 IP addresses and 3 aliases. The alias host B specifies the first address, and the aliases host C and host - C specify the second address. LSF uses the official host name, host A, to identify that both IP addresses belong to the same host.

install.config

About install.config

The install.config file contains options for LSF installation and configuration. Use lsfinstall finstall.config to install LSF using the options specified in install.config.

Template location

A template i nstall.config is included in the installation script tar file $l sf8_l sfi nstall.tar.Z$ and is located in the $l sf8_l sfi nstall$ directory created when you uncompress and extract installation script tar file. Edit the file and uncomment the options you want in the template file. Replace the example values with your own settings to specify the options for your new installation.

Important:

The sample values in the install.config template file are examples only. They are not default installation values.

After installation, the install.config containing the options you specified is located in LSF_TOP/8/install/.

Format

Each entry in i nst all. confighas the form:

NAME="STRI NG1 STRI NG2 ..."

The equal sign = must follow each NAME even if no value follows and there should be no spaces around the equal sign.

A value that contains multiple strings separated by spaces must be enclosed in quotation marks.

Blank lines and lines starting with a pound sign (#) are ignored.

Parameters

- EGO_DAEMON_CONTROL
- ENABLE_DYNAMIC_HOSTS
- ENABLE_EGO
- ENABLE_HPC_CONFIG
- EP_BACKUP
- LSF_ADD_SERVERS
- LSF_ADD_CLIENTS
- LSF_ADMINS
- LSF_CLUSTER_NAME
- LSF_DYNAMIC_HOST_WAIT_TIME
- LSF_ENTITLEMENT_FILE
- LSF_MASTER_LIST
- LSF_QUIET_INST
- LSF_TARDIR
- LSF_TOP
- PATCH_BACKUP_DIR

PATCH_HISTORY_DIR

EGO_DAEMON_CONTROL

Syntax

EGO_DAEMON_CONTROL="Y" | "N"

Description

Enables EGO to control LSF res and sbatchd. Set the value to "Y" if you want EGO Service Controller to start res and sbatchd, and restart if they fail. To avoid conflicts, leave this parameter undefined if you use a script to start up LSF daemons.

Note:

If you specify EGO_ENABLE="N", this parameter is ignored.

Example

EGO_DAEMON_CONTROL="N"

Default

N (res and sbatchd are started manually)

ENABLE_DYNAMIC_HOSTS

Syntax

ENABLE_DYNAMIC_HOSTS="Y" | "N"

Description

Enables dynamically adding and removing hosts. Set the value to "Y" if you want to allow dynamically added hosts.

If you enable dynamic hosts, any host can connect to cluster. To enable security, configure LSF_HOST_ADDR_RANGE in 1 sf. cl uster. *cl uster_name* after installation and restrict the hosts that can connect to your cluster.

Example

ENABLE_DYNAMI C_HOSTS="N"

Default

N (dynamic hosts not allowed)

ENABLE_EGO

Syntax

ENABLE_EGO="Y" | "N"

Description

Enables EGO functionality in the LSF cluster.

ENABLE_EGO="Y" causes l sfi nst al l uncomment LSF_EGO_ENVDIR and sets LSF_ENABLE_EGO="Y" in l sf. conf.

 $ENABLE_EGO="N" \ causes \ l \ sfi \ nst \ al \ l \ to \ comment \ out \ LSF_EGO_ENVDIR \ and \ sets \ LSF_ENABLE_EGO="N" \ in \ l \ sf. \ conf.$

Set the value to "Y" if you want to take advantage of the following LSF features that depend on EGO:

- LSF daemon control by EGO Service Controller
- EGO-enabled SLA scheduling

Default

N (EGO is disabled in the LSF cluster)

ENABLE HPC CONFIG

Syntax

ENABLE_HPC_CONFIG="Y" | "N"

Description

Set the value to "Y" to enable LSF HPC features and add HPC configuration parameters to the cluster.

Default

N (HPC features are disabled.)

EP BACKUP

Syntax

EP_BACKUP="Y" | "N"

Description

Enables backup and rollback for enhancement packs. Set the value to "N" to disable backups when installing enhancement packs (you will not be able to roll back to the previous patch level after installing an EP, but you will still be able to roll back any fixes installed on the new EP).

You may disable backups to speed up install time, to save disk space, or because you have your own methods to back up the cluster.

Default

Y (backup and rollback are fully enabled)

LSF_ADD_SERVERS

Syntax

LSF_ADD_SERVERS="host_name [host_name...]"

Description

List of additional LSF server hosts.

The hosts in LSF_MASTER_LIST are always LSF servers. You can specify additional server hosts. Specify a list of host names two ways:

- Host names separated by spaces
- Name of a file containing a list of host names, one host per line.

Valid Values

Any valid LSF host name.

Example 1

List of host names:

LSF_ADD_SERVERS="hosta hostb hostc hostd"

Example 2

Host list file:

LSF_ADD_SERVERS=: lsf_server_hosts

The file l sf_server_hosts contains a list of hosts:

hosta

hostb

hostc hostd

Default

Only hosts in LSF_MASTER_LIST are LSF servers.

LSF_ADD_CLIENTS

Syntax

LSF_ADD_CLIENTS="host_name [host_name...]"

Description

List of LSF client-only hosts.

Tip:

After installation, you must manually edit lsf. cluster. cluster_name to include the host model and type of each client listed in LSF_ADD_CLIENTS.

Valid Values

Any valid LSF host name.

Example 1

List of host names:

LSF_ADD_CLIENTS="hoste hostf"

Example 2

Host list file:

LSF_ADD_CLIENTS=: lsf_client_hosts

The file l sf_cl i ent_hosts contains a list of hosts:

hoste hostf

Default

No client hosts installed.

LSF ADMINS

Syntax

LSF_ADMINS="user_name [user_name ...]"

Description

Required. List of LSF administrators.

The first user account name in the list is the primary LSF administrator. It cannot be the root user account.

Typically this account is named 1 sf admi n. It owns the LSF configuration files and log files for job events. It also has permission to reconfigure LSF and to control batch jobs submitted by other users. It typically does not have authority to start LSF daemons. Usually, only root has permission to start LSF daemons.

All the LSF administrator accounts must exist on all hosts in the cluster before you install LSF. Secondary LSF administrators are optional.

Caution:

You should *not* configure the root account as the primary LSF administrator.

Valid Values

Existing user accounts

Example

LSF_ADMINS="lsfadmin user1 user2"

Default

None—required variable

LSF_CLUSTER_NAME

Syntax

LSF_CLUSTER_NAME="cluster_name"

Description

Required. The name of the LSF cluster.

Example

LSF_CLUSTER_NAME="cluster1"

Valid Values

Any alphanumeric string containing no more than 39 characters. The name cannot contain white spaces.

Important:

Do not use the name of any host, user, or user group as the name of your cluster.

Default

None—required variable

LSF DYNAMIC HOST WAIT TIME

Syntax

LSF_DYNAMIC_HOST_WAIT_TIME=seconds

Description

Time in seconds slave LIM waits after startup before calling master LIM to add the slave host dynamically.

This parameter only takes effect if you set ENABLE_DYNAMIC_HOSTS="Y" in this file. If the slave LIM receives the master announcement while it is waiting, it does not call the master LIM to add itself.

Recommended value

Up to 60 seconds for every 1000 hosts in the cluster, for a maximum of 15 minutes. Selecting a smaller value will result in a quicker response time for new hosts at the expense of an increased load on the master LIM.

Example

LSF_DYNAMI C_HOST_WAI T_TI ME=60

Hosts will wait 60 seconds from startup to receive an acknowledgement from the master LIM. If it does not receive the acknowledgement within the 60 seconds, it will send a request for the master LIM to add it to the cluster.

Default

Slave LIM waits forever

LSF ENTITLEMENT FILE

Syntax

LSF_ENTITLEMENT_FILE="path"

Description

Full path to the LSF entitlement file, 1 sf. entitlement.

Example

For example, if l sfi nstal l is running under /usr/share/l sf_di stri b/l sf_l sfi nstal l the LSF_ENTITLEMENT_FILE value is /usr/share/l sf_di stri b/l sf. entitlement.

Default

1 sf. entitl ement in the parent directory of the current working directory.

LSF_MASTER_LIST

Syntax

LSF_MASTER_LIST="host_name [host_name ...]"

Description

Required for a first-time installation. List of LSF server hosts to be master or master candidates in the cluster.

You must specify at least one valid server host to start the cluster. The first host listed is the LSF master host.

During upgrade, specify the existing value.

Valid Values

LSF server host names

Example

LSF_MASTER_LIST="hosta hostb hostc hostd"

Default

None — required variable

LSF_QUIET_INST

Syntax

LSF_QUIET_INST="Y" | "N"

Description

Enables quiet installation.

Set the value to Y if you want to hide the LSF installation messages.

Example

LSF_QUI ET_I NST="Y"

Default

N (installer displays messages during installation)

LSF_TARDIR

Syntax

LSF_TARDIR="/path"

Description

Full path to the directory containing the LSF distribution tar files.

Example

LSF_TARDIR="/usr/share/lsf_distrib"

Default

The parent directory of the current working directory. For example, if l sfi nstal l is running under usr/share/lsf_di stri b/lsf_lsfi nstal l the LSF_TARDIR default value is usr/share/lsf_di stri b.

LSF_TOP

Syntax

LSF_TOP="/path"

Description

Required. Full path to the top-level LSF installation directory.

Valid Value

The path to LSF_TOP must be shared and accessible to all hosts in the cluster. It cannot be the root directory (/). The file system containing LSF_TOP must have enough disk space for all host types (approximately 300 MB per host type).

Example

LSF_TOP="/usr/share/lsf"

Default

None — required variable

PATCH_BACKUP_DIR

Syntax

PATCH_BACKUP_DIR="/path"

Description

Full path to the patch backup directory. This parameter is used when you install a new cluster for the first time, and is ignored for all other cases.

The file system containing the patch backup directory must have sufficient disk space to back up your files (approximately 400 MB per binary type if you want to be able to install and roll back one enhancement pack and a few additional fixes). It cannot be the root directory (/).

If the directory already exists, it must be writable by the cluster administrator (1 sf admin).

If you need to change the directory after installation, edit PATCH_BACKUP_DIR in LSF_TOP/patch. conf and move the saved backup files to the new directory manually.

Example

PATCH_BACKUP_DIR="/usr/share/lsf/patch/backup"

Default

LSF_TOP/patch/backup

PATCH_HISTORY_DIR

Syntax

PATCH_HISTORY_DIR="/path"

Description

Full path to the patch history directory. This parameter is used when you install a new cluster for the first time, and is ignored for all other cases.

It cannot be the root directory (/). If the directory already exists, it must be writable by 1 sf admi n.

 $The location is saved as PATCH_HISTORY_DIR in LSF_TOP/patch.\ conf.\ Do \ not \ change\ the\ directory\ after installation.$

Example

PATCH_BACKUP_DIR="/usr/share/lsf/patch"

Default

LSF_TOP/patch

lim.acct

The lim. acct file is the log file for Load Information Manager (LIM). Produced by lsmon, lim. acct contains host load information collected and distributed by LIM.

lim.acct structure

The first line of lim. acct contains a list of load index names separated by spaces. This list of load index names can be specified in the limin command line. The default list is "r15s r1m r15m ut pg ls it swp mem tmp". Subsequent lines in the file contain the host's load information at the time the information was recorded.

Fields

Fields are ordered in the following sequence:

time (%ld)

The time when the load information is written to the log file

host name (%s)

The name of the host.

status of host (%d)

An array of integers. The first integer marks the operation status of the host. Additional integers are used as a bit map to indicate load status of the host. An integer can be used for 32 load indices. If the number of user defined load indices is not more than 21, only one integer is used for both built-in load indices and external load indices. See the host1 oad structure in 1 s_1 oad(3) for the description of these fields.

indexvalue (%f)

A sequence of load index values. Each value corresponds to the index name in the first line of lim. acct. The order in which the index values are listed is the same as the order of the index names.

Isb.acct

The 1 sb. acct file is the batch job log file of LSF. The master batch daemon (see mbat chd(8)) generates a record for each job completion or failure. The record is appended to the job log file 1 sb. acct.

The file is located in LSB_SHAREDI R/cl uster_name/l ogdi r, where LSB_SHAREDI R must be defined in lsf. conf(5) and cl uster_name is the name of the LSF cluster, as returned by lsi d(1). See mbat chd(8) for the description of LSB_SHAREDI R.

The bacct command uses the current lsb.acct file for its output.

Isb.acct structure

The job log file is an ASCII file with one record per line. The fields of a record are separated by blanks. If the value of some field is unavailable, a pair of double quotation marks ("") is logged for character string, 0 for time and number, and -1 for resource usage.

Configuring automatic archiving

The following parameters in 1 sb. params affect how records are logged to 1 sb. acct:

ACCT_ARCHIVE_AGE=days

Enables automatic archiving of LSF accounting log files, and specifies the archive interval. LSF archives the current log file if the length of time from its creation date exceeds the specified number of days.

By default there is no limit to the age of lsb.acct.

ACCT ARCHIVE SIZE=kilobytes

Enables automatic archiving of LSF accounting log files, and specifies the archive threshold. LSF archives the current log file if its size exceeds the specified number of kilobytes.

By default, there is no limit to the size of lsb.acct.

ACCT_ARCHIVE_TIME=hh:mm

Enables automatic archiving of LSF accounting log file lsb.acct, and specifies the time of day to archive the current log file.

By default, no time is set for archiving lsb.acct.

MAX_ACCT_ARCHIVE_FILE=integer

Enables automatic deletion of archived LSF accounting log files and specifies the archive limit.

By default, 1 sb. acct. *n* files are not automatically deleted.

Records and fields

The fields of a record are separated by blanks. The first string of an event record indicates its type. The following types of events are recorded:

JOB_FINISH

- EVENT_ADRSV_FINISH
- JOB RESIZE

JOB_FINISH

A job has finished.

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in 1 sf. conf, older daemons and commands (pre-LSF Version 6.0) cannot recognize the 1 sb. acct file format.

The fields in order of occurrence are:

Event type (%s)

Which is "JOB_FINISH"

Version Number (%s)

Version number of the log file format

Event Time (%d)

Time the event was logged (in seconds since the epoch)

jobld (%d)

ID for the job

userId (%d)

UNIX user ID of the submitter

options (%d)

Bit flags for job processing

numProcessors (%d)

Number of processors initially requested for execution

submitTime (%d)

Job submission time

beginTime (%d)

Job start time – the job should be started at or after this time

termTime (%d)

Job termination deadline – the job should be terminated by this time

startTime (%d)

Job dispatch time – time job was dispatched for execution

userName (%s)

User name of the submitter

queue (%s)

Name of the job queue to which the job was submitted

resReq (%s)

Resource requirement specified by the user

dependCond (%s)

Job dependency condition specified by the user

preExecCmd (%s)

Pre-execution command specified by the user

fromHost (%s)

Submission host name

cwd (%s)

Current working directory (up to 4094 characters for UNIX or 512 characters for Windows)

inFile (%s)

Input file name (up to 4094 characters for UNIX or 512 characters for Windows)

outFile (%s)

output file name (up to 4094 characters for UNIX or 512 characters for Windows)

errFile (%s)

Error output file name (up to 4094 characters for UNIX or 512 characters for Windows)

jobFile (%s)

Job script file name

numAskedHosts (%d)

Number of host names to which job dispatching will be limited

askedHosts (%s)

List of host names to which job dispatching will be limited (%s for each); nothing is logged to the record for this value if the last field value is 0. If there is more than one host name, then each additional host name will be returned in its own field

numExHosts (%d)

Number of processors used for execution

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in 1 sf. conf, the value of this field is the number of .hosts listed in the execHosts field.

Logged value reflects the allocation at job finish time.

execHosts (%s)

List of execution host names (%s for each); nothing is logged to the record for this value if the last field value is 0.

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in 1 sf. conf, the value of this field is logged in a shortened format.

The logged value reflects the allocation at job finish time.

```
jStatus (%d)
```

Job status. The number 32 represents EXIT, 64 represents DONE

hostFactor (%f)

CPU factor of the first execution host.

jobName (%s)

Job name (up to 4094 characters).

command (%s)

Complete batch job command specified by the user (up to 4094 characters for UNIX or 512 characters for Windows).

IsfRusage (%f)

The following fields contain resource usage information for the job (see getrusage(2)). If the value of some field is unavailable (due to job exit or the difference among the operating systems), -1 will be logged. Times are measured in seconds, and sizes are measured in KB.

ru_utime (%f)

User time used

ru_stime (%f)

System time used

ru_maxrss (%f)

Maximum shared text size

ru_ixrss (%f)

Integral of the shared text size over time (in KB seconds)

ru_ismrss (%f)

Integral of the shared memory size over time (valid only on Ultrix)

ru_idrss (%f)

Integral of the unshared data size over time

ru_isrss (%f)

Integral of the unshared stack size over time

ru_minflt (%f)

Number of page reclaims

ru_majflt (%f)

Number of page faults

ru_nswap (%f)

Number of times the process was swapped out

```
ru_inblock (%f)
                       Number of block input operations
       ru_oublock (%f)
                       Number of block output operations
       ru_ioch (%f)
                       Number of characters read and written (valid only on HP-UX)
       ru_msgsnd (%f)
                       Number of System V IPC messages sent
       ru_msgrcv (%f)
                       Number of messages received
       ru_nsignals (%f)
                       Number of signals received
       ru_nvcsw (%f)
                       Number of voluntary context switches
       ru_nivcsw (%f)
                       Number of involuntary context switches
       ru_exutime (%f)
                       Exact user time used (valid only on ConvexOS)
mailUser (%s)
               Name of the user to whom job related mail was sent
projectName (%s)
               LSF project name
exitStatus (%d)
               UNIX exit status of the job
maxNumProcessors (%d)
               Maximum number of processors specified for the job
loginShell (%s)
               Login shell used for the job
timeEvent (%s)
               Time event string for the job - JobScheduler only
idx (%d)
               Job array index
maxRMem (%d)
```

Maximum resident memory usage in the unit specified by LSF_UNIT_FOR_LIMITS in $l \ sf. \ conf$ of all processes in the job

maxRSwap (%d)

Maximum virtual memory usage in the unit specified by LSF_UNIT_FOR_LIMITS in l sf. conf of all processes in the job

inFileSpool (%s)

Spool input file (up to 4094 characters for UNIX or 512 characters for Windows)

commandSpool (%s)

Spool command file (up to 4094 characters for UNIX or 512 characters for Windows)

rsvld %s

Advance reservation ID for a user group name less than 120 characters long; for example, "user 2#0"

If the advance reservation user group name is longer than 120 characters, the rsvId field output appears last.

sla (%s)

SLA service class name under which the job runs

exceptMask (%d)

Job exception handling

Values:

- J_EXCEPT_OVERRUN 0x02
- J_EXCEPT_UNDERUN 0x04
- J_EXCEPT_I DLE 0x80

additionalInfo (%s)

Placement information of HPC jobs

exitInfo (%d)

Job termination reason, mapped to corresponding termination keyword displayed by bacct.

warningAction (%s)

Job warning action

warningTimePeriod (%d)

Job warning time period in seconds

chargedSAAP (%s)

SAAP charged to a job

licenseProject (%s)

License Scheduler project name

app (%s)

Application profile name

postExecCmd (%s)

Post-execution command to run on the execution host after the job finishes

runtimeEstimation (%d)

Estimated run time for the job, calculated as the CPU factor of the submission host multiplied by the runtime estimate (in seconds).

jobGroupName (%s)

Job group name

requeueEvalues (%s)

Requeue exit value

options2 (%d)

Bit flags for job processing

resizeNotifyCmd (%s)

Resize notification command to be invoked on the first execution host upon a resize request.

lastResizeTime (%d)

Last resize time. The latest wall clock time when a job allocation is changed.

rsvld %s

Advance reservation ID for a user group name more than 120 characters long.

If the advance reservation user group name is longer than 120 characters, the rsvId field output appears last.

jobDescription (%s)

Job description (up to 4094 characters).

submitEXT

Submission extension field, reserved for internal use.

Num (%d)

Number of elements (key-value pairs) in the structure.

key (%s)

Reserved for internal use.

value (%s)

Reserved for internal use.

numHostRusage(%d)

The number of host-based resource usage entries (hostRusage) that follow. 0 unless HPC_EXTENSIONS="HOST_RUSAGE" is set in lsf.conf.

hostRusage

The following fields contain host-based resource usage information for the job., and only appear for parallel jobs when HPC_EXTENSIONS="HOST_RUSAGE" is set in lsf.conf.

hostname (%s)

Name of the host.

mem(%d)

Total resident memory usage of all processes in the job running on this host.

swap(%d)

The total virtual memory usage of all processes in the job running on this host.

utime(%d)

User time used on this host.

stime(%d)

System time used on this host.

hHostExtendInfo(%d)

Number of following key-value pairs containing extended host information (PGIDs and PIDs). Set to 0 in lsb.events, lsb.acct, and lsb.stream files.

EVENT ADRSV FINISH

An advance reservation has expired. The fields in order of occurrence are:

Event type (%s)

Which is "EVENT ADRSV FINISH"

Version Number (%s)

Version number of the log file format

Event Logging Time (%d)

Time the event was logged (in seconds since the epoch); for example, "1038942015"

Reservation Creation Time (%d)

Time the advance reservation was created (in seconds since the epoch); for example, "1038938898"

Reservation Type (%d)

Type of advance reservation request:

- User reservation (RSV_OPTION_USER, defined as 0x001)
- User group reservation (RSV_OPTION_GROUP, defined as 0x002)
- System reservation (RSV_OPTION_SYSTEM, defined as 0x004)
- Recurring reservation (RSV_OPTION_RECUR, defined as 0x008)

For example, "9" is a recurring reservation created for a user.

Creator ID (%d)

UNIX user ID of the reservation creator; for example, "30408"

Reservation ID (rsvld %s)

For example, "user2#0"

User Name (%s)

User name of the reservation user; for example, "user2"

Time Window (%s)

Time window of the reservation:

- One-time reservation in seconds since the epoch; for example, "1033761000- 1033761600"
- Recurring reservation; for example, "17: 50- 18: 00"

Creator Name (%s)

User name of the reservation creator; for example, "user1"

Duration (%d)

Duration of the reservation, in hours, minutes, seconds; for example, "600" is 6 hours, 0 minutes, 0 seconds

Number of Resources (%d)

Number of reserved resource pairs in the resource list; for example "2" indicates 2 resource pairs ("hostA 1 hostB 1")

Host Name (%s)

Reservation host name; for example, "host A"

Number of CPUs (%d)

Number of reserved CPUs; for example "1"

JOB_RESIZE

When there is an allocation change, LSF logs the event after mbatchd receives "JOB_RESIZE_NOTIFY_DONE" event. From lastResizeTime and eventTime, people can easily calculate the duration of previous job allocation. The fields in order of occurrence are:

Version number (%s)

The version number.

Event Time (%d)

Time the event was logged (in seconds since the epoch).

jobld (%d)

ID for the job.

tdx (%d)

Job array index.

startTime (%d)

The start time of the running job.

userId (%d)

UNIX user ID of the user invoking the command

userName (%s)

User name of the submitter

resizeType (%d)

Resize event type, 0, grow, 1 shrink.

lastResizeTime(%d)

The wall clock time when job allocation is changed previously. The first lastResizeTime is the job start time.

numExecHosts (%d)

The number of execution hosts before allocation is changed. Support LSF_HPC_EXTENSIONS="SHORT_EVENTFILE".

execHosts (%s)

Execution host list before allocation is changed. Support LSF_HPC_EXTENSIONS="SHORT_EVENTFILE".

numResizeHosts (%d)

Number of processors used for execution during resize. If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in 1 sf. conf, the value of this field is the number of hosts listed in short format.

resizeHosts (%s)

List of execution host names during resize. If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in 1 sf. conf, the value of this field is logged in a shortened format.

Isb.applications

The 1 sb. appl i cat i ons file defines application profiles. Use application profiles to define common parameters for the same type of jobs, including the execution requirements of the applications, the resources they require, and how they should be run and managed.

This file is optional. Use the DEFAULT_APPLICATION parameter in 1 sb. params to specify a default application profile for all jobs. LSF does not automatically assign a default application profile.

This file is installed by default in LSB_CONFDIR/cluster_name/configdir.

Changing Isb.applications configuration

After making any changes to 1 sb. appl i cati ons, run badmin reconfig to reconfigure mbatchd. Configuration changes apply to pending jobs only. Running jobs are not affected.

Isb.applications structure

Each application profile definition begins with the line Begin Application and ends with the line End Application. The application name must be specified. All other parameters are optional.

Example

•				
Begin Application				
NAME	= catia			
DESCRI PTI ON	= CATIA V5			
CPULI MI T	= 24: 0/hostA	# 24 hours of host hostA		
FI LELI MI T	= 20000			
DATALI MI T	= 20000	# jobs data segment limit		
CORELI MI T	= 20000			
PROCLI MI T	= 5	# job processor limit		
REQUEUE_EXIT_VALUES = 55 34 78				
End Application				

See the l sb. appl i cat i ons template file for additional application profile examples.

ABS RUNLIMIT

Syntax

ABS_RUNLIMIT=y | Y

Description

If set, absolute (wall-clock) run time is used instead of normalized run time for all jobs submitted with the following values:

- Run time limit or run time estimate specified by the -W or -We option of bsub
- RUNLIMIT queue-level parameter in 1 sb. queues
- RUNLIMIT application-level parameter in 1 sb. appl i cat i ons
- RUNTIME parameter in l sb. appl i cati ons

The runtime estimates and limits are not normalized by the host CPU factor.

Default

Not defined. Run limit and runtime estimate are normalized.

BIND JOB

Syntax

BIND_JOB=NONE | BALANCE | PACK | ANY | USER | USER_CPU_LIST

Description

Specifies the processor binding policy for sequential and parallel job processes that run on a single host. On Linux execution hosts that support this feature, job processes are hard bound to selected processors.

If processor binding feature is not configured with the BIND_JOB parameter in an application profile in l sb. appl i cat i ons, the l sf. conf configuration setting takes effect. The application profile configuration for processor binding overrides the l sf. conf configuration.

For backwards compatibility:

- BIND_JOB=Y is interpreted as BIND_JOB=BALANCE
- BIND_JOB=N is interpreted as BIND_JOB=NONE

Supported platforms

Linux with kernel version 2.6 or higher

Default

Not defined. Processor binding is disabled.

CHKPNT DIR

Syntax

CHKPNT_DIR=chkpnt_dir

Description

Specifies the checkpoint directory for automatic checkpointing for the application. To enable automatic checkpoint for the application profile, administrators must specify a checkpoint directory in the configuration of the application profile.

If CHKPNT_PERIOD, CHKPNT_INITPERIOD or CHKPNT_METHOD was set in an application profile but CHKPNT_DIR was not set, a warning message is issued and those settings are ignored.

The checkpoint directory is the directory where the checkpoint files are created. Specify an absolute path or a path relative to the current working directory for the job. Do not use environment variables in the directory path.

If checkpoint-related configuration is specified in both the queue and an application profile, the application profile setting overrides queue level configuration.

If checkpoint-related configuration is specified in the queue, application profile, and at job level:

• Application-level and job-level parameters are merged. If the same parameter is defined at both job-level and in the application profile, the job-level value overrides the application profile value.

The merged result of job-level and application profile settings override queue-level configuration.

To enable checkpointing of MultiCluster jobs, define a checkpoint directory in an application profile (CHKPNT_DIR, CHKPNT_PERIOD, CHKPNT_INITPERIOD, CHKPNT_METHOD in l sb. appl i cat i ons) of both submission cluster and execution cluster. LSF uses the directory specified in the execution cluster.

Checkpointing is not supported if a job runs on a leased host.

The file path of the checkpoint directory can contain up to 4000 characters for UNIX and Linux, or up to 255 characters for Windows, including the directory and file name.

Default

Not defined

CHKPNT_INITPERIOD

Syntax

CHKPNT_INITPERIOD=init_chkpnt_period

Description

Specifies the initial checkpoint period in minutes. CHKPNT_DIR must be set in the application profile for this parameter to take effect. The periodic checkpoint specified by CHKPNT_PERIOD does not happen until the initial period has elapse.

Specify a positive integer.

Job-level command line values override the application profile configuration.

If administrators specify an initial checkpoint period and do not specify a checkpoint period (CHKPNT_PERIOD), the job will only checkpoint once.

If the initial checkpoint period if a job is specified, and you run bchkpnt to checkpoint the job at a time before the initial checkpoint period, the initial checkpoint period is not changed by bchkpnt. The first automatic checkpoint still happens after the specified number of minutes.

Default

Not defined

CHKPNT_PERIOD

Syntax

CHKPNT_PERIOD=chkpnt_period

Description

Specifies the checkpoint period for the application in minutes. CHKPNT_DIR must be set in the application profile for this parameter to take effect. The running job is checkpointed automatically every checkpoint period.

Specify a positive integer.

Job-level command line values override the application profile and queue level configurations. Application profile level configuration overrides the queue level configuration.

Default

Not defined

CHKPNT_METHOD

Syntax

CHKPNT_METHOD=chkpnt_method

Description

Specifies the checkpoint method. CHKPNT_DIR must be set in the application profile for this parameter to take effect. Job-level command line values override the application profile configuration.

Default

Not defined

CHUNK_JOB_SIZE

Syntax

CHUNK_JOB_SIZE=integer

Description

Chunk jobs only. Allows jobs submitted to the same application profile to be chunked together and specifies the maximum number of jobs allowed to be dispatched together in a chunk. Specify a positive integer greater than or equal to 1.

All of the jobs in the chunk are scheduled and dispatched as a unit, rather than individually.

Specify CHUNK_JOB_SIZE=1 to disable job chunking for the application. This value overrides chunk job dispatch configured in the queue.

Use the CHUNK_JOB_SIZE parameter to configure application profiles that chunk small, short-running jobs. The ideal candidates for job chunking are jobs that have the same host and resource requirements and typically take 1 to 2 minutes to run.

The ideal candidates for job chunking are jobs that have the same host and resource requirements and typically take 1 to 2 minutes to run.

Job chunking can have the following advantages:

- Reduces communication between sbatchd and mbatchd and reduces scheduling overhead in mbschd.
- Increases job throughput in mbat chd and CPU utilization on the execution hosts.

However, throughput can deteriorate if the chunk job size is too big. Performance may decrease on profiles with CHUNK_JOB_SIZE greater than 30. You should evaluate the chunk job size on your own systems for best performance.

With MultiCluster job forwarding model, this parameter does not affect MultiCluster jobs that are forwarded to a remote cluster.

Compatibility

This parameter is ignored and jobs are not chunked under the following conditions:

- CPU limit greater than 30 minutes (CPULIMIT parameter in 1 sb. queues or 1 sb. appl i cations)
- Run limit greater than 30 minutes (RUNLIMIT parameter in 1 sb. queues or 1 sb. appl i cations)
- Runtime estimate greater than 30 minutes (RUNTIME parameter in 1 sb. appl i cati ons)

If CHUNK_JOB_DURATION is set in 1 sb. params, chunk jobs are accepted regardless of the value of CPULIMIT, RUNLIMIT or RUNTIME.

Default

Not defined

CORELIMIT

Syntax

CORELIMIT=*integer*

Description

The per-process (soft) core file size limit for all of the processes belonging to a job from this application profile (see getrlimit(2)). Application-level limits override any default limit specified in the queue, but must be less than the hard limit of the submission queue. Job-level core limit (bsub - C) overrides queue-level and application-level limits.

By default, the limit is specified in KB. Use LSF_UNIT_FOR_LIMITS in 1 sf. conf to specify a larger unit for the limit (MB, GB, TB, PB, or EB).

Default

Unlimited

CPULIMIT

Syntax

CPULIMIT=[[hour:]minute[lhost_name | lhost_model]

Description

Normalized CPU time allowed for all processes of a job running in the application profile. The name of a host or host model specifies the CPU time normalization host to use.

Limits the total CPU time the job can use. This parameter is useful for preventing runaway jobs or jobs that use up too many resources.

When the total CPU time for the whole job has reached the limit, a SIGXCPU signal is sent to all processes belonging to the job. If the job has no signal handler for SIGXCPU, the job is killed immediately. If the SIGXCPU signal is handled, blocked, or ignored by the application, then after the grace period expires, LSF sends SIGINT, SIGTERM, and SIGKILL to the job to kill it.

If a job dynamically spawns processes, the CPU time used by these processes is accumulated over the life of the job.

Processes that exist for fewer than 30 seconds may be ignored.

By default, jobs submitted to the application profile without a job-level CPU limit (bsub - c) are killed when the CPU limit is reached. Application-level limits override any default limit specified in the queue.

The number of minutes may be greater than 59. For example, three and a half hours can be specified either as 3:30 or 210.

If no host or host model is given with the CPU time, LSF uses the default CPU time normalization host defined at the queue level (DEFAULT_HOST_SPEC in l sb. queues) if it has been configured, otherwise uses the default CPU time normalization host defined at the cluster level (DEFAULT_HOST_SPEC in l sb. params) if it has been configured, otherwise uses the host with the largest CPU factor (the fastest host in the cluster).

On Windows, a job that runs under a CPU time limit may exceed that limit by up to SBD_SLEEP_TIME. This is because sbatchd periodically checks if the limit has been exceeded.

On UNIX systems, the CPU limit can be enforced by the operating system at the process level.

You can define whether the CPU limit is a per-process limit enforced by the OS or a per-job limit enforced by LSF with LSB_JOB_CPULIMIT in 1 sf. conf.

Default

Unlimited

DATALIMIT

Syntax

DATALIMIT=integer

Description

The per-process (soft) data segment size limit (in KB) for all of the processes belonging to a job running in the application profile (see getrl i mit(2)).

By default, jobs submitted to the application profile without a job-level data limit (bsub -D) are killed when the data limit is reached. Application-level limits override any default limit specified in the queue, but must be less than the hard limit of the submission queue.

Default

Unlimited

DESCRIPTION

Syntax

DESCRIPTION=text

Description

Description of the application profile. The description is displayed by bapp -1.

The description should clearly describe the service features of the application profile to help users select the proper profile for each job.

The text can include any characters, including white space. The text can be extended to multiple lines by ending the preceding line with a backslash (\). The maximum length for the text is 512 characters.

DJOB_COMMFAIL_ACTION

Syntax

DJOB_COMMFAIL_ACTION="KILL_TASKS"

Description

Defines the action LSF should take if it detects a communication failure with one or more remote parallel or distributed tasks. If defined, LSF tries to kill all the current tasks of a parallel or distributed job associated with the communication failure. If not defined, LSF terminates all tasks and shuts down the entire job.

This parameter only applies to the bl aunch distributed application framework.

When defined in an application profile, the LSB_DJOB_COMMFAIL_ACTION variable is set when running bsub - app for the specified application.

Default

Not defined. Terminate all tasks, and shut down the entire job.

DJOB DISABLED

Syntax

DJOB_DISABLED=Y | N

Description

Disables the bl aunch distributed application framework.

Default

Not defined. Distributed application framework is enabled.

DJOB_ENV_SCRIPT

Syntax

DJOB_ENV_SCRIPT=script_name

Description

Defines the name of a user-defined script for setting and cleaning up the parallel or distributed job environment.

The specified script must support a set up argument and a cleanup argument. The script is executed by LSF with the set up argument before launching a parallel or distributed job, and with argument cl eanup after the job is finished.

The script runs as the user, and is part of the job.

If a full path is specified, LSF uses the path name for the execution. Otherwise, LSF looks for the executable from LSF_BINDIR .

This parameter only applies to the bl aunch distributed application framework.

When defined in an application profile, the LSB_DJOB_ENV_SCRIPT variable is set when running bsub - app for the specified application.

The command path can contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows, including the directory, file name, and expanded values for %J (*job_ID*) and %I (*index_ID*).

Default

Not defined.

DJOB_HB_INTERVAL

Syntax

DJOB HB INTERVAL=seconds

Description

Value in seconds used to calculate the heartbeat interval between the task RES and job RES of a parallel or distributed job.

This parameter only applies to the bl aunch distributed application framework.

When DJOB_HB_INTERVAL is specified, the interval is scaled according to the number of tasks in the job:

max(DJOB_HB_INTERVAL, 10) + host_factor

where

host_factor = 0.01 * number of hosts allocated for the job

Default

Not defined. Interval is equal to SBD_SLEEP_TIME in 1 sb. params, where the default value of SBD_SLEEP_TIME is 30 seconds.

DJOB_RESIZE_GRACE_PERIOD

Syntax

DJOB_RESIZE_GRACE_PERIOD = seconds

Description

When a resizable job releases resources, the LSF distributed parallel job framework terminates running tasks if a host has been completely removed. A DJOB_RESIZE_GRACE_PERIOD defines a grace period in seconds for the application to clean up tasks itself before LSF forcibly terminates them.

Default

No grace period.

DJOB RU_INTERVAL

Syntax

DJOB_RU_INTERVAL=seconds

Description

Value in seconds used to calculate the resource usage update interval for the tasks of a parallel or distributed job.

This parameter only applies to the bl aunch distributed application framework.

When DJOB_RU_INTERVAL is specified, the interval is scaled according to the number of tasks in the job:

max(DJOB_RU_INTERVAL, 10) + host_factor

where

host_factor = 0.01 * number of hosts allocated for the job

Default

Not defined. Interval is equal to SBD_SLEEP_TIME in 1 sb. params, where the default value of SBD_SLEEP_TIME is 30 seconds.

JOB_INCLUDE_POSTPROC

Syntax

 $\textbf{JOB_INCLUDE_POSTPROC} = Y \mid N$

Description

Specifies whether LSF includes the post-execution processing of the job as part of the job. When set to Y:

- Prevents a new job from starting on a host until post-execution processing is finished on that host
- Includes the CPU and run times of post-execution processing with the job CPU and run times
- sbatchd sends both job finish status (DONE or EXIT) and post-execution processing status (POST_DONE or POST_ERR) to mbatchd at the same time

The variable LSB_JOB_INCLUDE_POSTPROC in the user environment overrides the value of JOB_INCLUDE_POSTPROC in an application profile in l sb. appl i cati ons. JOB_INCLUDE_POSTPROC in an application profile in l sb. appl i cati ons overrides the value of JOB_INCLUDE_POSTPROC in l sb. params.

Default

N. Post-execution processing is not included as part of the job, and a new job can start on the execution host before post-execution processing finishes.

JOB_POSTPROC_TIMEOUT

Syntax

JOB_POSTPROC_TIMEOUT=minutes

Description

Specifies a timeout in minutes for job post-execution processing. The specified timeout must be greater than zero

If post-execution processing takes longer than the timeout, sbatchd reports that post-execution has failed (POST_ERR status). On UNIX and Linux, it kills the entire process group of the job's pre-execution

processes. On Windows, only the parent process of the pre-execution command is killed when the timeout expires, the child processes of the pre-execution command are not killed.

If JOB_INCLUDE_POSTPROC=Y, and sbat chd kills the post-execution processes because the timeout has been reached, the CPU time of the post-execution processing is set to 0, and the job's CPU time does not include the CPU time of post-execution processing.

JOB_POSTPROC_TIMEOUT defined in an application profile in 1 sb. appl i cat i ons overrides the value in 1 sb. params. JOB_POSTPROC_TIMEOUT cannot be defined in user environment.

Default

Not defined. Post-execution processing does not time out.

FILELIMIT

Syntax

FILELIMIT=integer

Description

The per-process (soft) file size limit (in KB) for all of the processes belonging to a job running in the application profile (see getrlimit(2)). Application-level limits override any default limit specified in the queue, but must be less than the hard limit of the submission queue.

Default

Unlimited

JOB_STARTER

Syntax

JOB_STARTER=starter [starter] ["%USRCMD"] [starter]

Description

Creates a specific environment for submitted jobs prior to execution. An application-level job starter overrides a queue-level job starter.

starter is any executable that can be used to start the job (i.e., can accept the job as an input argument). Optionally, additional strings can be specified.

By default, the user commands run after the job starter. A special string, %USRCMD, can be used to represent the position of the user's job in the job starter command line. The %USRCMD string and any additional commands must be enclosed in quotation marks (" ").

Example

JOB_STARTER=csh -c "%USRCMD; sleep 10"

In this case, if a user submits a job

bsub myjob arguments

the command that actually runs is:

csh -c "myjob arguments; sleep 10"

Default

Not defined. No job starter is used,

LOCAL_MAX_PREEXEC_RETRY

Syntax

LOCAL_MAX_PREEXEC_RETRY=integer

Description

The maximum number of times to attempt the pre-execution command of a job on the local cluster.

Valid values

0 < MAX_PREEXEC_RETRY < INFINIT_INT INFINIT_INT is defined in 1 sf. h.

Default

Not defined. The number of preexec retry times is unlimited

MAX_JOB_PREEMPT

Syntax

MAX_JOB_PREEMPT=integer

Description

The maximum number of times a job can be preempted. Applies to queue-based preemption only.

Valid values

 $0 < MAX_JOB_PREEMPT < INFINIT_INT \\ INFINIT_INT is defined in 1 sf. \ h.$

Default

Not defined. The number of preemption times is unlimited.

MAX_JOB_REQUEUE

Syntax

MAX_JOB_REQUEUE=integer

Description

The maximum number of times to requeue a job automatically.

Valid values

 $0 < MAX_JOB_REQUEUE < INFINIT_INT$

INFINIT_INT is defined in 1 sf. h.

Default

Not defined. The number of requeue times is unlimited

MAX_PREEXEC_RETRY

Syntax

MAX_PREEXEC_RETRY=integer

Description

Use REMOTE_MAX_PREEXEC_RETRY instead. This parameter is only maintained for backwards compatibility.

MultiCluster job forwarding model only. The maximum number of times to attempt the pre-execution command of a job from a remote cluster.

If the job's pre-execution command fails all attempts, the job is returned to the submission cluster.

Valid values

0 < MAX_PREEXEC_RETRY < INFINIT_INT INFINIT_INT is defined in 1 sf. h.

Default

5

MAX_TOTAL_TIME_PREEMPT

Syntax

MAX_TOTAL_TIME_PREEMPT=integer

Description

The accumulated preemption time in minutes after which a job cannot be preempted again, where *minutes* is wall-clock time, not normalized time.

Setting this parameter in l sb. appl i cat i ons overrides the parameter of the same name in l sb. queues and in l sb. params.

Valid values

Any positive integer greater than or equal to one (1)

Default

Unlimited

MEMLIMIT

Syntax

MEMLIMIT=integer

Description

The per-process (soft) process resident set size limit for all of the processes belonging to a job running in the application profile.

Sets the maximum amount of physical memory (resident set size, RSS) that may be allocated to a process.

By default, the limit is specified in KB. Use LSF_UNIT_FOR_LIMITS in 1 sf. conf to specify a larger unit for the limit (MB, GB, TB, PB, or EB).

By default, jobs submitted to the application profile without a job-level memory limit are killed when the memory limit is reached. Application-level limits override any default limit specified in the queue, but must be less than the hard limit of the submission queue.

LSF has two methods of enforcing memory usage:

- OS Memory Limit Enforcement
- LSF Memory Limit Enforcement

OS memory limit enforcement

OS memory limit enforcement is the default MEMLIMIT behavior and does not require further configuration. OS enforcement usually allows the process to eventually run to completion. LSF passes MEMLIMIT to the OS, which uses it as a guide for the system scheduler and memory allocator. The system may allocate more memory to a process if there is a surplus. When memory is low, the system takes memory from and lowers the scheduling priority (re-nice) of a process that has exceeded its declared MEMLIMIT. Only available on systems that support RLI MIT_RSS for setrl i mit().

Not supported on:

- Sun Solaris 2.x
- Windows

LSF memory limit enforcement

To enable LSF memory limit enforcement, set LSB_MEMLIMIT_ENFORCE in 1 $\,\mathrm{sf.}$ conf to y. LSF memory limit enforcement explicitly sends a signal to kill a running process once it has allocated memory past MEMLIMIT.

You can also enable LSF memory limit enforcement by setting LSB_JOB_MEMLIMIT in 1 sf. conf to y. The difference between LSB_JOB_MEMLIMIT set to y and LSB_MEMLIMIT_ENFORCE set to y is that with LSB_JOB_MEMLIMIT, only the per-job memory limit enforced by LSF is enabled. The per-process memory limit enforced by the OS is disabled. With LSB_MEMLIMIT_ENFORCE set to y, both the per-job memory limit enforced by LSF and the per-process memory limit enforced by the OS are enabled.

Available for all systems on which LSF collects total memory usage.

Default

Unlimited

MEMLIMIT_TYPE

Syntax

MEMLIMIT_TYPE=JOB [PROCESS] [TASK]
MEMLIMIT_TYPE=PROCESS [JOB] [TASK]
MEMLIMIT_TYPE=TASK [PROCESS] [JOB]

Description

A memory limit is the maximum amount of memory a job is allowed to consume. Jobs that exceed the level are killed. You can specify different types of memory limits to enforce. Use any combination of JOB, PROCESS, and TASK.

By specifying a value in the application profile, you overwrite these three parameters: LSB_JOB_MEMLIMIT, LSB_MEMLIMIT_ENFORCE, LSF_HPC_EXTENSIONS (TASK_MEMLIMIT).

Note:

A task list is a list in LSF that keeps track of the default resource requirements for different applications and task eligibility for remote execution.

- PROCESS: Applies a memory limit by OS process, which is enforced by the OS on the slave machine (where the job is running). When the memory allocated to one process of the job exceeds the memory limit, LSF kills the job.
- TASK: Applies a memory limit based on the task list file. It is enforced by LSF. LSF terminates the entire parallel job if any single task exceeds the limit setting for memory and swap limits.
- JOB: Applies a memory limit identified in a job and enforced by LSF. When the sum of the memory allocated to all processes of the job exceeds the memory limit, LSF kills the job.
- PROCESS TASK: Enables both process-level memory limit enforced by OS and task-level memory limit enforced by LSF.
- PROCESS JOB: Enables both process-level memory limit enforced by OS and job-level memory limit enforced by LSF.
- TASK JOB: Enables both task-level memory limit enforced by LSF and job-level memory limit enforced by LSF.
- PROCESS TASK JOB: Enables process-level memory limit enforced by OS, task-level memory limit enforced by LSF, and job-level memory limit enforced by LSF.

Default

Not defined. The memory limit-level is still controlled by LSF_HPC_EXTENSIONS=TASK_MEMLIMIT, LSB_JOB_MEMLIMIT, LSB_MEMLIMIT_ENFORCE

MIG

Syntax

MIG=minutes

Description

Enables automatic job migration and specifies the migration threshold for checkpointable or rerunnable jobs, in minutes.

LSF automatically migrates jobs that have been in the SSUSP state for more than the specified number of minutes. A value of 0 specifies that a suspended job is migrated immediately. The migration threshold applies to all jobs running on the host.

Job-level command line migration threshold overrides threshold configuration in application profile and queue. Application profile configuration overrides queue level configuration.

When a host migration threshold is specified, and is lower than the value for the job, the queue, or the application, the host value is used.

Members of a chunk job can be migrated. Chunk jobs in WAIT state are removed from the job chunk and put into PEND state.

Does not affect MultiCluster jobs that are forwarded to a remote cluster.

Default

Not defined. LSF does not migrate checkpointable or rerunnable jobs automatically.

NAME

Syntax

NAME=string

Description

Required. Unique name for the application profile.

Specify any ASCII string up to 60 characters long. You can use letters, digits, underscores (_), dashes (-), periods (.) or spaces in the name. The application profile name must be unique within the cluster.

Note:

If you want to specify the ApplicationVersion in a JSDL file, include the version when you define the application profile name. Separate the name and version by a space, as shown in the following example:

NAME=myapp 1.0

Default

You must specify this parameter to define an application profile. LSF does not automatically assign a default application profile name.

NICE

Syntax

NICE=*integer*

Description

Adjusts the UNIX scheduling priority at which jobs from the application execute.

A value of 0 (zero) maintains the default scheduling priority for UNIX interactive jobs. This value adjusts the run-time priorities for batch jobs to control their effect on other batch or interactive jobs. See the ni ce(1) manual page for more details.

On Windows, this value is mapped to Windows process priority classes as follows:

- ni ce>=0 corresponds to a priority class of I DLE
- ni ce<0 corresponds to a priority class of NORMAL

LSF on Windows does not support HI GH or REAL- TI ME priority classes.

When set, this value overrides NICE set at the queue level in 1 sb. queues.

Default

Not defined.

NO_PREEMPT_INTERVAL

Syntax

NO_PREEMPT_INTERVAL=minutes

Description

Prevents preemption of jobs for the specified number of minutes of uninterrupted run time, where *minutes* is wall-clock time, not normalized time. **NO_PREEMPT_INTERVAL=0** allows immediate preemption of jobs as soon as they start or resume running.

Setting this parameter in l sb. appl i cat i ons overrides the parameter of the same name in l sb. queues and in l sb. params.

Default

0

NO_PREEMPT_FINISH_TIME

Syntax

NO_PREEMPT_FINISH_TIME=minutes | percentage

Description

Prevents preemption of jobs that will finish within the specified number of minutes or the specified percentage of the estimated run time or run limit.

Specifies that jobs due to finish within the specified number of minutes or percentage of job duration should not be preempted, where *minutes* is wall-clock time, not normalized time. Percentage must be greater than 0 or less than 100% (between 1% and 99%).

For example, if the job run limit is 60 minutes and NO_PREEMPT_FINISH_TIME=10%, the job cannot be preempted after it runs 54 minutes or longer.

If you specify percentage for NO_PREEMPT_FINISH_TIME, requires a run time (bsub - We or RUNTIME in l sb. appl i cati ons), or run limit to be specified for the job (bsub - W, or RUNLIMIT in l sb. queues, or RUNLIMIT in l sb. appl i cati ons)

NO_PREEMPT_RUN_TIME

Syntax

NO_PREEMPT_RUN_TIME=minutes | percentage

Description

Prevents preemption of jobs that have been running for the specified number of minutes or the specified percentage of the estimated run time or run limit.

Specifies that jobs that have been running for the specified number of minutes or longer should not be preempted, where *minutes* is wall-clock time, not normalized time. Percentage must be greater than 0 or less than 100% (between 1% and 99%).

For example, if the job run limit is 60 minutes and NO_PREEMPT_RUN_TIME=50%, the job cannot be preempted after it running 30 minutes or longer.

If you specify percentage for NO_PREEMPT_RUN_TIME, requires a run time (bsub - We or RUNTIME in l sb. appl i cations), or run limit to be specified for the job (bsub - W, or RUNLIMIT in l sb. queues, or RUNLIMIT in l sb. appl i cations)

PERSISTENT_HOST_ORDER

Syntax

PERSISTENT_HOST_ORDER=Y | yes | N | no

Description

Applies when migrating parallel jobs in a multicluster environment. Setting PERSISTENT_HOST_ORDER=Y ensures that jobs are restarted on hosts based on alphabetical names of the hosts, preventing them from being restarted on the same hosts that they ran on before migration.

Default

PERSISTENT_HOST_ORDER=N. Migrated jobs in a multicluster environment could run on the same hosts that they ran on before.

POST_EXEC

Syntax

POST_EXEC=command

Description

Enables post-execution processing at the application level. The POST_EXEC command runs on the execution host after the job finishes. Post-execution commands can be configured at the job, application, and queue levels.

If both application-level (POST_EXEC in 1 sb. appl i cat i ons) and job-level post-execution commands are specified, job level post-execution overrides application-level post-execution commands. Queue-level post-execution commands (POST_EXEC in 1 sb. queues) run after application-level post-execution and job-level post-execution commands.

The POST_EXEC command uses the same environment variable values as the job, and runs under the user account of the user who submits the job.

When a job exits with one of the application profile's REQUEUE_EXIT_VALUES, LSF requeues the job and sets the environment variable LSB_JOBPEND. The post-execution command runs after the requeued job finishes.

When the post-execution command is run, the environment variable LSB_JOBEXIT_STAT is set to the exit status of the job. If the execution environment for the job cannot be set up, LSB_JOBEXIT_STAT is set to 0 (zero).

The command path can contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows, including the directory, file name, and expanded values for %J (job_ID) and %I (index_ID).

For UNIX:

• The pre- and post-execution commands run in the /tmp directory under /bi n/sh -c, which allows the use of shell features in the commands. The following example shows valid configuration lines:

```
PRE_EXEC= /usr/share/lsf/misc/testq_pre >> /tmp/pre.out
```

POST_EXEC= /usr/share/lsf/misc/testq_post | grep -v "Hey!"

LSF sets the PATH environment variable to

PATH='/bin/usr/bin/sbin/usr/sbin'

- The stdi n, stdout, and stderr are set to /dev/null
- To allow UNIX users to define their own post-execution commands, an LSF administrator specifies
 the environment variable \$USER_POSTEXEC as the POST_EXEC command. A user then defines the
 post-execution command:

setenv USER_POSTEXEC / path_name

Note:

The path name for the post-execution command must be an absolute path.

For Windows:

- The pre- and post-execution commands run under cmd. exe /c
- The standard input, standard output, and standard error are set to NULL
- The PATH is determined by the setup of the LSF Service

Note:

For post-execution commands that execute on a Windows Server 2003, x64 Edition platform, users must have read and execute privileges for cmd. exe.

Default

Not defined. No post-execution commands are associated with the application profile.

PRE_EXEC

Syntax

PRE EXEC=command

Description

Enables pre-execution processing at the application level. The PRE_EXEC command runs on the execution host before the job starts. If the PRE_EXEC command exits with a non-zero exit code, LSF requeues the job to the front of the queue.

Pre-execution commands can be configured at the application, queue, and job levels and run in the following order:

- 1. The queue-level command
- 2. The application-level or job-level command. If you specify a command at both the application and job levels, the job-level command overrides the application-level command; the application-level command is ignored.

The PRE_EXEC command uses the same environment variable values as the job, and runs under the user account of the user who submits the job.

The command path can contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows, including the directory, file name, and expanded values for %J (*job_ID*) and %I (*index_ID*).

For UNIX:

• The pre- and post-execution commands run in the /tmp directory under /bi n/sh - c, which allows the use of shell features in the commands. The following example shows valid configuration lines:

```
PRE_EXEC= /usr/share/lsf/misc/testq_pre >> /tmp/pre.out
```

POST_EXEC= /usr/share/lsf/misc/testq_post | grep -v "Hey!"

- LSF sets the PATH environment variable to
 - PATH=' /bi n /usr/bi n /sbi n /usr/sbi n'
- The stdi n, stdout, and stderr are set to /dev/nul l

For Windows:

- The pre- and post-execution commands run under cmd. exe /c
- The standard input, standard output, and standard error are set to NULL
- The PATH is determined by the setup of the LSF Service

Note:

For pre-execution commands that execute on a Windows Server 2003, x64 Edition platform, users must have read and execute privileges for cmd. exe.

Default

Not defined. No pre-execution commands are associated with the application profile.

PROCESSLIMIT

Syntax

PROCESSLIMIT=integer

Description

Limits the number of concurrent processes that can be part of a job.

By default. jobs submitted to the application profile without a job-level process limit are killed when the process limit is reached. Application-level limits override any default limit specified in the queue.

SIGINT, SIGTERM, and SIGKILL are sent to the job in sequence when the limit is reached.

Default

Unlimited

PROCLIMIT

Syntax

PROCLIMIT=[minimum_limit] [default_limit]] maximum_limit

Description

Maximum number of slots that can be allocated to a job. For parallel jobs, the maximum number of processors that can be allocated to the job.

Optionally specifies the minimum and default number of job slots. All limits must be positive integers greater than or equal to 1 that satisfy the following relationship:

1 <= minimum <= default <= maximum

You can specify up to three limits in the PROCLIMIT parameter:

- One limit—Is the maximum processor limit. The minimum and default limits are set to 1.
- Two limits—The first is the minimum processor limit, and the second one is the maximum. The default is set equal to the minimum. The minimum must be less than or equal to the maximum.
- Three limits—The first is the minimum processor limit, the second is the default processor limit, and the third is the maximum. The minimum must be less than the default and the maximum.

Jobs that request fewer slots than the minimum PROCLIMIT or more slots than the maximum PROCLIMIT cannot use the application profile and are rejected. If the job requests minimum and maximum job slots, the maximum slots requested cannot be less than the minimum PROCLIMIT, and the minimum slots requested cannot be more than the maximum PROCLIMIT.

Default

Unlimited, the default number of slots is 1

REMOTE_MAX_PREEXEC_RETRY

Syntax

REMOTE_MAX_PREEXEC_RETRY=integer

Description

MultiCluster job forwarding model only. The maximum number of times to attempt the pre-execution command of a job from a remote cluster.

If the job's pre-execution command fails all attempts, the job is returned to the submission cluster.

Valid values

up to INFINIT_INT defined in 1 sf. h.

Default

5

REQUEUE_EXIT_VALUES

Syntax

REQUEUE_EXIT_VALUES=[exit_code ...] [EXCLUDE(exit_code ...)]

Description

Enables automatic job requeue and sets the LSB_EXIT_REQUEUE environment variable. Use spaces to separate multiple exit code values. Application-level exit values override queue-level values. Job-level exit values (bsub - Q) override application-level and queue-level values.

exit_code has the following form:

```
"[all] [~number ...] | [number ...]"
```

The reserved keyword al 1 specifies all exit codes. Exit codes are typically between 0 and 255. Use a tilde (~) to exclude specified exit codes from the list.

Jobs running the same applications generally shared the same exit values under the same conditions. Setting REQUEUE_EXIT_VALUES in an application profile instead of in the queue allows different applications with different exit values to share the same queue.

Jobs are requeued to the head of the queue. The output from the failed run is not saved, and the user is not notified by LSF.

Define an exit code as EXCLUDE(*exit_code*) to enable exclusive job requeue. Exclusive job requeue does not work for parallel jobs.

If mbat chd is restarted, it does not remember the previous hosts from which the job exited with an exclusive requeue exit code. In this situation, it is possible for a job to be dispatched to hosts on which the job has previously exited with an exclusive exit code.

Example

REQUEUE_EXIT_VALUES=30 EXCLUDE(20)

means that jobs with exit code 30 are requeued, jobs with exit code 20 are requeued exclusively, and jobs with any other exit code are not requeued.

Default

Not defined, Jobs in the application profile are not requeued.

RERUNNABLE

Syntax

RERUNNABLE=yes | no

Description

If yes, enables automatic job rerun (restart) for any job associated with the application profile.

Rerun is disabled when RERUNNABLE is set to no. The yes and no arguments are not case-sensitive.

Members of a chunk job can be rerunnable. If the execution host becomes unavailable, rerunnable chunk job members are removed from the job chunk and dispatched to a different execution host.

Job level rerun (bsub -r) overrides the RERUNNABLE value specified in the application profile, which overrides the queue specification. bmod -rn to make rerunnable jobs non-rerunnable overrides both the application profile and the queue.

Default

Not defined.

RES_REQ

Syntax

RES_REQ=res_req

Description

Resource requirements used to determine eligible hosts. Specify a resource requirement string as usual. The resource requirement string lets you specify conditions in a more flexible manner than using the load thresholds.

Resource requirement strings can be simple (applying to the entire job) or compound (applying to the specified number of slots). When a compound resource requirement is set at the application-level, it will be ignored if any job-level resource requirements (simple or compound) are defined.

In the event no job-level resource requirements are set, the compound application-level requirements interact with queue resource requirement strings in the following ways:

In the event no job-level resource requirements are set, the compound application-level requirements interact with queue-level resource requirement strings in the following ways:

- If no queue-level resource requirement is defined or a compound queue-level resource requirement is defined, the compound application-level requirement is used.
- If a simple queue-level requirement is defined, the application-level and queue-level requirements combine as follows:

section	compound application and simple queue behavior	
sel ect both levels satisfied; queue requirement applies to all compound terms		
same	queue level ignored	
order	application-level section overwrites queue-level section (if a given level is present); queue requirement (if used) applies to all compound terms	
span	requirement (ii useu) applies to all compound terms	

section	compound application and simple queue behavior
rusage	 both levels merge queue requirement if a job-based resource is applied to the first compound term, otherwise applies to all compound terms if conflicts occur the application-level section overwrites the queue-level section. For example: if the application-level requirement is num1*{rusage[R1]} + num2*{rusage[R2]} and the queue-level requirement is rusage[RQ] where RQ is a job resource, the merged requirement is num1*{rusage[merge(R1, RQ)]} + num2*{rusage[R2]}

The following resource requirement sections are supported:

- sel ect
- rusage
- order
- span
- same
- cu

Compound resource requirements do not support the $\,\mathrm{cu}$ section, multiple -R options, or the || operator within the $\,\mathrm{rusage}$ section.

Multiple -R strings cannot be used with multi-phase rusage resource requirements.

For internal load indices and duration, jobs are rejected if they specify resource reservation requirements at the job or application level that exceed the requirements specified in the queue.

If RES_REQ is defined at the queue level and there are no load thresholds defined, the pending reasons for each individual load index are not be displayed by bj obs.

By default, memory (mem) and swap (swp) limits in select[] and rusage[] sections are specified in MB. Use LSF_UNIT_FOR_LIMITS in l sf. conf to specify a larger unit for the these limits (GB, TB, PB, or EB).

When LSF_STRICT_RESREQ=Y is configured in 1 sf. conf, resource requirement strings in select sections must conform to a more strict syntax. The strict resource requirement syntax only applies to the sel ect section. It does not apply to the other resource requirement sections (order, rusage, same, span, or cu). When LSF_STRICT_RESREQ=Y in 1 sf. conf, LSF rejects resource requirement strings where an rusage section contains a non-consumable resource.

select section

For simple resource requirements, the sel ect section defined at the application, queue, and job level must all be satisfied.

rusage section

The rusage section can specify additional requests. To do this, use the OR(||) operator to separate additional rusage strings. The job-level rusage section takes precedence.

Note:

Compound resource requirements do not support use of the $|\ |$ operator within the component rusage simple resource requirements. Multiple

 ${\it rusage}$ strings cannot be used with multi-phase ${\it rusage}$ resource requirements.

When both job-level and application-level rusage sections are defined using simple resource requirement strings, the rusage section defined for the job overrides the rusage section defined in the application profile. The rusage definitions are merged, with the job-level rusage taking precedence. Any queue-level requirements are then merged with that result.

For example:

Application-level RES_REQ:

```
RES_REQ=rusage[mem=200] ...
```

For the job submission:

bsub -R'rusage[mem=100]' ...

the resulting requirement for the job is

rusage[mem=100]

where mem=100 specified by the job overrides mem=200 specified by the application profile.

Application-level RES_REQ with decay and duration defined:

```
RES_REQ=rusage[mem=200: duration=20: decay=1] ...
```

For a job submission with no decay or duration:

bsub - R' rusage[mem=100]' ...

the resulting requirement for the job is:

rusage[mem=100: duration=20: decay=1]

Application-level duration and decay are merged with the job-level specification, and mem=100 for the job overrides mem=200 specified by the application profile. However, duration=20 and decay=1 from application profile are kept, since job does not specify them.

Application-level RES_REQ with multi-phase job-level rusage:

```
RES_REQ=rusage[mem=(200 150):duration=(10 10):decay=(1),swap=100] ...
```

For a multi-phase job submission:

bsub -app app_name -R'rusage[mem=(600 350):duration=(20 10):decay=(0 1)]'...

the resulting requirement for the job is:

rusage[mem=(600 350):duration=(20 10):decay=(0 1),swap=100]

The job-level values for mem, duration and decay override the application-level values. However, swap=100 from the application profile is kept, since the job does not specify swap.

Application-level RES_REQ with multi-phase application-level rusage:

```
RES_REQ=rusage[mem=(200 150):duration=(10 10):decay=(1)] ...
```

For a job submission:

bsub -app app_name -R'rusage[mem=200:duration=15:decay=0]' ...

the resulting requirement for the job is:

rusage[mem=200: duration=15: decay=0]

Job-level values override the application-level multi-phase rusage string.

Note:

The merged application-level and job-level rusage consumable resource requirements must satisfy any limits set by the parameter RESRSV_LIMIT in 1 sb. queues, or the job will be rejected.

order section

For simple resource requirements the order section defined at the job-level overrides any application-level order section. An application-level order section overrides queue-level specification. The order section defined at the application level is ignored if any resource requirements are specified at the job level. If the no resource requirements include an order section, the default order r15s: pg is used.

span section

For simple resource requirements the span section defined at the job-level overrides an application-level span section, which overrides a queue-level span section.

Note:

Define span[hosts=-1] in the application profile or in bsub -R resource requirement string to disable the span section setting in the queue.

same section

For simple resource requirements all same sections defined at the job-level, application-level, and queue-level are combined before the job is dispatched.

cu section

For simple resource requirements the job-level cu section overwrites the application-level, and the application-level cu section overwrites the queue-level.

Default

select[type==local] order[r15s:pg]

If this parameter is defined and a host model or Boolean resource is specified, the default type is any.

RESIZABLE_JOBS

Syntax

RESIZABLE_JOBS = [Y|N|auto]

Description

 $N \mid n$: The resizable job feature is disabled in the application profile. Under this setting, all jobs attached to this application profile are not resizable. All bresi ze and bsub - ar commands will be rejected with a proper error message.

Y | y: Resize is enabled in the application profile and all jobs belonging to the application are resizable by default. Under this setting, users can run bresize commands to cancel pending resource allocation requests for the job or release resources from an existing job allocation, or use bsub to submit an autoresizable job.

aut o: All jobs belonging to the application will be autoresizable.

Resizable jobs must be submitted with an application profile that defines RESIZABLE_JOBS as either auto or Y. If application defines RESIZABLE_JOBS=auto, but administrator changes it to N and reconfigures LSF, jobs without job-level auto resizable attribute become not autoresizable. For running jobs that are in the middle of notification stage, LSF lets current notification complete and stops scheduling. Changing RESIZABLE_JOBS configuration does not affect jobs with job-level autoresizable attribute. (This behavior is same as exclusive job, bsub -x and EXCLUSIVE parameter in queue level.)

Auto-resizable jobs cannot be submitted with compute unit resource requirements. In the event a bswitch call or queue reconfiguration results in an auto-resizable job running in a queue with compute unit resource requirements, the job will no longer be auto-resizable.

Resizable jobs cannot have compound resource requirements.

Default

If the parameter is undefined, the default value is N.

RESIZE_NOTIFY_CMD

Syntax

RESIZE_NOTIFY_CMD = notification_command

Description

Defines an executable command to be invoked on the first execution host of a job when a resize event occurs. The maximum length of notification command is 4 KB.

Default

Not defined. No resize notification command is invoked.

RESUME_CONTROL

Syntax

RESUME_CONTROL=signal | command

Remember:

Unlike the JOB_CONTROLS parameter in 1 sb. queues, the RESUME_CONTROL parameter does not require square brackets ([]) around the action.

- *signal* is a UNIX signal name. The specified signal is sent to the job. The same set of signals is not supported on all UNIX systems. To display a list of the symbolic names of the signals (without the SIG prefix) supported on your system, use the kill -1 command.
- command specifies a /bi n/sh command line to be invoked. Do not quote the command line inside
 an action definition. Do not specify a signal followed by an action that triggers the same signal. For
 example, do not specify RESUME_CONTROL=bresume. This causes a deadlock between the signal and
 the action.

Description

Changes the behavior of the RESUME action in LSF.

- The contents of the configuration line for the action are run with /bi n/sh -c so you can use shell features in the command.
- The standard input, output, and error of the command are redirected to the NULL device, so you
 cannot tell directly whether the command runs correctly. The default null device on UNIX is /dev/
 null.
- The command is run as the user of the job.
- All environment variables set for the job are also set for the command action. The following additional environment variables are set:
 - LSB_JOBPGIDS a list of current process group IDs of the job
 - LSB_JOBPIDS —a list of current process IDs of the job

The command path can contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows, including the directory, file name, and expanded values for %J (*job_ID*) and %I (*index_ID*).

Default

- On UNIX, by default, RESUME sends SIGCONT.
- On Windows, actions equivalent to the UNIX signals have been implemented to do the default job
 control actions. Job control messages replace the SIGINT and SIGTERM signals, but only customized
 applications are able to process them.

RTASK_GONE_ACTION

Syntax

RTASK_GONE_ACTION="[KILLJOB_TASKDONE | KILLJOB_TASKEXIT] [IGNORE_TASKCRASH]"

Description

Defines the actions LSF should take if it detects that a remote task of a parallel or distributed job is gone.

This parameter only applies to the bl aunch distributed application framework.

IGNORE_TASKCRASH

A remote task crashes. LSF does nothing. The job continues to launch the next task.

KILLJOB_TASKDONE

A remote task exits with zero value. LSF terminates all tasks in the job.

KILLJOB TASKEXIT

A remote task exits with non-zero value. LSF terminates all tasks in the job.

Environment variable

When defined in an application profile, the LSB_DJOB_RTASK_GONE_ACTION variable is set when running bsub - app for the specified application.

You can also use the environment variable LSB_DJOB_RTASK_GONE_ACTION to override the value set in the application profile.

Example

RTASK_GONE_ACTI ON="I GNORE_TASKCRASH KI LLJOB_TASKEXI T"

Default

Not defined. LSF does nothing.

RUNLIMIT

Syntax

RUNLIMIT=[hour:]minute[host_name | host_model]

Description

The default run limit. The name of a host or host model specifies the runtime normalization host to use.

By default, jobs that are in the RUN state for longer than the specified run limit are killed by LSF. You can optionally provide your own termination job action to override this default.

Jobs submitted with a job-level run limit (bsub - W) that is less than the run limit are killed when their job-level run limit is reached. Jobs submitted with a run limit greater than the maximum run limit are rejected. Application-level limits override any default limit specified in the queue.

Note:

If you want to provide an estimated run time for scheduling purposes without killing jobs that exceed the estimate, define the RUNTIME parameter in the application profile, or submit the job with -We instead of a run limit.

The run limit is in the form of [hour:] minute. The minutes can be specified as a number greater than 59. For example, three and a half hours can either be specified as 3:30, or 210.

The run limit you specify is the normalized run time. This is done so that the job does approximately the same amount of processing, even if it is sent to host with a faster or slower CPU. Whenever a normalized run time is given, the actual time on the execution host is the specified time multiplied by the CPU factor of the normalization host then divided by the CPU factor of the execution host.

If ABS_RUNLIMIT=Y is defined in 1 sb. params or in the application profile, the runtime limit is not normalized by the host CPU factor. Absolute wall-clock run time is used for all jobs submitted to an application profile with a run limit configured.

Optionally, you can supply a host name or a host model name defined in LSF. You must insert '/' between the run limit and the host name or model name. (See $l \sin f o(1)$ to get host model information.)

If no host or host model is given, LSF uses the default runtime normalization host defined at the queue level (DEFAULT_HOST_SPEC in 1 sb. queues) if it has been configured; otherwise, LSF uses the default CPU time normalization host defined at the cluster level (DEFAULT_HOST_SPEC in 1 sb. params) if it has been configured; otherwise, the host with the largest CPU factor (the fastest host in the cluster).

For MultiCluster jobs, if no other CPU time normalization host is defined and information about the submission host is not available, LSF uses the host with the largest CPU factor (the fastest host in the cluster).

Jobs submitted to a chunk job queue are not chunked if RUNLIMIT is greater than 30 minutes.

Default

Unlimited

RUNTIME

Syntax

RUNTIME=[hour:]minute[/host_name | /host_model]

Description

The RUNTIME parameter specifies an estimated run time for jobs associated with an application. LSF uses the RUNTIME value for scheduling purposes only, and does not kill jobs that exceed this value unless the jobs also exceed a defined RUNLIMIT. The format of runtime estimate is same as the RUNLIMIT parameter.

The job-level runtime estimate specified by bsub - We overrides the RUNTIME setting in an application profile.

The following LSF features use the RUNTIME value to schedule jobs:

- Job chunking
- Advanced reservation
- SLA
- Slot reservation
- Backfill

Default

Not defined

STACKLIMIT

Syntax

STACKLIMIT=integer

Description

The per-process (soft) stack segment size limit for all of the processes belonging to a job from this queue (see getrl i mit(2)). Application-level limits override any default limit specified in the queue, but must be less than the hard limit of the submission queue.

By default, the limit is specified in KB. Use LSF_UNIT_FOR_LIMITS in 1 sf. conf to specify a larger unit for the limit (MB, GB, TB, PB, or EB).

Default

Unlimited

SUCCESS_EXIT_VALUES

Syntax

SUCCESS_EXIT_VALUES=[exit_code ...]

Description

Specifies exit values used by LSF to determine if job was done successfully. Use spaces to separate multiple exit codes. Job-level success exit values specified with the LSB_SUCCESS_EXIT_VALUES environment variable override the configration in application profile.

Use SUCCESS_EXIT_VALUES for applications that successfully exit with non-zero values so that LSF does not interpret non-zero exit codes as job failure.

exit_code should be the value between 0 and 255. Use spaces to separate exit code values.

Default

Not defined, Jobs do not specify a success exit value.

SUSPEND_CONTROL

Syntax

SUSPEND_CONTROL=signal | command | CHKPNT

Remember:

Unlike the JOB_CONTROLS parameter in l sb. queues, the SUSPEND_CONTROL parameter does not require square brackets ([]) around the action.

- signal is a UNIX signal name (for example, SIGTSTP). The specified signal is sent to the job. The same
 set of signals is not supported on all UNIX systems. To display a list of the symbolic names of the
 signals (without the SIG prefix) supported on your system, use the kill -1 command.
- *command* specifies a /bi n/sh command line to be invoked.
 - Do not quote the command line inside an action definition.
 - Do not specify a signal followed by an action that triggers the same signal. For example, do not specify SUSPEND_CONTROL=bst op. This causes a deadlock between the signal and the action.
- CHKPNT is a special action, which causes the system to checkpoint the job. The job is checkpointed and then stopped by sending the SIGSTOP signal to the job automatically.

Description

Changes the behavior of the SUSPEND action in LSF.

- The contents of the configuration line for the action are run with /bi n/sh -c so you can use shell features in the command.
- The standard input, output, and error of the command are redirected to the NULL device, so you cannot tell directly whether the command runs correctly. The default null device on UNIX is /dev/null.
- The command is run as the user of the job.
- All environment variables set for the job are also set for the command action. The following additional
 environment variables are set:
 - LSB_JOBPGIDS a list of current process group IDs of the job
 - LSB_JOBPIDS —a list of current process IDs of the job

- LSB_SUSP_REASONS an integer representing a bitmap of suspending reasons as defined in 1 sbatch. h The suspending reason can allow the command to take different actions based on the reason for suspending the job.
- LSB_SUSP_SUBREASONS an integer representing the load index that caused the job to be suspended

When the suspending reason SUSP_LOAD_REASON (suspended by load) is set in LSB_SUSP_REASONS, LSB_SUSP_SUBREASONS is set to one of the load index values defined in l sf. h.

Use LSB_SUSP_REASONS and LSB_SUSP_SUBREASONS together in your custom job control to determine the exact load threshold that caused a job to be suspended.

• If an additional action is necessary for the SUSPEND command, that action should also send the appropriate signal to the application. Otherwise, a job can continue to run even after being suspended by LSF. For example, SUSPEND_CONTROL=bkill SLSB_JOBPIDS; command

The command path can contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows, including the directory, file name, and expanded values for %J (*job_ID*) and %I (*index_ID*).

Default

- On UNIX, by default, SUSPEND sends SIGTSTP for parallel or interactive jobs and SIGSTOP for other jobs.
- On Windows, actions equivalent to the UNIX signals have been implemented to do the default job
 control actions. Job control messages replace the SIGINT and SIGTERM signals, but only customized
 applications are able to process them.

SWAPLIMIT

Syntax

SWAPLIMIT=integer

Description

Limits the amount of total virtual memory limit for the job.

This limit applies to the whole job, no matter how many processes the job may contain. Application-level limits override any default limit specified in the queue.

The action taken when a job exceeds its SWAPLIMIT or PROCESSLIMIT is to send SIGQUIT, SIGINT, SIGTERM, and SIGKILL in sequence. For CPULIMIT, SIGXCPU is sent before SIGINT, SIGTERM, and SIGKILL.

By default, the limit is specified in KB. Use LSF_UNIT_FOR_LIMITS in 1 sf. conf to specify a larger unit for the limit (MB, GB, TB, PB, or EB).

Default

Unlimited

TERMINATE_CONTROL

Syntax

TERMINATE_CONTROL=signal | command | CHKPNT

Remember:

Unlike the JOB_CONTROLS parameter in l sb. queues, the TERMINATE_CONTROL parameter does not require square brackets ([]) around the action.

- *signal* is a UNIX signal name (for example, SIGTERM). The specified signal is sent to the job. The same set of signals is not supported on all UNIX systems. To display a list of the symbolic names of the signals (without the SIG prefix) supported on your system, use the kill -l command.
- *command* specifies a /bi n/sh command line to be invoked.
 - Do not quote the command line inside an action definition.
 - Do not specify a signal followed by an action that triggers the same signal. For example, do not specify TERMI NATE_CONTROL=bki 11. This causes a deadlock between the signal and the action.
- CHKPNT is a special action, which causes the system to checkpoint the job. The job is checkpointed
 and killed automatically.

Description

Changes the behavior of the TERMINATE action in LSF.

- The contents of the configuration line for the action are run with /bi n/sh -c so you can use shell features in the command.
- The standard input, output, and error of the command are redirected to the NULL device, so you
 cannot tell directly whether the command runs correctly. The default null device on UNIX is /dev/
 nul l.
- The command is run as the user of the job.
- All environment variables set for the job are also set for the command action. The following additional
 environment variables are set:
 - LSB_JOBPGIDS a list of current process group IDs of the job
 - LSB_JOBPIDS —a list of current process IDs of the job

The command path can contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows, including the directory, file name, and expanded values for %J (*job_ID*) and %I (*index_ID*).

Default

- On UNIX, by default, TERMINATE sends SIGINT, SIGTERM and SIGKILL in that order.
- On Windows, actions equivalent to the UNIX signals have been implemented to do the default job control actions. Job control messages replace the SIGINT and SIGTERM signals, but only customized applications are able to process them. Termination is implemented by the Termi nateProcess() system call.

THREADLIMIT

Syntax

THREADLIMIT=integer

Description

Limits the number of concurrent threads that can be part of a job. Exceeding the limit causes the job to terminate. The system sends the following signals in sequence to all processes belongs to the job: SIGINT, SIGTERM, and SIGKILL.

By default, jobs submitted to the queue without a job-level thread limit are killed when the thread limit is reached. Application-level limits override any default limit specified in the queue.

The limit must be a positive integer.

Default

Unlimited

USE_PAM_CREDS

Syntax

USE_PAM_CREDS=y | n

Description

If USE_PAM_CREDS=y, applies PAM limits to an application when its job is dispatched to a Linux host using PAM. PAM limits are system resource limits defined in 1 i mi ts. conf.

When USE_PAM_CREDS is enabled, PAM limits override others.

If the execution host does not have PAM configured and this parameter is enabled, the job fails.

For parallel jobs, only takes effect on the first execution host.

Overrides MEMLIMIT_TYPE=Process.

Overridden (for CPU limit only) by LSB_JOB_CPULIMIT=y.

Overridden (for memory limits only) by LSB_JOB_MEMLIMIT=y.

Default

n

Isb.events

The LSF batch event log file 1 sb. events is used to display LSF batch event history and for mbatchd failure recovery.

Whenever a host, job, or queue changes status, a record is appended to the event log file. The file is located in LSB_SHAREDI R/cl ust er_name/l ogdi r, where LSB_SHAREDIR must be defined in l sf. conf (5) and $cluster_name$ is the name of the LSF cluster, as returned by l si d. See mbat chd(8) for the description of LSB_SHAREDIR.

The bhi st command searches the most current l sb. events file for its output.

Isb.events structure

The event log file is an ASCII file with one record per line. For the l sb. events file, the first line has the format # history_seek_position>, which indicates the file position of the first history event after log switch. For the l sb. events. # file, the first line has the format #

timestamp_most_recent_event, which gives the timestamp of the most recent event in the file.

Limiting the size of lsb.events

Use MAX_JOB_NUM in 1 sb. params to set the maximum number of finished jobs whose events are to be stored in the 1 sb. events log file.

Once the limit is reached, mbatchd starts a new event log file. The old event log file is saved as 1 sb. events. *n*, with subsequent sequence number suffixes incremented by 1 each time a new log file is started. Event logging continues in the new 1 sb. events file.

Records and fields

The fields of a record are separated by blanks. The first string of an event record indicates its type. The following types of events are recorded:

- JOB_NEW
- JOB_FORWARD
- JOB_ACCEPT
- JOB START
- JOB_START_ACCEPT
- JOB STATUS
- JOB_SWITCH
- JOB_MOVE
- QUEUE CTRL
- HOST_CTRL
- MBD_START
- MBD_DIE
- UNFULFILL
- LOAD_INDEX
- JOB_SIGACT
- MIG
- JOB_MODIFY2
- JOB_SIGNAL

- JOB_EXECUTE
- JOB_REQUEUE
- JOB_CLEAN
- JOB_EXCEPTION
- JOB_EXT_MSG
- JOB ATTA DATA
- JOB_CHUNK
- SBD_UNREPORTED_STATUS
- PRE_EXEC_START
- JOB_FORCE
- GRP_ADD
- GRP_MOD
- LOG_SWITCH
- JOB_RESIZE_NOTIFY_START
- JOB RESIZE NOTIFY ACCEPT
- JOB_RESIZE_NOTIFY_DONE
- JOB RESIZE RELEASE
- JOB_RESIZE_CANCEL

JOB_NEW

A new job has been submitted. The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

jobld (%d)

Job ID

userId (%d)

UNIX user ID of the submitter

options (%d)

Bit flags for job processing

numProcessors (%d)

Number of processors requested for execution

submitTime (%d)

Job submission time

beginTime (%d)

Start time – the job should be started on or after this time

termTime (%d)

Termination deadline – the job should be terminated by this time (%d)

```
sigValue (%d)
               Signal value
chkpntPeriod (%d)
               Checkpointing period
restartPid (%d)
               Restart process ID
userName (%s)
               User name
rLimits
               Soft CPU time limit (%d), see getrlimit(2)
rLimits
               Soft file size limit (%d), see getrlimit(2)
rLimits
               Soft data segment size limit (%d), see getrl i mi t (2)
rLimits
               Soft stack segment size limit (%d), see getrl i mi t (2)
rLimits
               Soft core file size limit (%d), see getrlimit(2)
rLimits
               Soft memory size limit (%d), see getrlimit(2)
rLimits
               Reserved (%d)
rLimits
               Reserved (%d)
rLimits
               Reserved (%d)
rLimits
               Soft run time limit (%d), see getrlimit(2)
rLimits
               Reserved (%d)
hostSpec (%s)
               Model or host name for normalizing CPU time and run time
hostFactor (%f)
```

CPU factor of the above host umask (%d) File creation mask for this job queue (%s) Name of job queue to which the job was submitted resReg (%s) Resource requirements fromHost (%s) Submission host name cwd (%s) Current working directory (up to 4094 characters for UNIX or 255 characters for Windows) chkpntDir (%s) Checkpoint directory inFile (%s) Input file name (up to 4094 characters for UNIX or 255 characters for Windows) outFile (%s) Output file name (up to 4094 characters for UNIX or 255 characters for Windows) errFile (%s) Error output file name (up to 4094 characters for UNIX or 255 characters for Windows) subHomeDir (%s) Submitter's home directory jobFile (%s) Job file name numAskedHosts (%d) Number of candidate host names askedHosts (%s) List of names of candidate hosts for job dispatching dependCond (%s) Job dependency condition preExecCmd (%s) Job pre-execution command jobName (%s)

```
Job name (up to 4094 characters)
command (%s)
               Job command (up to 4094 characters for UNIX or 255 characters for Windows)
nxf (%d)
               Number of files to transfer (%d)
xf (%s)
               List of file transfer specifications
mailUser (%s)
               Mail user name
projectName (%s)
               Project name
niosPort (%d)
               Callback port if batch interactive job
maxNumProcessors (%d)
               Maximum number of processors
schedHostType (%s)
               Execution host type
loginShell (%s)
               Login shell
timeEvent (%d)
               Time Event, for job dependency condition; specifies when time event ended
userGroup (%s)
               User group
exceptList (%s)
               Exception handlers for the job
options2 (%d)
               Bit flags for job processing
idx (%d)
               Job array index
inFileSpool (%s)
               Spool input file (up to 4094 characters for UNIX or 255 characters for Windows)
commandSpool (%s)
               Spool command file (up to 4094 characters for UNIX or 255 characters for Windows)
```

jobSpoolDir (%s) Job spool directory (up to 4094 characters for UNIX or 255 characters for Windows) userPriority (%d) User priority rsvld %s Advance reservation ID; for example, "user2#0" jobGroup (%s) The job group under which the job runs sla (%s) SLA service class name under which the job runs **rLimits** Thread number limit extsched (%s) External scheduling options warningAction (%s) Job warning action warningTimePeriod (%d) Job warning time period in seconds SLArunLimit (%d) Absolute run time limit of the job for SLA service classes licenseProject (%s) License Scheduler project name options3 (%d) Bit flags for job processing app (%s) Application profile name postExecCmd (%s) Post-execution command to run on the execution host after the job finishes runtimeEstimation (%d) Estimated run time for the job requeueEValues (%s) Job exit values for automatic job requeue

resizeNotifyCmd (%s)

Resize notification command to run on the first execution host to inform job of a resize event.

jobDescription (%s)

Job description (up to 4094 characters).

submitEXT

Submission extension field, reserved for internal use.

Num (%d)

Number of elements (key-value pairs) in the structure.

key (%s)

Reserved for internal use.

value (%s)

Reserved for internal use.

JOB FORWARD

A job has been forwarded to a remote cluster (MultiCluster only).

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in 1 sf. conf, older daemons and commands (pre-LSF Version 6.0) cannot recognize the 1 sb. event s file format.

The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

jobld (%d)

Job ID

numReserHosts (%d)

Number of reserved hosts in the remote cluster

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in 1 sf. conf, the value of this field is the number of .hosts listed in the reserHosts field.

cluster (%s)

Remote cluster name

reserHosts (%s)

List of names of the reserved hosts in the remote cluster

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in 1 sf. conf, the value of this field is logged in a shortened format.

idx (%d)

Job array index

JOB ACCEPT

A job from a remote cluster has been accepted by this cluster. The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

jobld (%d)

Job ID at the accepting cluster

remoteJid (%d)

Job ID at the submission cluster

cluster (%s)

Job submission cluster name

idx (%d)

Job array index

JOB_START

A job has been dispatched.

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in $l\ sf.\ conf.$, older daemons and commands (pre-LSF Version 6.0) cannot recognize the $l\ sb.\ events$ file format.

The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

jobld (%d)

Job ID

jStatus (%d)

Job status, (4, indicating the RUN status of the job)

jobPid (%d)

Job process ID

jobPGid (%d)

Job process group ID

hostFactor (%f)

```
CPU factor of the first execution host
```

numExHosts (%d)

Number of processors used for execution

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in 1 sf. conf, the value of this field is the number of .hosts listed in the execHosts field.

execHosts (%s)

List of execution host names

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in 1 $sf.\ conf.$, the value of this field is logged in a shortened format.

queuePreCmd (%s)

Pre-execution command

queuePostCmd (%s)

Post-execution command

jFlags (%d)

Job processing flags

userGroup (%s)

User group name

idx (%d)

Job array index

additionalInfo (%s)

Placement information of HPC jobs

jFlags2 (%d)

JOB_START_ACCEPT

A job has started on the execution host(s). The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

jobld (%d)

Job ID

jobPid (%d)

Job process ID

jobPGid (%d)

```
Job process group ID
    idx (%d)
                   Job array index
JOB STATUS
           The status of a job changed after dispatch. The fields in order of occurrence are:
    Version number (%s)
                   The version number
    Event time (%d)
                   The time of the event
    jobld (%d)
                   Job ID
    jStatus (%d)
                   New status, see <1 sf/l sbatch. h>
                   For JOB_STAT_EXIT (32) and JOB_STAT_DONE (64), host-based resource usage
                   information is appended to the JOB_STATUS record in the fields numHostRusage and
                   hostRusage.
    reason (%d)
                   Pending or suspended reason code, see <1 sf/l sbatch. h>
    subreasons (%d)
                   Pending or suspended subreason code, see <1 sf/l sbatch. h>
    cpuTime (%f)
                   CPU time consumed so far
    endTime (%d)
                   Job completion time
    ru (%d)
                   Resource usage flag
    IsfRusage (%s)
                   Resource usage statistics, see <l sf/l sf. h>
    exitStatus (%d)
                   Exit status of the job, see <1 sf/l sbatch. h>
```

idx (%d)

exitInfo (%d)

Job array index

Job termination reason, see <1 sf/l sbatch. h>

duration4PreemptBackfill

How long a backfilled job can run; used for preemption backfill jobs

numHostRusage(%d)

For a j Status of JOB_STAT_EXIT (32) or JOB_STAT_DONE (64), this field contains the number of host-based resource usage entries (hostRusage) that follow. 0 unless HPC EXTENSIONS="HOST RUSAGE" is set in lsf.conf.

hostRusage

For a j Status of JOB_STAT_EXIT (32) or JOB_STAT_DONE (64), these fields contain host-based resource usage information for the job for parallel jobs when HPC_EXTENSIONS="HOST_RUSAGE" is set in lsf.conf.

hostname (%s)

Name of the host.

mem(%d)

Total resident memory usage of all processes in the job running on this host.

swap(%d)

Total virtual memory usage of all processes in the job running on this host.

utime(%d)

User time used on this host.

stime(%d)

System time used on this host.

hHostExtendInfo(%d)

Number of following key-value pairs containing extended host information (PGIDs and PIDs). Set to 0 in lsb.events, lsb.acct, and lsb.stream files.

JOB_SWITCH

A job switched from one queue to another (bswitch). The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

userId (%d)

UNIX user ID of the user invoking the command

jobld (%d)

Job ID

```
queue (%s)

Target queue name

idx (%d)

Job array index

userName (%s)
```

Name of the job submitter

JOB MOVE

A job moved toward the top or bottom of its queue (bbot or btop). The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

userId (%d)

UNIX user ID of the user invoking the command

jobld (%d)

Job ID

position (%d)

Position number

base (%d)

Operation code, (TO_TOP or TO_BOTTOM), see <1 sf/l sbatch. h>

idx (%d)

Job array index

userName (%s)

Name of the job submitter

QUEUE_CTRL

A job queue has been altered. The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

opCode (%d)

Operation code), see <l sf/l sbatch. h>

```
queue (%s)
```

Queue name

userld (%d)

UNIX user ID of the user invoking the command

userName (%s)

Name of the user

ctrlComments (%s)

Administrator comment text from the -C option of badmin queue control commands qclose, qopen, qact, and qinact

HOST_CTRL

A batch server host changed status. The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

opCode (%d)

Operation code, see <l sf/l sbatch. h>

host (%s)

Host name

userId (%d)

UNIX user ID of the user invoking the command

userName (%s)

Name of the user

ctrlComments (%s)

Administrator comment text from the -C option of $\operatorname{\mathsf{badmi}} n$ host control commands $\operatorname{\mathsf{hcl}}$ ose and $\operatorname{\mathsf{hopen}}$

MBD START

The mbat chd has started. The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

master (%s)

Master host name

cluster (%s)

cluster name

numHosts (%d)

Number of hosts in the cluster

numQueues (%d)

Number of queues in the cluster

MBD DIE

The mbat chd died. The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

master (%s)

Master host name

numRemoveJobs (%d)

Number of finished jobs that have been removed from the system and logged in the current event file

exitCode (%d)

Exit code from mbatchd

ctrlComments (%s)

Administrator comment text from the -C option of badmin mbdrestart

UNFULFILL

Actions that were not taken because the mbat chd was unable to contact the sbat chd on the job execution host. The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

jobld (%d)

Job ID

notSwitched (%d)

```
Not switched: the mbatchd has switched the job to a new queue, but the sbatchd has
                    not been informed of the switch
    sig (%d)
                    Signal: this signal has not been sent to the job
    sig1 (%d)
                    Checkpoint signal: the job has not been sent this signal to checkpoint itself
    sig1Flags (%d)
                    Checkpoint flags, see <1 sf/l sbatch. h>
    chkPeriod (%d)
                    New checkpoint period for job
    notModified (%s)
                    If set to true, then parameters for the job cannot be modified.
    idx (%d)
                    Job array index
LOAD_INDEX
           mbat chd restarted with these load index names (see l sf. cl uster(5)). The fields in order of occurrence
           are:
    Version number (%s)
                    The version number
    Event time (%d)
                    The time of the event
    nldx (%d)
                    Number of index names
    name (%s)
                   List of index names
JOB SIGACT
           An action on a job has been taken. The fields in order of occurrence are:
    Version number (%s)
                    The version number
    Event time (%d)
                    The time of the event
    jobld (%d)
                   Job ID
```

```
period (%d)
                   Action period
    pid (%d)
                   Process ID of the child sbatchd that initiated the action
    jstatus (%d)
                   Job status
    reasons (%d)
                   Job pending reasons
    flags (%d)
                   Action flags, see <l sf/l sbatch. h>
    actStatus (%d)
                   Action status:
                   1: Action started
                   2: One action preempted other actions
                   3: Action succeeded
                   4: Action Failed
    signalSymbol (%s)
                   Action name, accompanied by actFlags
    idx (%d)
                   Job array index
MIG
           A job has been migrated (bmi g). The fields in order of occurrence are:
    Version number (%s)
                   The version number
    Event time (%d)
                   The time of the event
    jobld (%d)
                   Job ID
    numAskedHosts (%d)
                   Number of candidate hosts for migration
    askedHosts (%s)
                   List of names of candidate hosts
    userId (%d)
```

UNIX user ID of the user invoking the command

idx (%d)

Job array index

userName (%s)

Name of the job submitter

JOB MODIFY2

This is created when the mbat chd modifies a previously submitted job with bmod.

Version number (%s)

The version number

Event time (%d)

The time of the event

jobldStr (%s)

Job ID

options (%d)

Bit flags for job modification options processing

options2 (%d)

Bit flags for job modification options processing

delOptions (%d)

Delete options for the options field

userId (%d)

UNIX user ID of the submitter

userName (%s)

User name

submitTime (%d)

Job submission time

umask (%d)

File creation mask for this job

numProcessors (%d)

Number of processors requested for execution. The value 2147483646 means the number of processors is undefined.

beginTime (%d)

Start time – the job should be started on or after this time

termTime (%d)

Termination deadline - the job should be terminated by this time

sigValue (%d)

Signal value

restartPid (%d)

Restart process ID for the original job

jobName (%s)

Job name (up to 4094 characters)

queue (%s)

Name of job queue to which the job was submitted

numAskedHosts (%d)

Number of candidate host names

askedHosts (%s)

List of names of candidate hosts for job dispatching; blank if the last field value is 0. If there is more than one host name, then each additional host name will be returned in its own field

resReq (%s)

Resource requirements

rLimits

Soft CPU time limit (%d), see getrlimit(2)

rLimits

Soft file size limit (%d), see getrlimit(2)

rLimits

Soft data segment size limit (%d), see getrl i mi t2)

rLimits

Soft stack segment size limit (%d), see getrl i mi t (2)

rLimits

Soft core file size limit (%d), see getrlimit(2)

rLimits

Soft memory size limit (%d), see getrlimit(2)

rLimits

Reserved (%d)

rLimits

Reserved (%d)

rLimits

```
Reserved (%d)
rLimits
               Soft run time limit (%d), see getrl i mi t(2)
rLimits
               Reserved (%d)
hostSpec (%s)
               Model or host name for normalizing CPU time and run time
dependCond (%s)
               Job dependency condition
timeEvent (%d)
               Time Event, for job dependency condition; specifies when time event ended
subHomeDir (%s)
               Submitter's home directory
inFile (%s)
               Input file name (up to 4094 characters for UNIX or 255 characters for Windows)
outFile (%s)
               Output file name (up to 4094 characters for UNIX or 255 characters for Windows)
errFile (%s)
               Error output file name (up to 4094 characters for UNIX or 255 characters for Windows)
command (%s)
               Job command (up to 4094 characters for UNIX or 255 characters for Windows)
chkpntPeriod (%d)
               Checkpointing period
chkpntDir (%s)
               Checkpoint directory
nxf (%d)
               Number of files to transfer
xf (%s)
               List of file transfer specifications
jobFile (%s)
               Job file name
fromHost (%s)
               Submission host name
```

```
cwd (%s)
```

Current working directory (up to 4094 characters for UNIX or 255 characters for Windows)

preExecCmd (%s)

Job pre-execution command

mailUser (%s)

Mail user name

projectName (%s)

Project name

niosPort (%d)

Callback port if batch interactive job

maxNumProcessors (%d)

Maximum number of processors. The value 2147483646 means the maximum number of processors is undefined.

loginShell (%s)

Login shell

schedHostType (%s)

Execution host type

userGroup (%s)

User group

exceptList (%s)

Exception handlers for the job

delOptions2 (%d)

Delete options for the options2 field

inFileSpool (%s)

Spool input file (up to 4094 characters for UNIX or 255 characters for Windows)

commandSpool (%s)

Spool command file (up to 4094 characters for UNIX or 255 characters for Windows)

userPriority (%d)

User priority

rsvld %s

Advance reservation ID; for example, "user2#0"

extsched (%s)

External scheduling options

warningTimePeriod (%d)

Job warning time period in seconds

warningAction (%s)

Job warning action

jobGroup (%s)

The job group to which the job is attached

sla (%s)

SLA service class name that the job is to be attached to

licenseProject (%s)

License Scheduler project name

options3 (%d)

Bit flags for job processing

delOption3 (%d)

Delete options for the options3 field

app (%s)

Application profile name

apsString (%s)

Absolute priority scheduling (APS) value set by administrator

postExecCmd (%s)

Post-execution command to run on the execution host after the job finishes

runtimeEstimation (%d)

Estimated run time for the job

requeueEValues (%s)

Job exit values for automatic job requeue

resizeNotifyCmd (%s)

Resize notification command to run on the first execution host to inform job of a resize event.

jobdescription (%s)

Job description (up to 4094 characters).

JOB_SIGNAL

This is created when a job is signaled with bkill or deleted with bdel. The fields are in the order they appended:

Version number (%s)

The version number Event time (%d) The time of the event jobld (%d) Job ID userld (%d) UNIX user ID of the user invoking the command runCount (%d) Number of runs signalSymbol (%s) Signal name idx (%d) Job array index userName (%s) Name of the job submitter JOB EXECUTE This is created when a job is actually running on an execution host. The fields in order of occurrence are: Version number (%s) The version number Event time (%d) The time of the event jobld (%d) Job ID execUid (%d) Mapped UNIX user ID on execution host jobPGid (%d) Job process group ID execCwd (%s) Current working directory job used on execution host (up to 4094 characters for UNIX or 255 characters for Windows) execHome (%s) Home directory job used on execution host

execUsername (%s)

```
Mapped user name on execution host
    jobPid (%d)
                   Job process ID
    idx (%d)
                   Job array index
    additionalInfo (%s)
                   Placement information of HPC jobs
    SLAscaledRunLimit (%d)
                   Run time limit for the job scaled by the execution host
    execRusage
                   An internal field used by LSF.
    Position
                   An internal field used by LSF.
    duration4PreemptBackfill
                   How long a backfilled job can run; used for preemption backfill jobs
JOB REQUEUE
           This is created when a job ended and requeued by mbat chd. The fields in order of occurrence are:
    Version number (%s)
                   The version number
    Event time (%d)
                   The time of the event
    jobld (%d)
                   Job ID
    idx (%d)
                   Job array index
JOB_CLEAN
           This is created when a job is removed from the mbat chd memory. The fields in order of occurrence are:
    Version number (%s)
                   The version number
    Event time (%d)
                   The time of the event
    jobld (%d)
```

Job ID

idx (%d)

Job array index

JOB_EXCEPTION

This is created when an exception condition is detected for a job. The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

jobld (%d)

Job ID

exceptMask (%d)

Exception Id

0x01: missched

0x02: overrun

0x04: underrun

0x08: abend

0x10: cantrun

0x20: hostfail

0x40: startfail

0x100:runtime_est_exceeded

actMask (%d)

Action Id

0x01: kill

0x02: alarm

0x04: rerun

0x08: setexcept

timeEvent (%d)

Time Event, for missched exception specifies when time event ended.

exceptInfo (%d)

Except Info, pending reason for missched or cantrun exception, the exit code of the job for the abend exception, otherwise 0.

idx (%d)

Job array index

JOB EXT MSG

An external message has been sent to a job. The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

jobld (%d)

Job ID

idx (%d)

Job array index

msgldx (%d)

Index in the list

userId (%d)

Unique user ID of the user invoking the command

dataSize (%ld)

Size of the data if it has any, otherwise 0

postTime (%ld)

Message sending time

dataStatus (%d)

Status of the attached data

desc (%s)

Text description of the message

userName (%s)

Name of the author of the message

JOB_ATTA_DATA

An update on the data status of a message for a job has been sent. The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

jobld (%d)

Job ID

idx (%d)

Job array index

msgldx (%d)

Index in the list

dataSize (%ld)

Size of the data if is has any, otherwise 0

dataStatus (%d)

Status of the attached data

fileName (%s)

File name of the attached data

JOB CHUNK

This is created when a job is inserted into a chunk.

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in 1 sf. conf, older daemons and commands (pre-LSF Version 6.0) cannot recognize the 1 sb. event s file format.

The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

membSize (%ld)

Size of array membJobId

membJobId (%Id)

Job IDs of jobs in the chunk

numExHosts (%ld)

Number of execution hosts

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in 1 sf. conf, the value of this field is the number of .hosts listed in the execHosts field.

execHosts (%s)

Execution host name array

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in 1 sf. conf, the value of this field is logged in a shortened format.

SBD_UNREPORTED_STATUS

This is created when an unreported status change occurs. The fields in order of occurrence are:

```
Version number (%s)
```

The version number

Event time (%d)

The time of the event

jobld (%d)

Job ID

actPid (%d)

Acting processing ID

jobPid (%d)

Job process ID

jobPGid (%d)

Job process group ID

newStatus (%d)

New status of the job

reason (%d)

Pending or suspending reason code, see <1 sf/l sbatch. h>

suspreason (%d)

Pending or suspending subreason code, see <1 sf/l sbat ch. h>

IsfRusage

The following fields contain resource usage information for the job (see getrusage(2)). If the value of some field is unavailable (due to job exit or the difference among the operating systems), -1 will be logged. Times are measured in seconds, and sizes are measured in KB.

ru_utime (%f)

User time used

ru_stime (%f)

System time used

ru_maxrss (%f)

Maximum shared text size

ru_ixrss (%f)

Integral of the shared text size over time (in KB seconds)

ru ismrss (%f)

```
Integral of the shared memory size over time (valid only on Ultrix)
       ru_idrss (%f)
                       Integral of the unshared data size over time
       ru_isrss (%f)
                       Integral of the unshared stack size over time
       ru_minflt (%f)
                       Number of page reclaims
       ru_majflt (%f)
                       Number of page faults
       ru_nswap (%f)
                       Number of times the process was swapped out
       ru_inblock (%f)
                       Number of block input operations
       ru_oublock (%f)
                       Number of block output operations
       ru_ioch (%f)
                       Number of characters read and written (valid only on HP-UX)
       ru_msgsnd (%f)
                       Number of System V IPC messages sent
       ru_msgrcv (%f)
                       Number of messages received
       ru_nsignals (%f)
                       Number of signals received
       ru_nvcsw (%f)
                       Number of voluntary context switches
       ru_nivcsw (%f)
                       Number of involuntary context switches
       ru_exutime (%f)
                       Exact user time used (valid only on ConvexOS)
exitStatus (%d)
               Exit status of the job, see <1 sf/l sbatch. h>
execCwd (%s)
```

Current working directory job used on execution host (up to 4094 characters for UNIX or 255 characters for Windows)

execHome (%s)

Home directory job used on execution host

execUsername (%s)

Mapped user name on execution host

msgld (%d)

ID of the message

actStatus (%d)

Action status

- 1: Action started
- 2: One action preempted other actions
- 3: Action succeeded
- 4: Action Failed

sigValue (%d)

Signal value

seq (%d)

Sequence status of the job

idx (%d)

Job array index

jRusage

The following fields contain resource usage information for the job. If the value of some field is unavailable (due to job exit or the difference among the operating systems), -1 will be logged. Times are measured in seconds, and sizes are measured in KB.

mem (%d)

Total resident memory usage in KB of all currently running processes in a given process group

swap (%d)

Totaly virtual memory usage in KB of all currently running processes in given process groups

utime (%d)

Cumulative total user time in seconds

stime (%d)

Cumulative total system time in seconds

```
npids (%d)
                           Number of currently active process in given process groups. This entry has four
                           sub-fields:
           pid (%d)
                           Process ID of the child sbatchd that initiated the action
           ppid (%d)
                           Parent process ID
           pgid (%d)
                           Process group ID
           jobld (%d)
                           Process Job ID
           npgids (%d)
                           Number of currently active process groups
    exitInfo (%d)
                   Job termination reason, see <| sf/l sbatch. h>
PRE EXEC START
           A pre-execution command has been started.
           The fields in order of occurrence are:
    Version number (%s)
                   The version number
    Event time (%d)
                   The time of the event
    jobld (%d)
                   Job ID
    jStatus (%d)
                   Job status, (4, indicating the RUN status of the job)
    jobPid (%d)
                   Job process ID
    jobPGid (%d)
                   Job process group ID
    hostFactor (%f)
                   CPU factor of the first execution host
    numExHosts (%d)
```

```
Number of processors used for execution
   execHosts (%s)
                   List of execution host names
    queuePreCmd (%s)
                   Pre-execution command
    queuePostCmd (%s)
                   Post-execution command
   jFlags (%d)
                   Job processing flags
   userGroup (%s)
                   User group name
    idx (%d)
                   Job array index
   additionalInfo (%s)
                   Placement information of HPC jobs
JOB FORCE
           A job has been forced to run with brun.
    Version number (%s)
                   The version number
   Event time (%d)
                   The time of the event
    jobld (%d)
                  Job ID
    userld (%d)
                   UNIX user ID of the user invoking the command
   idx (%d)
                   Job array index
   options (%d)
                   Bit flags for job processing
    numExecHosts (%ld)
                   Number of execution hosts
                   If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in 1 sf. conf, the
                   value of this field is the number of .hosts listed in the execHosts field.
```

execHosts (%s)

Execution host name array

If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in 1 sf. conf, the value of this field is logged in a shortened format.

userName (%s)

Name of the user

queue (%s)

Name of queue if a remote brun job ran; otherwise, this field is empty. For MultiCluster this is the name of the receive queue at the execution cluster.

GRP ADD

This is created when a job group is added. The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

userId (%d)

UNIX user ID of the job group owner

submitTime (%d)

Job submission time

userName (%s)

User name of the job group owner

depCond (%s)

Job dependency condition

timeEvent (%d)

Time Event, for job dependency condition; specifies when time event ended

groupSpec (%s)

Job group name

delOptions (%d)

Delete options for the options field

delOptions2 (%d)

Delete options for the options2 field

sla (%s)

SLA service class name that the job group is to be attached to

```
maxJLimit (%d)
```

Job group limit set by bgadd - L

groupType (%d)

Job group creation method:

- 0x01 job group was created explicitly
- 0x02 job group was created implicitly

GRP MOD

This is created when a job group is modified. The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

userld (%d)

UNIX user ID of the job group owner

submitTime (%d)

Job submission time

userName (%s)

User name of the job group owner

depCond (%s)

Job dependency condition

timeEvent (%d)

Time Event, for job dependency condition; specifies when time event ended

groupSpec (%s)

Job group name

delOptions (%d)

Delete options for the options field

delOptions2 (%d)

Delete options for the options2 field

sla (%s)

SLA service class name that the job group is to be attached to

maxJLimit (%d)

Job group limit set by bgmod - L

LOG_SWITCH

This is created when switching the event file 1 sb. event s. The fields in order of occurrence are:

Version number (%s)

The version number

Event time (%d)

The time of the event

jobld (%d)

Job ID

JOB RESIZE NOTIFY START

LSF logs this event when a resize (shrink or grow) request has been sent to the first execution host. The fields in order of occurrence are:

Version number (%s)

The version number.

Event time (%d)

The time of the event.

jobld (%d)

The job ID.

idx (%d)

Job array index.

notifyld (%d)

Identifier or handle for notification.

numResizeHosts (%d)

Number of processors used for execution. If I SE HPC EXTENSIONS—"SHORT EVENTELLE" is specific

LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in 1 sf. conf, the value of this field is the number of hosts listed in short format.

resizeHosts (%s)

List of execution host names. If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in lsf.conf, the value of this field is logged in a shortened format.

JOB RESIZE NOTIFY ACCEPT

LSF logs this event when a resize request has been accepted from the first execution host of a job. The fields in order of occurrence are:

Version number (%s)

The version number.

Event time (%d)

The time of the event.

jobld (%d)

The job ID.

idx (%d)

Job array index.

notifyld (%d)

Identifier or handle for notification.

resizeNotifyCmdPid (%d)

Resize notification executable process ID. If no resize notification executable is defined, this field will be set to 0.

resizeNotifyCmdPGid (%d)

Resize notification executable process group ID. If no resize notification executable is defined, this field will be set to 0.

status (%d)

Status field used to indicate possible errors. 0 Success, 1 failure.

JOB_RESIZE_NOTIFY_DONE

LSF logs this event when the resize notification command completes. The fields in order of occurrence are:

Version number (%s)

The version number.

Event time (%d)

The time of the event.

jobld (%d)

The job ID.

idx (%d)

Job array index.

notifyld (%d)

Identifier or handle for notification.

status (%d)

Resize notification exit value. (0, success, 1, failure, 2 failure but cancel request.)

JOB_RESIZE_RELEASE

LSF logs this event when receiving resource release request from client. The fields in order of occurrence are:

Version number (%s)

The version number.

Event time (%d)

The time of the event.

jobld (%d)

The job ID.

idx (%d)

Job array index.

reqid (%d)

Request Identifier or handle.

options (%d)

Release options.

userld (%d)

UNIX user ID of the user invoking the command.

userName (%s)

User name of the submitter.

resizeNotifyCmd (%s)

Resize notification command to run on the first execution host to inform job of a resize event.

numResizeHosts (%d)

Number of processors used for execution during resize. If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in 1 sf. conf, the value of this field is the number of hosts listed in short format.

resizeHosts (%s)

List of execution host names during resize. If LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is specified in 1 sf. conf, the value of this field is logged in a shortened format.

JOB_RESIZE_CANCEL

LSF logs this event when receiving cancel request from client. The fields in order of occurrence are:

Version number (%s)

The version number.

Event time (%d)

The time of the event.

jobld (%d)

The job ID.

idx (%d)

Job array index.

userId (%d)

UNIX user ID of the user invoking the command.

userName (%s)

User name of the submitter.

Isb.hosts

The lsb. hosts file contains host-related configuration information for the server hosts in the cluster. It is also used to define host groups, host partitions, and compute units.

This file is optional. All sections are optional.

By default, this file is installed in LSB_CONFDI R/cluster_name/configdir.

Changing lsb.hosts configuration

After making any changes to lsb. hosts, run badmin reconfig to reconfigure mbatchd.

Host section

Description

Optional. Defines the hosts, host types, and host models used as server hosts, and contains per-host configuration information. If this section is not configured, LSF uses all hosts in the cluster (the hosts listed in l sf. cl uster. *cluster_name*) as server hosts.

Each host, host model or host type can be configured to:

- Limit the maximum number of jobs run in total
- Limit the maximum number of jobs run by each user
- · Run jobs only under specific load conditions
- Run jobs only under specific time windows

The entries in a line for a host override the entries in a line for its model or type.

When you modify the cluster by adding or removing hosts, no changes are made to 1 sb. hosts. This does not affect the default configuration, but if hosts, host models, or host types are specified in this file, you should check this file whenever you make changes to the cluster and update it manually if necessary.

Host section structure

The first line consists of keywords identifying the load indices that you wish to configure on a per-host basis. The keyword HOST_NAME must be used; the others are optional. Load indices not listed on the keyword line do not affect scheduling decisions.

Each subsequent line describes the configuration information for one host, host model or host type. Each line must contain one entry for each keyword. Use empty parentheses () or a dash (-) to specify the default value for an entry.

HOST NAME

Required. Specify the name, model, or type of a host, or the keyword defaul t.

host name

The name of a host defined in 1 sf. cluster. cluster name.

host model

A host model defined in 1 sf. shared.

host type

A host type defined in 1 sf. shared.

default

The reserved host name default indicates all hosts in the cluster not otherwise referenced in the section (by name or by listing its model or type).

CHKPNT

Description

If C, checkpoint copy is enabled. With checkpoint copy, all opened files are automatically copied to the checkpoint directory by the operating system when a process is checkpointed.

Example

HOST NAME CHKPNT hostA

Compatibility

Checkpoint copy is only supported on Cray systems.

Default

No checkpoint copy

DISPATCH_WINDOW

Description

The time windows in which jobs from this host, host model, or host type are dispatched. Once dispatched, jobs are no longer affected by the dispatch window.

Default

Not defined (always open)

EXIT_RATE

Description

Specifies a threshold for exited jobs. Specify a number of jobs. If the number of jobs that exit over a period of time specified by JOB_EXIT_RATE_DURATION in 1 sb. params (5 minutes by default) exceeds the number of jobs you specify as the threshold in this parameter, LSF invokes LSF_SERVERDI R/eadmin to trigger a host exception.

EXIT_RATE for a specific host overrides a default GLOBAL_EXIT_RATE specified in 1 sb. params.

Example

The following Host section defines a job exit rate of 20 jobs for all hosts, and an exit rate of 10 jobs on host A.

Begin Host		
HOST_NAME	MXJ	EXIT_RATE # Keywords
Default	!	20
hostA	!	10
End Host		

Default

Not defined

JL/U

Description

Per-user job slot limit for the host. Maximum number of job slots that each user can use on this host.

Example

HOST_NAME	JL/U			
hostA	2			

Default

Unlimited

MIG

Syntax

MIG=minutes

Description

Enables automatic job migration and specifies the migration threshold for checkpointable or rerunnable jobs, in minutes.

LSF automatically migrates jobs that have been in the SSUSP state for more than the specified number of minutes. Specify a value of 0 to migrate jobs immediately upon suspension. The migration threshold applies to all jobs running on the host.

Job-level command line migration threshold overrides threshold configuration in application profile and queue. Application profile configuration overrides queue level configuration. When a host migration threshold is specified, and is lower than the value for the job, the queue, or the application, the host value is used.

Does not affect MultiCluster jobs that are forwarded to a remote cluster.

Default

Not defined. LSF does not migrate checkpointable or rerunnable jobs automatically.

MXJ

Description

The number of job slots on the host.

With MultiCluster resource leasing model, this is the number of job slots on the host that are available to the local cluster.

Use "!" to make the number of job slots equal to the number of CPUs on a host.

For the reserved host name default, "!" makes the number of job slots equal to the number of CPUs on all hosts in the cluster not otherwise referenced in the section.

By default, the number of running and suspended jobs on a host cannot exceed the number of job slots. If preemptive scheduling is used, the suspended jobs are not counted as using a job slot.

On multiprocessor hosts, to fully use the CPU resource, make the number of job slots equal to or greater than the number of processors.

Default

Unlimited

load index

Syntax

load_i ndex loadSched[/loadStop]

Specify i o, i t, l s, mem, pg, r15s, r1m, r15m, swp, tmp, ut, or a non-shared custom external load index as a column. Specify multiple columns to configure thresholds for multiple load indices.

Description

Scheduling and suspending thresholds for dynamic load indices supported by LIM, including external load indices.

Each load index column must contain either the default entry or two numbers separated by a slash '/', with no white space. The first number is the scheduling threshold for the load index; the second number is the suspending threshold.

Queue-level scheduling and suspending thresholds are defined in 1 sb. queues. If both files specify thresholds for an index, those that apply are the most restrictive ones.

Example

HOST_NAME	mem	swp			
hostA	100/10	200/30			
This example translates into a loadSched condition of					
mem>=100 && swp>=200					
and a loadStop condition of					
mem < 10 swp < 30					

Default

Not defined

Example of a Host section

Begin Host						
HOST_NAME	MXJ	JL/U	r1m	pg	DI SPATCH_WI NDOW	
hostA	1	-	0.6/1.6	10/20	(5: 19: 00- 1: 8: 30 20: 00- 8: 30)	
SUNS0L	1	-	0. 5/2. 5 -		23: 00- 8: 00	
defaul t	2	1	0.6/1.6	20/40	()	
End Host						

SUNSOL is a host type defined in 1 sf. shared. This example Host section configures one host and one host type explicitly and configures default values for all other load-sharing hosts.

Host A runs one batch job at a time. A job will only be started on host A if the r1m index is below 0.6 and the pg index is below 10; the running job is stopped if the r1m index goes above 1.6 or the pg index goes above 20. Host A only accepts batch jobs from 19:00 on Friday evening until 8:30 Monday morning and overnight from 20:00 to 8:30 on all other days.

For hosts of type SUNSOL, the pg index does not have host-specific thresholds and such hosts are only available overnight from 23:00 to 8:00.

The entry with host name default applies to each of the other hosts in the cluster. Each host can run up to two jobs at the same time, with at most one job from each user. These hosts are available to run jobs at all times. Jobs may be started if the r1m index is below 0.6 and the pg index is below 20, and a job from the lowest priority queue is suspended if r1m goes above 1.6 or pg goes above 40.

HostGroup section

Description

Optional. Defines host groups.

The name of the host group can then be used in other host group, host partition, and queue definitions, as well as on the command line. Specifying the name of a host group has exactly the same effect as listing the names of all the hosts in the group.

Structure

Host groups are specified in the same format as user groups in 1 sb. users.

The first line consists of two mandatory keywords, GROUP_NAME and GROUP_MEMBER, as well as optional keywords, CONDENSE and GROUP_ADMIN. Subsequent lines name a group and list its membership.

The sum of all host groups, compute groups, and host partitions cannot be more than 1024.

GROUP_NAME

Description

An alphanumeric string representing the name of the host group.

You cannot use the reserved name all, and group names must not conflict with host names.

CONDENSE

Description

Optional. Defines condensed host groups.

Condensed host groups are displayed in a condensed output format for the bhosts and bj obscommands.

If you configure a host to belong to more than one condensed host group, bj obs can display any of the host groups as execution host name.

Valid values

Y or N.

Default

N (the specified host group is not condensed)

GROUP_MEMBER

Description

A space-delimited list of host names or previously defined host group names, enclosed in one pair of parentheses.

You cannot use more than one pair of parentheses to define the list.

The names of hosts and host groups can appear on multiple lines because hosts can belong to multiple groups. The reserved name all specifies all hosts in the cluster. An exclamation mark (!) indicates an externally-defined host group, which the egroup executable retrieves.

Pattern definition

You can use string literals and special characters when defining host group members. Each entry cannot contain any spaces, as the list itself is space delimited.

When a leased-in host joins the cluster, the host name is in the form of *host@cluster*. For these hosts, only the host part of the host name is subject to pattern definitions.

You can use the following special characters to specify host group members:

- Use a tilde (~) to exclude specified hosts or host groups from the list.
- Use an asterisk (*) as a wildcard character to represent any number of characters.
- Use square brackets with a hyphen ([integer1 integer2]) to define a range of non-negative integers at the end of a host name. The first integer must be less than the second integer.
- Use square brackets with commas ([integer1, integer2...]) to define individual non-negative integers at the end of a host name.
- Use square brackets with commas and hyphens (for example, [integer1 integer2, integer3, integer4 integer5]) to define different ranges of non-negative integers at the end of a host name.

Restrictions

You cannot use more than one set of square brackets in a single host group definition.

• The following example is *not* correct:

```
... (hostA[1-10]B[1-20] hostC[101-120])
```

• The following example is correct:

```
... (hostA[1-20] hostC[101-120])
```

You cannot define subgroups that contain wildcards and special characters.

GROUP ADMIN

Description

Host group administrators have the ability to open or close the member hosts for the group they are administering.

the GROUP_ADMI N field is a space-delimited list of user names or previously defined user group names, enclosed in one pair of parentheses.

You cannot use more than one pair of parentheses to define the list.

The names of users and user groups can appear on multiple lines because users can belong to and administer multiple groups.

Host group administrator rights are inherited. For example, if the user admin2 is an administrator for host group hg1 and host group hg2 is a member of hg1, admin2 is also an administrator for host group hg2.

When host group administrators (who are not also cluster administrators) open or close a host, they must specify a comment with the -C option.

Valid values

Any existing user or user group can be specified. A user group that specifies an external list is also allowed; however, in this location, you use the user group name that has been defined with (!) rather than (!) itself.

Restrictions

- You cannot specify any wildcards or special characters (for example: *, !, \$, #, &, ~).
- You cannot specify an external group (egroup).
- You cannot use the keyword ALL and you cannot administer any group that has ALL as its members.
- · User names and user group names cannot have spaces.

Example HostGroup sections

Example 1

```
Begin HostGroup

GROUP_NAME GROUP_MEMBER GROUP_ADMIN

groupA (hostA hostD) (user1 user10)

groupB (hostF groupA hostK) ()

groupC (!) ()

End HostGroup
```

This example defines three host groups:

groupA includes host A and host D and can be administered by user1 and user10.

- groupB includes hostF and hostK, along with all hosts in groupA. It has no administrators (only the cluster administrator can control the member hosts).
- The group membership of groupC is defined externally and retrieved by the egroup executable.

Example 2

Begin HostGr	Begin HostGroup					
GROUP_NAME	GROUP_MEMBER GROUP_ADMIN					
groupA	(all) ()					
groupB	(groupA ~hostA ~hostB) (user11 user14)					
groupC	(hostX hostY hostZ) ()					
groupD	(groupC ~hostX) usergroupB					
groupE	(all ~groupC ~hostB) ()					
groupF	(hostF groupC hostK) ()					
End HostGroup						

This example defines the following host groups:

- groupA contains all hosts in the cluster and is administered by the cluster administrator.
- groupB contains all the hosts in the cluster except for host A and host B and is administered by user11 and user14.
- groupC contains only hostX, hostY, and hostZ and is administered by the cluster administrator.
- groupD contains the hosts in groupC except for host X. Note that host X must be a member of host group groupC to be excluded from groupD. usergroupB is the administrator for groupD.
- groupE contains all hosts in the cluster excluding the hosts in groupC and host B and is administered by the cluster administrator.
- groupF contains host F, host K, and the 3 hosts in groupC and is administered by the cluster administrator.

Example 3

Begin HostGroup					
GROUP_NAME	CONDENSE	GROUP_MEMBER GROUP_ADMI N			
groupA	N	(all) ()			
groupB	N	(hostA, hostB) (usergroupC user1)			
groupC	Y	(all)()			
End HostGrou	ıp				

This example defines the following host groups:

- groupA shows uncondensed output and contains all hosts in the cluster and is administered by the cluster administrator.
- groupB shows uncondensed output, and contains hostA and hostB. It is administered by all members of usergroupC and user1.
- groupC shows condensed output and contains all hosts in the cluster and is administered by the cluster administrator.

Example 4

Begin HostGroup	Begin HostGroup					
GROUP_NAME CONI	DENSE GROUP_MEMBER GROUP_ADMIN					
groupA	Y (host*) (user7)					
groupB	N (*A) ()					
groupC	N (hostB* \sim hostB[1-50]) ()					
groupD	Y (hostC[1-50] hostC[101-150]) (usergroupJ)					
groupE	N (hostC[51-100] hostC[151-200]) ()					
groupF	Y (hostD[1,3] hostD[5-10]) ()					
groupG	N (hostD[11-50] ~hostD[15, 20, 25] hostD2) ()					
End HostGroup						

This example defines the following host groups:

- groupA shows condensed output, and contains all hosts starting with the string host. It is administered by user7.
- groupB shows uncondensed output, and contains all hosts ending with the string A, such as host A and is administered by the cluster administrator.
- groupC shows uncondensed output, and contains all hosts starting with the string host B except for the hosts from host B1 to host B50 and is administered by the cluster administrator.
- groupD shows condensed output, and contains all hosts from host C1 to host C50 and all hosts from host C101 to host C150 and is administered by the the members of usergroupJ.
- groupE shows uncondensed output, and contains all hosts from host C51 to host C100 and all hosts from host C151 to host C200 and is administered by the cluster administrator.
- groupF shows condensed output, and contains hostD1, hostD3, and all hosts from hostD5 to hostD10 and is administered by the cluster administrator.
- groupG shows uncondensed output, and contains all hosts from hostD11 to hostD50 except for hostD15, hostD20, and hostD25. groupG also includes hostD2. It is administered by the cluster administrator.

HostPartition section

Description

Optional. Used with host partition user-based fairshare scheduling. Defines a host partition, which defines a user-based fairshare policy at the host level.

Configure multiple sections to define multiple partitions.

The members of a host partition form a host group with the same name as the host partition.

Restriction:

You cannot use host partitions and host preference simultaneously.

Limitations on queue configuration

- If you configure a host partition, you cannot configure fairshare at the queue level.
- If a queue uses a host that belongs to a host partition, it should not use any hosts that don't belong to
 that partition. All the hosts in the queue should belong to the same partition. Otherwise, you might
 notice unpredictable scheduling behavior:

- Jobs in the queue sometimes may be dispatched to the host partition even though hosts not belonging to any host partition have a lighter load.
- If some hosts belong to one host partition and some hosts belong to another, only the priorities of
 one host partition are used when dispatching a parallel job to hosts from more than one host
 partition.

Shared resources and host partitions

- If a resource is shared among hosts included in host partitions and hosts that are not included in any
 host partition, jobs in queues that use the host partitions will always get the shared resource first,
 regardless of queue priority.
- If a resource is shared among host partitions, jobs in queues that use the host partitions listed first in
 the HostPartition section of lsb. hosts will always have priority to get the shared resource first.
 To allocate shared resources among host partitions, LSF considers host partitions in the order they
 are listed in lsb. hosts.

Structure

Each host partition always consists of 3 lines, defining the name of the partition, the hosts included in the partition, and the user share assignments.

HPART_NAME

Syntax

HPART_NAME=*partition_name*

Description

Specifies the name of the partition. The name must be 59 characters or less.

HOSTS

Syntax

HOSTS=[[~]host_name / [~]host_group /all]...

Description

Specifies the hosts in the partition, in a space-separated list.

A host cannot belong to multiple partitions.

A host group cannot be empty.

Hosts that are not included in any host partition are controlled by the FCFS scheduling policy instead of the fairshare scheduling policy.

Optionally, use the reserved host name al 1 to configure a single partition that applies to all hosts in a cluster.

Optionally, use the not operator (~) to exclude hosts or host groups from the list of hosts in the host partition.

Examples

HOSTS=all ~hostK ~hostM

The partition includes all the hosts in the cluster, except for host K and host M HOSTS=group A $\sim\!\! host L$

The partition includes all the hosts in host group groupA except for host L.

USER_SHARES

Syntax

USER_SHARES=[user, number_shares]...

Description

Specifies user share assignments

- Specify at least one user share assignment.
- Enclose each user share assignment in square brackets, as shown.
- Separate a list of multiple share assignments with a space between the square brackets.
- user—Specify users who are also configured to use the host partition. You can assign the shares:
 - To a single user (specify *user_name*). To specify a Windows user account, include the domain name in uppercase letters (*DOMAIN_NAME\user_name*).
 - To users in a group, individually (specify group_name@) or collectively (specify group_name). To specify a Windows user group, include the domain name in uppercase letters (DOMAIN_NAME \group_name).
 - To users not included in any other share assignment, individually (specify the keyword default) or collectively (specify the keyword others).

By default, when resources are assigned collectively to a group, the group members compete for the resources according to FCFS scheduling. You can use hierarchical fairshare to further divide the shares among the group members.

When resources are assigned to members of a group individually, the share assignment is recursive. Members of the group and of all subgroups always compete for the resources according to FCFS scheduling, regardless of hierarchical fairshare policies.

- number_shares
 - Specify a positive integer representing the number of shares of the cluster resources assigned to the user.
 - The number of shares assigned to each user is only meaningful when you compare it to the shares
 assigned to other users or to the total number of shares. The total number of shares is just the sum
 of all the shares assigned in each share assignment.

Example of a HostPartition section

```
Begin HostPartition

HPART_NAME = Partition1 HOSTS = hostA hostB USER_SHARES = [groupA@, 3] [groupB, 7] [default, 1]

End HostPartition
```

ComputeUnit section

Description

Optional. Defines compute units.

Once defined, the compute unit can be used in other compute unit and queue definitions, as well as in the command line. Specifying the name of a compute unit has the same effect as listing the names of all the hosts in the compute unit.

Compute units are similar to host groups, with the added feature of granularity allowing the construction of structures that mimic the network architecture. Job scheduling using compute unit resource requirements effectively spreads jobs over the cluster based on the configured compute units.

To enforce consistency, compute unit configuration has the following requirements:

- Hosts and host groups appear in the finest granularity compute unit type, and nowhere else.
- Hosts appear in only one compute unit of the finest granularity.
- All compute units of the same type have the same type of compute units (or hosts) as members.

Structure

Compute units are specified in the same format as host groups in 1 sb. host s.

The first line consists of three mandatory keywords, NAME, MEMBER, and TYPE, as well as optional keywords CONDENSE and ADMI N. Subsequent lines name a compute unit and list its membership.

The sum of all host groups, compute groups, and host partitions cannot be more than 1024.

NAME

Description

An alphanumeric string representing the name of the compute unit.

You cannot use the reserved names all, all remote, others, and default. Compute unit names must not conflict with host names, host partitions, or host group names.

CONDENSE

Description

Optional. Defines condensed compute units.

Condensed compute units are displayed in a condensed output format for the bhosts and bj obscommands. The condensed compute unit format includes the slot usage for each compute unit.

Valid values

Y or N.

Default

N (the specified host group is not condensed)

MEMBER

Description

A space-delimited list of host names or previously defined compute unit names, enclosed in one pair of parentheses.

You cannot use more than one pair of parentheses to define the list.

The names of hosts and host groups can appear only once, and only in a compute unit type of the finest granularity.

An exclamation mark (!) indicates an externally-defined host group, which the egroup executable retrieves.

Pattern definition

You can use string literals and special characters when defining compute unit members. Each entry cannot contain any spaces, as the list itself is space delimited.

You can use the following special characters to specify host and host group compute unit members:

- Use a tilde (~) to exclude specified hosts or host groups from the list.
- Use an asterisk (*) as a wildcard character to represent any number of characters.
- Use square brackets with a hyphen ([integer1 integer2]) to define a range of non-negative integers at the end of a host name. The first integer must be less than the second integer.
- Use square brackets with commas ([integer1, integer2...]) to define individual non-negative integers at the end of a host name.
- Use square brackets with commas and hyphens (for example, [integer1 integer2, integer3, integer4 integer5]) to define different ranges of non-negative integers at the end of a host name.

Restrictions

- You cannot use more than one set of square brackets in a single compute unit definition.
 - The following example is not correct:

```
... (encl A[1-10] B[1-20] encl C[101-120])
```

The following example is correct:

```
... (encl A[1-20] encl C[101-120])
```

- · Compute unit names cannot be used in compute units of the finest granularity.
- You cannot include host or host group names except in compute units of the finest granularity.
- You must not skip levels of granularity. For example:

If 1 sb. params contains COMPUTE_UNIT_TYPES=encl osure rack cabi net then a compute unit of type cabi net can contain compute units of type rack, but not of type encl osure.

• The keywords all, all remote, all@cluster, other and default cannot be used when defining compute units.

TYPE

Description

The type of the compute unit, as defined in the COMPUTE_UNIT_TYPES parameter of 1 sb. params.

ADMIN

Description

Compute unit administrators have the ability to open or close the member hosts for the compute unit they are administering.

the ADMI N field is a space-delimited list of user names or previously defined user group names, enclosed in one pair of parentheses.

You cannot use more than one pair of parentheses to define the list.

The names of users and user groups can appear on multiple lines because users can belong to and administer multiple compute units.

Compute unit administrator rights are inherited. For example, if the user admin2 is an administrator for compute unit cu1 and compute unit cu2 is a member of cu1, admin2 is also an administrator for compute unit cu2.

When compute unit administrators (who are not also cluster administrators) open or close a host, they must specify a comment with the -C option.

Valid values

Any existing user or user group can be specified. A user group that specifies an external list is also allowed; however, in this location, you use the user group name that has been defined with (!) rather than (!) itself.

Restrictions

- You cannot specify any wildcards or special characters (for example: *, !, \$, #, &, ~).
- You cannot specify an external group (egroup).
- You cannot use the keyword ALL and you cannot administer any group that has ALL as its members.
- User names and user group names cannot have spaces.

Example ComputeUnit sections

Example 1

```
(For the l sb. params entry

COMPUTE_UNIT_TYPES=encl osure rack cabi net
)

Begin ComputeUnit

NAME MEMBER TYPE

encl 1 (host1 host2) encl osure

encl 2 (host3 host4) encl osure

encl 3 (host5 host6) encl osure

encl 4 (host7 host8) encl osure

rack1 (encl 1 encl 2) rack

rack2 (encl 3 encl 4) rack

cbnt1 (rack1 rack2) cabi net

End ComputeUnit
```

This example defines seven compute units:

- encl 1, encl 2, encl 3 and encl 4 are the finest granularity, and each contain two hosts.
- rack1 is of coarser granularity and contains two levels. At the enclosure level rack1 contains encl 1 and encl 2. At the lowest level rack1 contains host1, host2, host3, and host4.
- rack2 has the same structure as rack1, and contains encl 3 and encl 4.
- cbnt 1 contains two racks (rack1 and rack2), four enclosures (encl 1, encl 2, encl 3, and encl 4) and all eight hosts. Compute unit cbnt 1 is the coarsest granularity in this example.

Example 2

(For the l sb. params entry COMPUTE_UNIT_TYPES=enclosure rack cabinet)

Begin ComputeU	ni t		
NAME CONDENSE	MEMBER	TYPE	ADMI N
encl 1 Y	(hg123 ~hostA ~hostB)	encl osure	(user11 user14)
encl 2 Y	(hg456)	encl osure	()
encl3 N	(hostA hostB)	encl osure	usergroupB
encl4 N	(hgroupX ~hostB)	encl osure	()
encl 5 Y	(hostC* ~hostC[101-150])	encl osure	usergroupJ
encl6 N	(hostC[101-150])	encl osure	()
rack1 Y	(encl 1 encl 2 encl 3)	rack	()
rack2 N	(encl 4 encl 5)	rack	usergroupJ
rack3 N	(encl 6)	rack	()
cbnt1 Y	(rack1 rack2)	cabi net	()
cbnt2 N	(rack3)	cabi net	user14
End ComputeUni	t		

This example defines 11 compute units:

- All six enclosures (finest granularity) contain only hosts and host groups. All three racks contain only
 enclosures. Both cabinets (coarsest granularity) contain only racks.
- encl 1 contains all the hosts in host group hg123 except for host A and host B and is administered by user11 and user14. Note that host A and host B must be members of host group hg123 to be excluded from encl 1. encl 1 shows condensed output.
- encl 2 contains host group hg456 and is administered by the cluster administrator. encl 2 shows condensed output.
- encl 3 contains host A and host B. usergroup B is the administrator for encl 3. encl 3 shows uncondensed output.
- encl 4 contains host group hgroupX except for host B. Since each host can appear in only one
 enclosure and host B is already in encl 3, it cannot be in encl 4. encl 4 is administered by the cluster
 administrator. encl 4 shows uncondensed output.
- encl 5 contains all hosts starting with the string host C except for hosts host C101 to host C150, and is administered by usergroup J. encl 5 shows condensed output.
- rack1 contains encl 1, encl 2, and encl 3. rack1 shows condensed output.
- rack2 contains encl 4, and encl 5. rack2 shows uncondensed output.
- rack3 contains encl 6. rack3 shows uncondensed output.
- cbnt1 contains rack1 and rack2. cbnt1 shows condensed output.
- cbnt 2 contains rack3. Even though rack3 only contains encl6, cbnt 3 cannot contain encl 6
 directly because that would mean skipping the level associated with compute unit type rack.
 cbnt 2 shows uncondensed output.

Automatic time-based configuration

Variable configuration is used to automatically change LSF configuration based on time windows. You define automatic configuration changes in l sb. hosts by using if-else constructs and time expressions. After you change the files, reconfigure the cluster with the badmin reconfig command.

The expressions are evaluated by LSF every 10 minutes based on mbat chd start time. When an expression evaluates true, LSF dynamically changes the configuration based on the associated configuration

statements. Reconfiguration is done in real time without restarting mbatchd, providing continuous system availability.

Example

In the following example, the #if, #else, #endif are not interpreted as comments by LSF but as if-else constructs.

Begin Host						
HOST_NAME	r15s	r1m	pg			
host1	3/5	3/5	12/20			
#if time(5:	16: 30- 1	1: 8: 30	20: 00- 8: 30)			
host2	3/5	3/5	12/20			
#el se						
0host2	2/3	2/3	10/12			
#endi f						
host3	3/5	3/5	12/20			
End Host						

Isb.modules

The 1 sb. modul es file contains configuration information for LSF scheduler and resource broker modules. The file contains only one section, named Pl ugi nModul e.

This file is optional. If no scheduler or resource broker modules are configured, LSF uses the default scheduler plugin modules named schmod_default and schmod_fcfs.

The l sb. modul es file is stored in the directory LSB_CONFDIR/cluster_name/configdir, where LSB_CONFDIR is defined in l sf. conf.

Changing lsb.modules configuration

After making any changes to l sb. modul es, run badmi n reconfig to reconfigure mbatchd.

PluginModule section

Description

Defines the plugin modules for the LSF scheduler and LSF resource broker. If this section is not configured, LSF uses the default scheduler plugin modules named schmod_default and schmod_fcfs, which enable the LSF default scheduling features.

Example PluginModule section

The following PluginModule section enables all scheduling policies provided by LSF:

Begin PluginModule			
SCH_PLUGI N	RB_PLUGI N	SCH_DI SABLE_PHASES	
schmod_default	()	()	
schmod_fairshare	()	()	
schmod_fcfs	()	()	
schmod_l i mi t	()	()	
schmod_parallel	()	()	
schmod_reserve	()	()	
schmod_preemption	()	()	
schmod_advrsv	()	()	
schmod_mc	()	()	
schmod_j obwei ght	()	()	
schmod_cpuset	()	()	
schmod_pset	()	()	
schmod_ps	()	()	
schmod_aps	()	()	
End PluginModule			

PluginModule section structure

The first line consists of the following keywords:

SCH_PLUGIN

- RB_PLUGIN
- SCH DISABLE PHASES

They identify the scheduler plugins, resource broker plugins, and the scheduler phase to be disabled for the plugins that you wish to configure.

Each subsequent line describes the configuration information for one scheduler plugin module, resource broker plugin module, and scheduler phase, if any, to be disabled for the plugin. Each line must contain one entry for each keyword. Use empty parentheses () or a dash (-) to specify the default value for an entry.

SCH PLUGIN

Description

Required. The SCH_PLUGIN column specifies the shared module name for the LSF scheduler plugin. Scheduler plugins are called in the order they are listed in the PluginModule section.

By default, all shared modules for scheduler plugins are located in LSF_LIBDIR. On UNIX, you can also specify a full path to the name of the scheduler plugin.

The following modules are supplied with LSF:

schmod_default

Enables the default LSF scheduler features.

schmod fcfs

Enables the first-come, first-served (FCFS) scheduler features. $schmod_fcfs$ can appear anywhere in the SCH_PLUGIN list. By default, if $schmod_fcfs$ is not configured in 1 sb. modul es, it is loaded automatically along with $schmod_default$.

Source code (sch. mod. fcfs. c) for the schmod_fcfs scheduler plugin module is installed in the directory

LSF_TOP/8. 0/misc/examples/external_plugin/

Use the LSF scheduler plugin SDK to modify the FCFS scheduler module code to suit the job scheduling requirements of your site.

See *IBM Platform LSF Programmer's Guide* for more detailed information about writing, building, and configuring your own custom scheduler plugins.

schmod fairshare

Enables the LSF fairshare scheduling features.

schmod_limit

Enables the LSF resource allocation limit features.

schmod_parallel

Enables scheduling of parallel jobs submitted with bsub - n.

schmod reserve

Enables the LSF resource reservation features.

To enable processor reservation, backfill, and memory reservation for parallel jobs, you must configure both schmod_parallel and schmod_reserve in lsb. modules. If only schmod_reserve is configured, backfill and memory reservation are enabled only for sequential jobs, and processor reservation is not enabled.

schmod_preemption

Enables the LSF preemption scheduler features.

schmod advrsv

Handles jobs that use advance reservations (brsvadd, brsvs, brsvdel, bsub - U)

schmod_cpuset

Handles jobs that use SGI cpusets (bsub -ext[sched] "CPUSET[cpuset_options]")

The schmod_cpuset plugin name must be configured after the standard LSF plugin names in the PluginModule list.

schmod_mc

Enables MultiCluster job forwarding

schmod_ps

Enables resource ownership functionality of EGO-enabled SLA scheduling policies

schmod_pset

Enables scheduling policies required for jobs that use HP-UX processor sets (pset) allocations (bsub - ext[sched] "PSET[topology]")

The schmod_pset plugin name must be configured after the standard LSF plugin names in the PluginModule list.

schmod_aps

Enables absolute priority scheduling (APS) policies configured by APS_PRIORITY in 1 sb. queues.

The schmod_aps plugin name must be configured after the schmod_fai rshare plugin name in the PluginModule list, so that the APS value can override the fairshare job ordering decision.

schmod_jobweight

An optional scheduler plugin module to enable Cross-Queue Job Weight scheduling policies. The schmod_j obwei ght plugin must be listed before schmod_cpuset and after all other scheduler plugin modules.

You should not use job weight scheduling together with fairshare scheduling or job preemption. To avoid scheduling conflicts, you should comment out schmod_fairshare and schmod_preemption in lsb. modules.

Scheduler plugin SDK

Use the LSF scheduler plugin SDK to write customized scheduler modules that give you more flexibility and control over job scheduling. Enable your custom scheduling policies by configuring your modules under SCH_PLUGIN in the PluginModules section of 1 sb. modul es.

The directory

LSF_TOP/8. 0/misc/examples/external_plugin/

contains sample plugin code. See *IBM Platform LSF Programmer's Guide* for more detailed information about writing, building, and configuring your own custom scheduler plugins.

RB_PLUGIN

Description

RB_PLUGIN specifies the shared module name for resource broker plugins. Resource broker plugins collect and update job resource accounting information, and provide it to the scheduler.

Normally, for each scheduler plugin module, there is a corresponding resource broker plugin module to support it. However, the resource broker also supports multiple plugin modules for one scheduler plugin module.

For example, a fairshare policy may need more than one resource broker plugin module to support it if the policy has multiple configurations.

A scheduler plugin can have one, multiple, or none RB plugins corresponding to it.

Example

NAME	RB_PLUGI N
schmod_default	()
schmod_fairshare	(rb_fairshare)

Default

Undefined

SCH_DISABLE_PHASES

Description

SCH_DISABLE_PHASES specifies which scheduler phases, if any, to be disabled for the plugin. LSF scheduling has four phases:

- 1. Preprocessing the scheduler checks the readiness of the job for scheduling and prepares a list of ready resource seekers. It also checks the start time of a job, and evaluates any job dependencies.
- 2. Match/limit the scheduler evaluates the job resource requirements and prepares candidate hosts for jobs by matching jobs with resources. It also applies resource allocation limits. Jobs with all required resources matched go on to order/allocation phase. Not all jobs are mapped to all potential available resources. Jobs without any matching resources will not go through the Order/Allocation Phase but can go through the Post-processing phase, where preemption may be applied to get resources the job needs to run.
- Order/allocation the scheduler sorts jobs with matched resources and allocates resources for each
 job, assigning job slot, memory, and other resources to the job. It also checks if the allocation satisfies
 all constraints defined in configuration, such as queue slot limit, deadline for the job, etc.
 - 1. In the order phase, the scheduler applies policies such as FCFS, Fairshare and Host-partition and consider job priorities within user groups and share groups. By default, job priority within a pool of jobs from the same user is based on how long the job has been pending.
 - 2. For resource intensive jobs (jobs requiring a lot of CPUs or a large amount of memory), resource reservation is performed so that these jobs are not starved.

- 3. When all the currently available resources are allocated, jobs go on to post-processing.
- 4. Post-processing the scheduler prepares jobs from the order/allocation phase for dispatch and applies preemption or backfill policies to obtain resources for the jobs that have completed preprocessing or match/limit phases, but did not have resources available to enter the next scheduling phase.

Each scheduler plugin module invokes one or more scheduler phase. The processing for a give phase can be disabled or skipped if:

The plugin module does not need to do any processing for that phase or the processing has already been done by a previous plugin module in the list.

The scheduler will not invoke phases marked by SCH_DISABLE_PHASES when scheduling jobs.

None of the plugins provided by LSF should require phases to be disabled, but your own custom plugin modules using the scheduler SDK may need to disable one or more scheduler phases.

Example

In the following configuration, the schmod_cust om plugin module disables the order allocation (3) and post-processing (4) phases:

NAME	SCH_DI SABLE_PHASES
schmod_default	()
schmod_custom	(3,4)

Default

Undefined

Isb.params

The lsb. params file defines general parameters used by the LSF system. This file contains only one section, named Parameters. mbatchd uses lsb. params for initialization. The file is optional. If not present, the LSF-defined defaults are assumed.

Some of the parameters that can be defined in 1 sb. params control timing within the system. The default settings provide good throughput for long-running batch jobs while adding a minimum of processing overhead in the batch daemons.

This file is installed by default in LSB_CONFDIR/cluster_name/configdir.

Changing lsb.params configuration

After making any changes to 1 sb. params, run badmi n reconfig to reconfigure mbatchd.

Automatic time-based configuration

Variable configuration is used to automatically change LSF configuration based on time windows. You define automatic configuration changes in 1 sb. params by using if-else constructs and time expressions. After you change the files, reconfigure the cluster with the badmin reconfig command.

The expressions are evaluated by LSF every 10 minutes based on mbatchd start time. When an expression evaluates true, LSF dynamically changes the configuration based on the associated configuration statements. Reconfiguration is done in real time without restarting mbatchd, providing continuous system availability.

Example

```
# if 18: 30-19: 30 is your short job express period, but
# you want all jobs going to the short queue by default
# and be subject to the thresholds of that queue
# for all other hours, normal is the default queue
# if time(18: 30-19: 30)
DEFAULT_QUEUE=short
# el se
DEFAULT_QUEUE=normal
# endi f
```

Parameters section

This section and all the keywords in this section are optional. If keywords are not present, the default values are assumed.

Parameters set at installation

The following parameter values are set at installation for the purpose of testing a new cluster:

Begin Parameters	
DEFAULT_QUEUE = normal	#default job queue name
MBD_SLEEP_TIME = 20 default)	#Time used for calculating parameter values (60 secs is
SBD_SLEEP_TIME = 15	#sbatchd scheduling interval (30 secs is default)
$JOB_ACCEPT_INTERVAL = 1$	#interval for any host to accept a job
	#(default is 1 (one-fold of MBD_SLEEP_TIME))
End Parameters	

With this configuration, jobs submitted to the LSF system will be started on server hosts quickly. If this configuration is not suitable for your production use, you should either remove the parameters to take the default values, or adjust them as needed.

For example, to avoid having jobs start when host load is high, increase JOB_ACCEPT_INTERVAL so that the job scheduling interval is longer to give hosts more time to adjust load indices after accepting jobs.

In production use, you should define DEFAULT_QUEUE to the normal queue, MBD_SLEEP_TIME to 60 seconds (the default), and SBD_SLEEP_TIME to 30 seconds (the default).

ABS RUNLIMIT

Syntax

ABS_RUNLIMIT=y | Y

Description

If set, absolute (wall-clock) run time is used instead of normalized run time for all jobs submitted with the following values:

- Run time limit or run time estimate specified by the -W or -We option of bsub
- RUNLIMIT queue-level parameter in 1 sb. queues
- RUNLIMIT application-level parameter in 1 sb. appl i cati ons
- RUNTIME parameter in l sb. appl i cati ons

The run time estimates and limits are not normalized by the host CPU factor.

Default

Y (run limit and run time estimate are normalized)

ACCT_ARCHIVE_AGE

Syntax

ACCT_ARCHIVE_AGE=days

Description

Enables automatic archiving of LSF accounting log files, and specifies the archive interval. LSF archives the current log file if the length of time from its creation date exceeds the specified number of days.

See also

- ACCT_ARCHIVE_SIZE also enables automatic archiving
- ACCT_ARCHIVE_TIME also enables automatic archiving
- MAX ACCT ARCHIVE FILE enables automatic deletion of the archives

Default

-1 (Not defined; no limit to the age of l sb. acct)

ACCT_ARCHIVE_SIZE

Syntax

ACCT_ARCHIVE_SIZE=kilobytes

Description

Enables automatic archiving of LSF accounting log files, and specifies the archive threshold. LSF archives the current log file if its size exceeds the specified number of kilobytes.

See also

- ACCT_ARCHIVE_SIZE also enables automatic archiving
- ACCT_ARCHIVE_TIME also enables automatic archiving
- MAX ACCT ARCHIVE FILE enables automatic deletion of the archives

Default

-1 (Not defined; no limit to the size of l sb. acct)

ACCT_ARCHIVE_TIME

Syntax

ACCT_ARCHIVE_TIME=hh:mm

Description

Enables automatic archiving of LSF accounting log file $l \ sb. \ acct$, and specifies the time of day to archive the current log file.

See also

- ACCT_ARCHIVE_SIZE also enables automatic archiving
- ACCT_ARCHIVE_TIME also enables automatic archiving
- MAX ACCT_ARCHIVE FILE enables automatic deletion of the archives

Default

Not defined (no time set for archiving l sb. acct)

ADVRSV_USER_LIMIT

Syntax

ADVRSV_USER_LIMIT=integer

Description

Sets the number of advanced reservations each user or user group can have in the system.

Valid values

1-10000

Default

100

CHUNK JOB DURATION

Syntax

CHUNK JOB DURATION=*minutes*

Description

Specifies a CPU limit, run limit, or estimated run time for jobs submitted to a chunk job queue to be chunked.

When CHUNK_JOB_DURATION is set, the CPU limit or run limit set at the queue level (CPULIMIT or RUNLMIT), application level (CPULIMIT or RUNLIMIT), or job level (-c or -W bsub options), or the run time estimate set at the application level (RUNTIME) must be less than or equal to CHUNK_JOB_DURATION for jobs to be chunked.

If CHUNK JOB DURATION is set, jobs are not chunked if:

- · No CPU limit, run time limit, or run time estimate is specified at any level, or
- A CPU limit, run time limit, or run time estimate is greater than the value of CHUNK JOB DURATION.

The value of CHUNK_JOB_DURATION is displayed by bparams -1.

Examples

- CHUNK_JOB_DURATION is not defined:
 - · Jobs with no CPU limit, run limit, or run time estimate are chunked
 - Jobs with a CPU limit, run limit, or run time estimate less than or equal to 30 are chunked
 - Jobs with a CPU limit, run limit, or run time estimate greater than 30 are *not* chunked
- CHUNK_JOB_DURATION=90:
 - Jobs with no CPU limit, run limit, or run time estimate are *not* chunked
 - Jobs with a CPU limit, run limit, or run time estimate less than or equal to 90 are chunked
 - Jobs with a CPU limit, run limit, or run time estimate greater than 90 are not chunked

Default

-1 (Not defined.)

CLEAN_PERIOD

Syntax

CLEAN_PERIOD=seconds

Description

For non-repetitive jobs, the amount of time that job records for jobs that have finished or have been killed are kept in mbat chd core memory after they have finished.

Users can still see all jobs after they have finished using the bj obs command.

For jobs that finished more than CLEAN PERIOD seconds ago, use the bhi st command.

Default

3600 (1 hour)

COMMITTED_RUN_TIME_FACTOR

Syntax

COMMITTED_RUN_TIME_FACTOR=number

Description

Used only with fairshare scheduling. Committed run time weighting factor.

In the calculation of a user's dynamic priority, this factor determines the relative importance of the committed run time in the calculation. If the -W option of bsub is not specified at job submission and a RUNLIMIT has not been set for the queue, the committed run time is not considered.

This parameter can also be set for an individual queue in 1 sb. queues. If defined, the queue value takes precedence.

Valid values

Any positive number between 0.0 and 1.0

Default

0.0

COMPUTE_UNIT_TYPES

Syntax

COMPUTE_UNIT_TYPES=type1 type2...

Description

Used to define valid compute unit types for topological resource requirement allocation.

The order in which compute unit types appear specifies the containment relationship between types. Finer grained compute unit types appear first, followed by the coarser grained type that contains them, and so on.

At most one compute unit type in the list can be followed by an exclamation mark designating it as the default compute unit type. If no exclamation mark appears, the first compute unit type in the list is taken as the default type.

Valid values

Any space-separated list of alphanumeric strings.

Default

Not defined

Example

COMPUTE_UNIT_TYPES=cell enclosure! rack

Specifies three compute unit types, with the default type encl osure. Compute units of type rack contain type encl osure, and of type encl osure contain type cell.

CONDENSE_PENDING_REASONS

Syntax

CONDENSE_PENDING_REASONS=ALL | PARTIAL |N

Description

Set to **ALL**, condenses all host-based pending reasons into one generic pending reason. This is equivalent to setting **CONDENSE_PENDING_REASONS=Y**.

Set to **PARTIAL**, condenses all host-based pending reasons except shared resource pending reasons into one generic pending reason.

If enabled, you can request a full pending reason list by running the following command:

badmin diagnose j obI d

Tip:

You must be LSF administrator or a queue administrator to run this command.

Examples

• **CONDENSE_PENDING_REASONS=ALL** If a job has no other pending reason, bj obs - p or bj obs - 1 displays the following:

Individual host based reasons

 CONDENSE_PENDING_REASONS=N The pending reasons are not suppressed. Host-based pending reasons are displayed.

Default

N

CPU_TIME_FACTOR

Syntax

CPU_TIME_FACTOR=number

Description

Used only with fairshare scheduling. CPU time weighting factor.

In the calculation of a user's dynamic share priority, this factor determines the relative importance of the cumulative CPU time used by a user's jobs.

This parameter can also be set for an individual queue in 1 sb. queues. If defined, the queue value takes precedence.

Default

0.7

DEFAULT_APPLICATION

Syntax

DEFAULT_APPLICATION=application_profile_name

Description

The name of the default application profile. The application profile must already be defined in l sb. appl i cat i ons.

When you submit a job to LSF without explicitly specifying an application profile, LSF associates the job with the specified application profile.

Default

Not defined. When a user submits a job without explicitly specifying an application profile, and no default application profile is defined by this parameter, LSF does not associate the job with any application profile.

DEFAULT_HOST_SPEC

Syntax

DEFAULT_HOST_SPEC=host_name | host_model

Description

The default CPU time normalization host for the cluster.

The CPU factor of the specified host or host model will be used to normalize the CPU time limit of all jobs in the cluster, unless the CPU time normalization host is specified at the queue or job level.

Default

Not defined

DEFAULT_JOBGROUP

Syntax

DEFAULT_JOBGROUP=job_group_name

Description

The name of the default job group.

When you submit a job to LSF without explicitly specifying a job group, LSF associates the job with the specified job group. The LSB_DEFAULT_JOBGROUP environment variable overrrides the setting of DEFAULT_JOBGROUP. The bsub - g job_group_name option overrides both LSB_DEFAULT_JOBGROUP and DEFAULT_JOBGROUP.

Default job group specification supports macro substitution for project name (%p) and user name (%u). When you specify bsub - P *project_name*, the value of %p is the specified project name. If you do not specify a project name at job submission, %p is the project name defined by setting the environment variable LSB_DEFAULTPROJECT, or the project name specified by DEFAULT_PROJECT in 1 sb. params. the default project name is default.

For example, a default job group name specified by DEFAULT_JOBGROUP=/canada/%p/%u is expanded to the value for the LSF project name and the user name of the job submission user (for example, /canada/proj ects/user1).

Job group names must follow this format:

- Job group names must start with a slash character (/). For example, DEFAULT_JOBGROUP=/A/B/C is correct, but DEFAULT_JOBGROUP=A/B/C is not correct.
- Job group names cannot end with a slash character (/). For example, DEFAULT_JOBGROUP=/A/ is not correct.
- Job group names cannot contain more than one slash character (/) in a row. For example, job group names like DEFAULT_JOBGROUP=/A//B or DEFAULT_JOBGROUP=A///B are not correct.
- Job group names cannot contain spaces. For example, DEFAULT_JOBGROUP=/A/B C/D is not correct.
- Project names and user names used for macro substitution with %p and %u cannot start or end with slash character (/).
- Project names and user names used for macro substitution with %p and %u cannot contain spaces or more than one slash character (/) in a row.
- Project names or user names containing slash character (/) will create separate job groups. For
 example, if the project name is canada/proj ects, DEFAULT_JOBGROUP=/%p results in a job group
 hierarchy /canada/proj ects.

Example

DEFAULT_JOBGROUP=/canada/projects

Default

Not defined. When a user submits a job without explicitly specifying job group name, and the LSB_DEFAULT_JOBGROUP environment variable is not defined, LSF does not associate the job with any job group.

DEFAULT_PROJECT

Syntax

DEFAULT_PROJECT=*project_name*

Description

The name of the default project. Specify any string.

Project names can be up to 59 characters long.

When you submit a job without specifying any project name, and the environment variable LSB_DEFAULTPROJECT is not set, LSF automatically assigns the job to this project.

Default

defaul t

DEFAULT_QUEUE

Syntax

DEFAULT_QUEUE=queue_name...

Description

Space-separated list of candidate default queues (candidates must already be defined in 1 sb. queues).

When you submit a job to LSF without explicitly specifying a queue, and the environment variable LSB_DEFAULTQUEUE is not set, LSF puts the job in the first queue in this list that satisfies the job's specifications subject to other restrictions, such as requested hosts, queue status, etc.

Default

This parameter is set at installation to DEFAULT_QUEUE=normal interactive.

When a user submits a job to LSF without explicitly specifying a queue, and there are no candidate default queues defined (by this parameter or by the user's environment variable LSB_DEFAULTQUEUE), LSF automatically creates a new queue named default, using the default configuration, and submits the job to that queue.

DEFAULT_SLA_VELOCITY

Syntax

DEFAULT_SLA_VELOCITY=num_slots

Description

For EGO-enabled SLA scheduling, the number of slots that the SLA should request for parallel jobs running in the SLA.

By default, an EGO-enabled SLA requests slots from EGO based on the number of jobs the SLA needs to run. If the jobs themselves require more than one slot, they will remain pending. To avoid this for parallel

jobs, set DEFAULT_SLA_VELOCITY to the total number of slots that are expected to be used by parallel jobs.

Default

1

DEFAULT USER GROUP

Syntax

DEFAULT_USER_GROUP=default_user_group

Description

When DEFAULT_USER_GROUP is defined, all submitted jobs must be associated with a user group. Jobs without a user group specified will be associated with *default_user_group*, where *default_user_group* is a group configured in 1 sb. users and contains al 1 as a direct member. DEFAULT_USER_GROUP can only contain one user group.

If the default user group does not have shares assigned in a fairshare queue, jobs can still run from the default user group and are charged to the highest priority account the user can access in the queue. A job submitted to a user group without shares in a specified fairshare queue is transferred to the default user group where the job can run. A job modified or moved using bmod or bswitch may similarly be transferred to the default user group.

Note:

The default user group should be configured in most queues and have shares in most fairshare queues to ensure jobs run smoothly.

Jobs linked to a user group, either through the *default_user_group* or a user group specified at submission using bsub - G, allow the user group administrator to issue job control operations. User group administrator rights are configured in the UserGroup section 1 sb. users, under GROUP_ADMIN.

When DEFAULT_USER_GROUP is not defined, jobs do not require a user group association.

After adding or changing DEFAULT_USER_GROUP in 1 sb. params, use badmin reconfig to reconfigure your cluster

Default

Not defined. When a user submits a job without explicitly specifying user group name, LSF does not associate the job with any user group.

See also

STRICT UG CONTROL, ENFORCE ONE UG LIMIT

DETECT_IDLE_JOB_AFTER

Syntax

DETECT_IDLE_JOB_AFTER=time_minutes

Description

The minimum job run time before mbat chd reports that the job is idle.

Default

20 (mbat chd checks if the job is idle after 20 minutes of run time)

DISABLE_UACCT_MAP

Syntax

DISABLE_UACCT_MAP=y | Y

Description

Specify y or Y to disable user-level account mapping.

Default

N

EADMIN_TRIGGER_DURATION

Syntax

EADMIN_TRIGGER_DURATION=minutes

Description

Defines how often LSF_SERVERDI R/eadmi n is invoked once a job exception is detected. Used in conjunction with job exception handling parameters JOB_IDLE, JOB_OVERRUN, and JOB_UNDERRUN in 1 sb. queues.

Tip:

Tune EADMIN_TRIGGER_DURATION carefully. Shorter values may raise false alarms, longer values may not trigger exceptions frequently enough.

Example

EADMI N_TRI GGER_DURATI ON=5

Default

1 minute

ENABLE_DEFAULT_EGO_SLA

Syntax

ENABLE_DEFAULT_EGO_SLA=service_class_name | consumer_name

Description

The name of the default service class or EGO consumer name for EGO-enabled SLA scheduling. If the specified SLA does not exist in 1 sb. servi ecl asses, LSF creates one with the specified consumer name, velocity of 1, priority of 1, and a time window that is always open.

If the name of the default SLA is not configured in 1 sb. servi cescl asses, it must be the name of a valid EGO consumer.

ENABLE_DEFAULT_EGO_SLA is required to turn on EGO-enabled SLA scheduling. All LSF resource management is delegated to EGO, and all LSF hosts are under EGO control. When all jobs running in the default SLA finish, all allocated hosts are released to EGO after the default idle timeout of 120 seconds (configurable by MAX_HOST_IDLE_TIME in 1 sb. servi cecl asses).

When you submit a job to LSF without explicitly using the -sla option to specify a service class name, LSF puts the job in the default service class specified by *service_class_name*.

Default

Not defined. When a user submits a job to LSF without explicitly specifying a service class, and there is no default service class defined by this parameter, LSF does not attach the job to any service class.

ENABLE_EVENT_STREAM

Syntax

ENABLE_EVENT_STREAM=Y | N

Description

Used only with event streaming for system performance analysis tools.

Default

N (event streaming is not enabled)

ENABLE_EXIT_RATE_PER_SLOT

Syntax

ENABLE_EXIT_RATE_PER_SLOT=Y | N

Description

Scales the actual exit rate thresholds on a host according to the number of slots on the host. For example, if **EXIT_RATE=2** in 1 sb. hosts or **GLOBAL_EXIT_RATE=2** in 1 sb. params, and the host has 2 job slots, the job exit rate threshold will be 4.

Default

N

ENABLE_HIST_RUN_TIME

Syntax

ENABLE_HIST_RUN_TIME=y | Y | n | N

Description

Used only with fairshare scheduling. If set, enables the use of historical run time in the calculation of fairshare scheduling priority.

This parameter can also be set for an individual queue in 1 sb. queues. If defined, the queue value takes precedence.

Default

Ν

ENABLE_HOST_INTERSECTION

Syntax

ENABLE_HOST_INTERSECTION=Y | N

Description

When enabled, allows job submission to any host that belongs to the intersection created when considering the queue the job was submitted to, any advance reservation hosts, or any hosts specified by bsub - m at the time of submission.

When disabled job submission with hosts specified can be accepted only if specified hosts are a subset of hosts defined in the queue.

The following commands are affected by ENABLE_HOST_INTERSECTION:

- bsub
- bmod
- bmi g
- brestart
- bswitch

If no hosts exist in the intersection, the job is rejected.

Default

N

ENABLE_USER_RESUME

Syntax

ENABLE_USER_RESUME=Y | N

Description

Defines job resume permissions.

When this parameter is defined:

- If the value is Y, users can resume their own jobs that have been suspended by the administrator.
- If the value is N, jobs that are suspended by the administrator can only be resumed by the administrator or root; users do not have permission to resume a job suspended by another user or the administrator. Administrators can resume jobs suspended by users or administrators.

Default

N (users cannot resume jobs suspended by administrator)

ENFORCE ONE UG LIMITS

Syntax

ENFORCE_ONE_UG_LIMITS=Y | N

Upon job submission with the -G option and when user groups have overlapping members, defines whether only the specified user group's limits (or those of any parent group) are enforced or whether the most restrictive user group limits of any overlapping user/user group are enforced.

• If the value is Y, only the limits defined for the user group that you specify with -G during job submission apply to the job, even if there are overlapping members of groups.

If you have nested user groups, the limits of a user's group parent also apply.

View existing limits by running bl i mi ts.

• If the value is N and the user group has members that overlap with other user groups, the strictest possible limits (that you can view by running bl i mi ts) defined for any of the member user groups are enforced for the job.

If the user group specified at submission is no longer valid when the job runs and **ENFORCE_ONE_UG_LIMIT=Y**, only the user limit is applied to the job. This can occur if the user group is deleted or the user is removed from the user group.

Default

N

ENFORCE_UG_TREE

Syntax

ENFORCE_UG_TREE=Y | N

Description

When **ENFORCE_UG_TREE=Y** is defined, user groups must form a tree-like structure, with each user group having at most one parent. User group definitions in the UserGroup section of l sb. users will be checked in configuration order, and any user group appearing in GROUP_MEMBER more than once will be ignored after the first occurence.

After adding or changing ENFORCE_UG_TREE in 1 sb. params, use badmin reconfigure your cluster

Default

N (Not defined.)

See also

DEFAULT_USER_GROUP, ENFORCE_ONE_UG_LIMIT, STRICT_UG_CONTROL

EVENT_STREAM_FILE

Syntax

EVENT_STREAM_FILE=*file_path*

Description

Determines the path to the event data stream file used by system performance analysis tools.

Default

LSF_TOP/work/cluster_name/logdir/stream/lsb.stream

EVENT_UPDATE_INTERVAL

Syntax

EVENT_UPDATE_INTERVAL=seconds

Description

Used with duplicate logging of event and accounting log files. LSB_LOCALDIR in 1 sf. conf must also be specified. Specifies how often to back up the data and synchronize the directories (LSB_SHAREDIR and LSB_LOCALDIR).

If you do not define this parameter, the directories are synchronized when data is logged to the files, or when mbat chd is started on the first LSF master host. If you define this parameter, mbat chd synchronizes the directories only at the specified time intervals.

Use this parameter if NFS traffic is too high and you want to reduce network traffic.

Valid values

1 to 2147483647

Recommended values

Between 10 and 30 seconds, or longer depending on the amount of network traffic.

Note:

Avoid setting the value to exactly 30 seconds, because this will trigger the default behavior and cause mbat chd to synchronize the data every time an event is logged.

Default

-1 (Not defined.)

See also

LSB_LOCALDIR in 1 sf. conf

EXIT_RATE_TYPE

Syntax

EXIT_RATE_TYPE=[JOBEXIT | JOBEXIT_NONLSF] [JOBINIT] [HPCINIT]

Description

When host exception handling is configured (EXIT_RATE in 1 sb. hosts or GLOBAL_EXIT_RATE in 1 sb. params), specifies the type of job exit to be handled.

JOBEXIT

Job exited after it was dispatched and started running.

JOBEXIT_NONLSF

Job exited with exit reasons related to LSF and not related to a host problem (for example, user action or LSF policy). These jobs are not counted in the exit rate calculation for the host

JOBINIT

Job exited during initialization because of an execution environment problem. The job did not actually start running.

HPCINIT

HPC job exited during initialization because of an execution environment problem. The job did not actually start running.

Default

JOBEXIT NONLSF

EXTEND_JOB_EXCEPTION_NOTIFY

Syntax

EXTEND_JOB_EXCEPTION_NOTIFY=Y | y | N | n

Description

 $Sends\ extended\ information\ about\ a\ job\ exception\ in\ a\ notification\ email\ sent\ when\ a\ job\ exception\ occurs.$ Extended\ information\ includes:

- JOB ID
- RUN_TIME
- IDLE_FACTOR (Only applicable if the job has been idle.)
- USER
- QUEUE
- EXEC_HOST
- JOB NAME

You can also set format options of the email in the eadmin script, located in the *LSF_SERVERDIR* directory. Valid values are fixed or full.

N (Notifcation for job exception is standard and includes only job ID and either run time or idle factor.)

FAIRSHARE_ADJUSTMENT_FACTOR

Syntax

FAIRSHARE_ADJUSTMENT_FACTOR=number

Description

Used only with fairshare scheduling. Fairshare adjustment plugin weighting factor.

In the calculation of a user's dynamic share priority, this factor determines the relative importance of the user-defined adjustment made in the fairshare plugin (libfairshareadjust.*).

A positive float number both enables the fairshare plugin and acts as a weighting factor.

This parameter can also be set for an individual queue in 1 sb. queues. If defined, the queue value takes precedence.

Default

0 (user-defined adjustment made in the fairshare plugin not used)

GLOBAL_EXIT_RATE

Syntax

GLOBAL_EXIT_RATE=number

Description

Specifies a cluster-wide threshold for exited jobs. Specify a number of jobs. If EXIT_RATE is not specified for the host in 1 sb. hosts, GLOBAL_EXIT_RATE defines a default exit rate for all hosts in the cluster. Host-level EXIT_RATE overrides the GLOBAL_EXIT_RATE value.

If the number of jobs that exit over the period of time specified by JOB_EXIT_RATE_DURATION (5 minutes by default) exceeds the number of jobs that you specify as the threshold in this parameter, LSF invokes LSF_SERVERDIR/eadmin to trigger a host exception.

Example

GLOBAL_EXIT_RATE=10 defines a job exit rate of 10 jobs for all hosts.

Default

2147483647 (Unlimited threshold.)

HIST_HOURS

Syntax

HIST HOURS=**hours**

Used only with fairshare scheduling. Determines a rate of decay for cumulative CPU time, run time, and historical run time.

To calculate dynamic user priority, LSF scales the actual CPU time and the run time using a decay factor, so that 1 hour of recently-used time is equivalent to 0.1 hours after the specified number of hours has elapsed.

To calculate dynamic user priority with decayed run time and historical run time, LSF scales the accumulated run time of finished jobs and run time of running jobs using the same decay factor, so that 1 hour of recently-used time is equivalent to 0.1 hours after the specified number of hours has elapsed.

When **HIST_HOURS=0**, CPU time and run time accumulated by running jobs is not decayed.

This parameter can also be set for an individual queue in 1 sb. queues. If defined, the queue value takes precedence.

Default

5

JOB_ACCEPT_INTERVAL

Syntax

JOB_ACCEPT_INTERVAL=integer

Description

The number you specify is multiplied by the value of 1 sb. params MBD_SLEEP_TIME (60 seconds by default). The result of the calculation is the number of seconds to wait after dispatching a job to a host, before dispatching a second job to the same host.

If 0 (zero), a host may accept more than one job. By default, there is no limit to the total number of jobs that can run on a host, so if this parameter is set to 0, a very large number of jobs might be dispatched to a host all at once. This can overload your system to the point that it will be unable to create any more processes. It is not recommended to set this parameter to 0.

JOB_ACCEPT_INTERVAL set at the queue level (1 sb. queues) overrides JOB_ACCEPT_INTERVAL set at the cluster level (1 sb. params).

Note:

The parameter JOB_ACCEPT_INTERVAL only applies when there are running jobs on a host. A host running a short job which finishes before JOB_ACCEPT_INTERVAL has elapsed is free to accept a new job without waiting.

Default

0

JOB_ATTA_DIR

Syntax

JOB_ATTA_DIR=directory

Description

The shared directory in which mbatchd saves the attached data of messages posted with the bpost command.

Use JOB_ATTA_DIR if you use bpost and bread to transfer large data files between jobs and want to avoid using space in LSB_SHAREDDIR. By default, the bread command reads attachment data from the JOB_ATTA_DIR directory.

JOB_ATTA_DIR should be shared by all hosts in the cluster, so that any potential LSF master host can reach it. Like LSB_SHAREDIR, the directory should be owned and writable by the primary LSF administrator. The directory must have at least 1 MB of free space.

The attached data will be stored under the directory in the format:

JOB_ATTA_DIR/timestamp.jobid.msgs/msg\$msgindex

On UNIX, specify an absolute path. For example:

JOB_ATTA_DIR=/opt/share/lsf_work

On Windows, specify a UNC path or a path with a drive letter. For example:

JOB_ATTA_DIR=\\HostA\temp\lsf_work

or

JOB_ATTA_DIR=D: \temp\lsf_work

After adding JOB_ATTA_DIR to 1 sb. params, use badmin reconfig to reconfigure your cluster.

Valid values

JOB_ATTA_DIR can be any valid UNIX or Windows path up to a maximum length of 256 characters.

Default

Not defined

If JOB_ATTA_DIR is not specified, job message attachments are saved in LSB_SHAREDI R/i nf o/.

JOB DEP LAST SUB

Description

Used only with job dependency scheduling.

If set to 1, whenever dependency conditions use a job name that belongs to multiple jobs, LSF evaluates only the most recently submitted job.

Otherwise, all the jobs with the specified name must satisfy the dependency condition.

Running jobs are not affected when JOB_DEP_LAST_SUB is changed. To reevaluate job dependencies after changing JOB_DEP_LAST_SUB, run badmi n mbdrestart.

1

JOB_EXIT_RATE_DURATION

Description

Defines how long LSF waits before checking the job exit rate for a host. Used in conjunction with EXIT_RATE in 1 sb. hosts for LSF host exception handling.

If the job exit rate is exceeded for the period specified by JOB_EXIT_RATE_DURATION, LSF invokes LSF_SERVERDIR/eadmin to trigger a host exception.

Tuning

Tip:

Tune JOB_EXIT_RATE_DURATION carefully. Shorter values may raise false alarms, longer values may not trigger exceptions frequently enough.

Example

JOB_EXIT_RATE_DURATION=10

Default

5 minutes

JOB_GROUP_CLEAN

Syntax

JOB_GROUP_CLEAN=Y | N

Description

If **JOB_GROUP_CLEAN = Y**, implicitly created job groups that are empty and have no limits assigned to them are automatically deleted.

Job groups can only be deleted automatically if they have no limits specified (directly or in descendent job groups), have no explicitly created children job groups, and haven't been attached to an SLA.

Default

N (Implicitly created job groups are not automatically deleted unless they are deleted manually with bgdel .)

JOB_INCLUDE_POSTPROC

Syntax

JOB_INCLUDE_POSTPROC=Y | N

Description

Specifies whether LSF includes the post-execution processing of the job as part of the job. When set to Y:

- Prevents a new job from starting on a host until post-execution processing is finished on that host
- Includes the CPU and run times of post-execution processing with the job CPU and run times
- sbatchd sends both job finish status (DONE or EXIT) and post-execution processing status (POST_DONE or POST_ERR) to mbatchd at the same time

In MultiCluster job forwarding model, the JOB_INCLUDE_POSTPROC value in the receiving cluster applies to the job.

MultiCluster job lease model, the JOB_INCLUDE_POSTPROC value applies to jobs running on remote leased hosts as if they were running on local hosts.

The variable LSB_JOB_INCLUDE_POSTPROC in the user environment overrides the value of JOB_INCLUDE_POSTPROC in an application profile in l sb. appl i cati ons. JOB_INCLUDE_POSTPROC in an application profile in l sb. appl i cati ons overrides the value of JOB_INCLUDE_POSTPROC in l sb. params.

Default

N (Post-execution processing is not included as part of the job, and a new job can start on the execution host before post-execution processing finishes.)

JOB_POSITION_CONTROL_BY_ADMIN

Syntax

JOB_POSITION_CONTROL_BY_ADMIN=Y | N

Description

Allows LSF administrators to control whether users can use bt op and bbot to move jobs to the top and bottom of queues. When JOB_POSITION_CONTROL_BY_ADMIN=Y, only the LSF administrator (including any queue administrators) can use bbot and bt op to move jobs within a queue.

Default

N

See also

bbot, btop

JOB_POSTPROC_TIMEOUT

Syntax

JOB_POSTPROC_TIMEOUT= *minutes*

Description

Specifies a timeout in minutes for job post-execution processing. The specified timeout must be greater than zero.

If post-execution processing takes longer than the timeout, sbatchd reports that post-execution has failed (POST_ERR status), and kills the entire process group of the job's post-execution processes on UNIX and Linux. On Windows, only the parent process of the post-execution command is killed when the timeout expires. The child processes of the post-execution command are not killed.

If JOB_INCLUDE_POSTPROC=Y, and sbat chd kills the post-execution processes because the timeout has been reached, the CPU time of the post-execution processing is set to 0, and the job's CPU time does not include the CPU time of post-execution processing.

JOB_POSTPROC_TIMEOUT defined in an application profile in 1 sb. appl i cat i ons overrides the value in 1 sb. params. JOB_POSTPROC_TIMEOUT cannot be defined in the user environment.

In the MultiCluster job forwarding model, the JOB_POSTPROC_TIMEOUT value in the receiving cluster applies to the job.

In the MultiCluster job lease model, the JOB_POSTPROC_TIMEOUT value applies to jobs running on remote leased hosts as if they were running on local hosts.

Default

2147483647 (Unlimited; post-execution processing does not time out.)

JOB_PRIORITY_OVER_TIME

Syntax

JOB_PRIORITY_OVER_TIME=increment/interval

Description

JOB_PRIORITY_OVER_TIME enables automatic job priority escalation when MAX_USER_PRIORITY is also defined.

Valid values

increment

Specifies the value used to increase job priority every *interval* minutes. Valid values are positive integers.

interval

Specifies the frequency, in minutes, to *increment* job priority. Valid values are positive integers.

Default

-1 (Not defined.)

Example

JOB_PRI ORI TY_OVER_TI ME=3/20

Specifies that every 20 minute interval increment to job priority of pending jobs by 3.

See also

MAX USER PRIORITY

JOB_RUNLIMIT_RATIO

Syntax

JOB_RUNLIMIT_RATIO=integer | 0

Specifies a ratio between a job run limit and the runtime estimate specified by bsub - We or bmod - We, - We+, - Wep. The ratio does not apply to the RUNTIME parameter in l sb. appl i cati ons.

This ratio can be set to 0 and no restrictions are applied to the runtime estimate.

JOB_RUNLIMIT_RATIO prevents abuse of the runtime estimate. The value of this parameter is the ratio of run limit divided by the runtime estimate.

By default, the ratio value is 0. Only administrators can set or change this ratio. If the ratio changes, it only applies to newly submitted jobs. The changed value does not retroactively reapply to already submitted jobs.

If the ratio value is greater than 0:

- If the users specify a runtime estimate only (bsub We), the job-level run limit will automatically be set to *runtime_ratio* runtime_estimate*. Jobs running longer than this run limit are killed by LSF. If the job-level run limit is greater than the hard run limit in the queue, the job is rejected.
- If the users specify a runtime estimate (-We) and job run limit (-W) at job submission, and the run limit is greater than *runtime ratio* * *runtime estimate*, the job is rejected.
- If the users modify the run limit to be greater than *runtime_ratio*, they must increase the runtime estimate first (bmod We). Then they can increase the default run limit.
- LSF remembers the run limit is set with bsub Wor convert from *runtime_ratio** runtime_estimate. When users modify the run limit with bmod Wn, the run limit is automatically be set to *runtime_ratio** runtime_estimate If the run limit is set from runtime_ratio, LSF rejects the run limit modification.
- If users modify the runtime estimate with bmod We and the run limit is set by the user, the run limit is MIN(new_estimate* new_ratio, run_limit). If the run limit is set by runtime_ratio, the run limit is set to new_estimate* new_ratio.
- If users modify the runtime estimate by using bmod Wen and the run limit is set by the user, it is not changed. If the run limit is set by *runtime_ratio*, it is set to unlimited.

In MultiCluster job forwarding model, JOB_RUNLIMIT_RATIO valuese in both the sending and receiving clusters apply to the job. The run limit in the receiving cluster cannot be greater than the value of *runtime** JOB_RUNLIMIT_RATIO in the receiving cluster. Some examples:

- Run limit (for example with bsub We) is 10, **JOB_RUNLIMIT_RATIO=5** in the sending cluster, **JOB_RUNLIMIT_RATIO=0** in the receiving cluster—run limit=50, and the job will run
- Run limit (for example with bsub We) is 10, **JOB_RUNLIMIT_RATIO=5** in the sending cluster, **JOB_RUNLIMIT_RATIO=3** in the receiving cluster—run limit=50, and the job will pend
- Run limit (for example with bsub We) is 10, **JOB_RUNLIMIT_RATIO=5** in the sending cluster, **JOB_RUNLIMIT_RATIO=6** in the receiving cluster—run limit=50, and the job will run
- Run limit (for example with bsub We) is 10, **JOB_RUNLIMIT_RATIO=0** in the sending cluster, **JOB_RUNLIMIT_RATIO=5** in the receiving cluster—run limit=50, and the job will run

MultiCluster job lease model, the JOB_RUNLIMIT_RATIO value applies to jobs running on remote leased hosts as if they were running on local hosts.

Default

0

JOB_SCHEDULING_INTERVAL

Syntax

JOB_SCHEDULING_INTERVAL=seconds | milliseconds ms

Description

Time interval at which mbat chd sends jobs for scheduling to the scheduling daemon mbschd along with any collected load information. Specify in seconds, or include the keyword ms to specify in milliseconds.

If set to 0, there is no interval between job scheduling sessions.

The smaller the value of this parameter, the quicker jobs are scheduled. However, when the master batch daemon spends more time doing job scheduling, it has less time to respond to user commands. To have a balance between speed of job scheduling and response to the LSF commands, start with a setting of 0 or 1, and increase if users see the message "Batch system not responding...".

Valid Value

Number of seconds or milliseconds greater than or equal to zero (0).

Default

1 seconds

JOB_SPOOL_DIR

Syntax

JOB_SPOOL_DIR=dir

Description

Specifies the directory for buffering batch standard output and standard error for a job.

When JOB_SPOOL_DIR is defined, the standard output and standard error for the job is buffered in the specified directory.

Files are copied from the submission host to a temporary file in the directory specified by the JOB_SPOOL_DIR on the execution host. LSF removes these files when the job completes.

If JOB_SPOOL_DIR is not accessible or does not exist, files are spooled to the default job output directory SHOME/. 1 sbatch.

For bsub - i s and bsub - Zs, JOB_SPOOL_DIR must be readable and writable by the job submission user, and it must be shared by the master host and the submission host. If the specified directory is not accessible or does not exist, and JOB_SPOOL_DIR is specified, bsub - i s cannot write to the default directory LSB_SHAREDIR/cluster_name/1 sf_indir, and bsub - Zs cannot write to the default directory LSB_SHAREDIR/cluster_name/1 sf_cmddir, and the job will fail.

As LSF runs jobs, it creates temporary directories and files under JOB_SPOOL_DIR. By default, LSF removes these directories and files after the job is finished. See bsub for information about job submission options that specify the disposition of these files.

On UNIX, specify an absolute path. For example:

JOB_SPOOL_DIR=/home/share/lsf_spool

On Windows, specify a UNC path or a path with a drive letter. For example:

JOB_SPOOL_DIR=\\HostA\share\spool dir

or

JOB_SPOOL_DIR=D: \share\spool dir

In a mixed UNIX/Windows cluster, specify one path for the UNIX platform and one for the Windows platform. Separate the two paths by a pipe character (|):

Valid value

JOB_SPOOL_DIR can be any valid path.

The entire path including JOB_SPOOL_DIR can up to 4094 characters on UNIX and Linux or up to 255 characters for Windows. This maximum path length includes:

- All directory and file paths attached to the JOB_SPOOL_DIR path
- Temporary directories and files that the LSF system creates as jobs run.

The path you specify for JOB_SPOOL_DIR should be as short as possible to avoid exceeding this limit.

Default

Not defined

Batch job output (standard output and standard error) is sent to the . $1 \, \mathrm{sbat} \, \mathrm{ch} \, \mathrm{directory}$ on the execution host:

- On UNIX: \$HOME/. l sbatch
- On Windows: %wi ndi r%\l sbtmp*user_id*\. l sbatch

If %HOME% is specified in the user environment, uses that directory instead of %wi ndi r% for spooled output.

JOB_TERMINATE_INTERVAL

Syntax

JOB_TERMINATE_INTERVAL=seconds

Description

UNIX only.

Specifies the time interval in seconds between sending SIGINT, SIGTERM, and SIGKILL when terminating a job. When a job is terminated, the job is sent SIGINT, SIGTERM, and SIGKILL in sequence with a sleep time of JOB_TERMINATE_INTERVAL between sending the signals. This allows the job to clean up if necessary.

Default

10 (seconds)

LOCAL MAX PREEXEC RETRY

Syntax

LOCAL_MAX_PREEXEC_RETRY=integer

The maximum number of times to attempt the pre-execution command of a job on the local cluster.

Valid values

 $0 < LOCAL_MAX_PREEXEC_RETRY < 2147483647$

Default

2147483647 (Unlimited number of pre-execution retry times.)

LSB_SYNC_HOST_STAT_LIM

Syntax

LSB_SYNC_HOST_STAT_LIM=y | Y

Description

Improves the speed with which mbatchd obtains host status, and therefore the speed with which LSF reschedules rerunnable jobs: the sooner LSF knows that a host has become unavailable, the sooner LSF reschedules any rerunnable jobs executing on that host. Useful for a large cluster.

When you define this parameter, mbatchd periodically obtains the host status from the master LIM, and then verifies the status by polling each sbatchd at an interval defined by the parameters MBD_SLEEP_TIME and LSB_MAX_PROBE_SBD.

Default

N. mbatchd obtains and reports host status, without contacting the master LIM, by polling each sbatchd at an interval defined by the parameters MBD_SLEEP_TIME and LSB_MAX_PROBE_SBD.

See also

MBD_SLEEP_TIME

 $LSB_MAX_PROBE_SBD$ in 1 sf. conf

MAX_ACCT_ARCHIVE_FILE

Syntax

MAX_ACCT_ARCHIVE_FILE=integer

Description

Enables automatic deletion of archived LSF accounting log files and specifies the archive limit.

Compatibility

ACCT_ARCHIVE_SIZE or ACCT_ARCHIVE_AGE should also be defined.

Example

MAX_ACCT_ARCHI VE_FI LE=10

LSF maintains the current l sb. acct and up to 10 archives. Every time the old l sb. acct. 9 becomes l sb. acct. 10, the old l sb. acct. 10 gets deleted.

See also

- ACCT_ARCHIVE_AGE also enables automatic archiving
- ACCT_ARCHIVE_SIZE also enables automatic archiving
- ACCT_ARCHIVE_TIME also enables automatic archiving

Default

-1 (Not defined. No deletion of 1 sb. acct. *n* files).

MAX_CONCURRENT_JOB_QUERY

Syntax

MAX_CONCURRENT_JOB_QUERY=integer

Description

Defines how many concurrent job queries mbat chd can handle.

If a job information query is sent after the limit has been reached, an error message ("*Batch system concurrent query limit exceeded*") is displayed.

- If mbatchd is not using multithreading, the value of MAX_CONCURRENT_JOB_QUERY is always
 the maximum number of job queries in the cluster.
- If mbatchd is using multithreading (defined by the parameter LSB_QUERY_PORT in 1 sf. conf), the number of job queries in the cluster can temporarily become higher than the number specified by MAX_CONCURRENT_JOB_QUERY.

This increase in the total number of job queries is possible because the value of MAX_CONCURRENT_JOB_QUERY actually sets the maximum number of queries that can be handled by each child mbat chd that is forked by mbat chd. When the new child mbat chd starts, it handles new queries, but the old child mbat chd continues to run until all the old queries are finished. It is possible that the total number of job queries can be as high as MAX_CONCURRENT_JOB_QUERY multiplied by the number of child daemons forked by mbat chd.

Valid values

1-100

Default

100

See also

LSB_QUERY_PORT in lsf. conf

MAX_EVENT_STREAM_FILE_NUMBER

Syntax

MAX_EVENT_STREAM_FILE_NUMBER=integer

Determines the maximum number of different lsb. stream. utc files that mbatchd uses. If the number of lsb. stream. utc files reaches this number, mbatchd logs an error message to the mbd. log file and stops writing events to the lsb. stream file.

Default

10

MAX_EVENT_STREAM_SIZE

Syntax

MAX_EVENT_STREAM_SIZE=integer

Description

Determines the maximum size in MB of the 1 sb. stream file used by system performance analysis tools.

When the MAX_EVENT_STREAM_SIZE size is reached, LSF logs a special event EVENT_END_OF_STREAM, closes the stream and moves it to 1 sb. stream. 0 and a new stream is opened.

All applications that read the file once the event EVENT_END_OF_STREAM is logged should close the file and reopen it.

Recommended value

2000 MB

Default

1024 MB

MAX_INFO_DIRS

Syntax

MAX_INFO_DIRS=num_subdirs

Description

The number of subdirectories under the LSB_SHAREDI R/cluster_name/l ogdi r/i nfo directory.

When MAX_INFO_DIRS is enabled, mbat chd creates the specified number of subdirectories in the info directory. These subdirectories are given an integer as its name, starting with 0 for the first subdirectory. mbatchd writes the job files of all new submitted jobs into these subdirectories using the following formula to choose the subdirectory in which to store the job file:

subdirectory = jobID % MAX_INFO_DIRS

This formula ensures an even distribution of job files across the subdirectories.

Important:

If you are using local duplicate event logging, you must run badmin mbdrestart after changing MAX_INFO_DIRS for the changes to take effect.

Valid values

0-1024

Default

0 (no subdirectories under the i nf o directory; mbat chd writes all jobfiles to the i nf o directory)

Example

MAX_INFO_DIRS=10

mbat chd creates ten subdirectories from LSB_SHAREDI R/ $cluster_name$ /l ogdi r/i nfo/0 to LSB_SHAREDI R/ $cluster_name$ /l ogdi r/i nfo/9.

MAX_JOB_ARRAY_SIZE

Syntax

MAX_JOB_ARRAY_SIZE=integer

Description

Specifies the maximum number of jobs in a job array that can be created by a user for a single job submission. The maximum number of jobs in a job array cannot exceed this value.

A large job array allows a user to submit a large number of jobs to the system with a single job submission.

Valid values

Specify a positive integer between 1 and 2147483646

Default

1000

MAX_JOB_ATTA_SIZE

Syntax

MAX_JOB_ATTA_SIZE=integer | 0

Specify any number less than 20000.

Description

Maximum attached data size, in KB, that can be transferred to a job.

Maximum size for data attached to a job with the bpost command. Useful if you use bpost and bread to transfer large data files between jobs and you want to limit the usage in the current working directory.

0 indicates that jobs cannot accept attached data files.

2147483647 (Unlimited; LSF does not set a maximum size of job attachments.)

MAX_JOB_NUM

Syntax

MAX_JOB_NUM=integer

Description

The maximum number of finished jobs whose events are to be stored in the lsb. events log file.

Once the limit is reached, mbatchd starts a new event log file. The old event log file is saved as 1 sb. events. *n*, with subsequent sequence number suffixes incremented by 1 each time a new log file is started. Event logging continues in the new 1 sb. events file.

Default

10000

MAX_JOB_PREEMPT

Syntax

MAX_JOB_PREEMPT=integer

Description

The maximum number of times a job can be preempted. Applies to queue-based preemption only.

Valid values

 $0 < MAX_JOB_PREEMPT < 2147483647$

Default

2147483647 (Unlimited number of preemption times.)

MAX_JOB_REQUEUE

Syntax

MAX_JOB_REQUEUE=integer

Description

The maximum number of times to requeue a job automatically.

Valid values

0 < MAX_JOB_REQUEUE < 2147483647

2147483647 (Unlimited number of requeue times.)

MAX JOBID

Syntax

MAX_JOBID=integer

Description

The job ID limit. The job ID limit is the highest job ID that LSF will ever assign, and also the maximum number of jobs in the system.

By default, LSF assigns job IDs up to 6 digits. This means that no more than 999999 jobs can be in the system at once.

Specify any integer from 999999 to 2147483646 (for practical purposes, you can use any 10-digit integer less than this value).

You cannot lower the job ID limit, but you can raise it to 10 digits. This allows longer term job accounting and analysis, and means you can have more jobs in the system, and the job ID numbers will roll over less often.

LSF assigns job IDs in sequence. When the job ID limit is reached, the count rolls over, so the next job submitted gets job ID "1". If the original job 1 remains in the system, LSF skips that number and assigns job ID "2", or the next available job ID. If you have so many jobs in the system that the low job IDs are still in use when the maximum job ID is assigned, jobs with sequential numbers could have totally different submission times.

Example

MAX_JOBID=125000000

Default

999999

MAX_JOBINFO_QUERY_PERIOD

Syntax

MAX_JOBINFO_QUERY_PERIOD=integer

Description

Maximum time for job information query commands (for example, with bj obs) to wait.

When the time arrives, the query command processes exit, and all associated threads are terminated.

If the parameter is not defined, query command processes will wait for all threads to finish.

Specify a multiple of MBD REFRESH TIME.

Valid values

Any positive integer greater than or equal to one (1)

2147483647 (Unlimited wait time.)

See also

LSB_BLOCK_JOBINFO_TIMEOUT in lsf. conf

MAX PEND JOBS

Syntax

MAX_PEND_JOBS=integer

Description

The maximum number of pending jobs in the system.

This is the hard system-wide pending job threshold. No user or user group can exceed this limit unless the job is forwarded from a remote cluster.

If the user or user group submitting the job has reached the pending job threshold as specified by MAX_PEND_JOBS, LSF will reject any further job submission requests sent by that user or user group. The system will continue to send the job submission requests with the interval specified by SUB_TRY_INTERVAL in 1 sb. params until it has made a number of attempts equal to the LSB_NTRIES environment variable. If LSB_NTRIES is not defined and LSF rejects the job submission request, the system will continue to send the job submission requests indefinitely as the default behavior.

Default

2147483647 (Unlimited number of pending jobs.)

See also

SUB_TRY_INTERVAL

MAX_PREEXEC_RETRY

Syntax

MAX_PREEXEC_RETRY=integer

Description

MultiCluster job forwarding model only. The maximum number of times to attempt the pre-execution command of a job from a remote cluster.

If the job's pre-execution command fails all attempts, the job is returned to the submission cluster.

Valid values

 $0 < MAX_PREEXEC_RETRY < 2147483647$

Default

5

MAX_SBD_CONNS

Syntax

MAX_SBD_CONNS=integer

Description

The maximum number of file descriptors mbatchd can have open and connected concurrently to sbatchd

Controls the maximum number of connections that LSF can maintain to sbatchds in the system.

Do not exceed the file descriptor limit of the root process (the usual limit is 1024). Setting it equal or larger than this limit can cause mbatchd to constantly die because mbatchd allocates all file descriptors to sbatchd connection. This could cause mbatchd to run out of descriptors, which results in an mbatchd fatal error, such as failure to open 1 sb. events.

Use together with LSB_MAX_JOB_DISPATCH_PER_SESSION in 1 sf. conf.

Example

A reasonable setting is:

MAX_SBD_CONNS=768

For a large cluster, specify a value equal to the number of hosts in your cluster plus a buffer. For example, if your cluster includes 4000 hosts:MAX_SBD_CONNS=4100

Important:

Set LSB_MAX_JOB_DISPATCH_PER_SESSION in $l\ sf.\ conf$ equal to one-half the value of MAX_SBD_CONNS.

Default

64

MAX_SBD_FAIL

Syntax

MAX_SBD_FAIL=integer

Description

The maximum number of retries for reaching a non-responding slave batch daemon, sbatchd.

The interval between retries is defined by MBD_SLEEP_TIME. If mbatchd fails to reach a host and has retried MAX_SBD_FAIL times, the host is considered unreachable.

If you define LSB_SYNC_HOST_STAT_LIM=Y, mbat chd obtains the host status from the master LIM before it polls sbat chd. When the master LIM reports that a host is unavailable (LI Mis down) or unreachable (sbat chd is down) MAX_SBD_FAIL number of times, mbat chd reports the host status as unavailable or unreachable.

When a host becomes unavailable, mbatchd assumes that all jobs running on that host have exited and that all rerunnable jobs (jobs submitted with the bsub-r option) are scheduled to be rerun on another host

Default

3

MAX_TOTAL_TIME_PREEMPT

Syntax

MAX_TOTAL_TIME_PREEMPT=integer

Description

The accumulated preemption time in minutes after which a job cannot be preempted again, where *minutes* is wall-clock time, not normalized time.

The parameter of the same name in 1 sb. queues overrides this parameter. The parameter of the same name in 1 sb. appl i cat i ons overrides both this parameter and the parameter of the same name in 1 sb. queues.

Valid values

Any positive integer greater than or equal to one (1)

Default

Unlimited

MAX_USER_PRIORITY

Syntax

MAX_USER_PRIORITY=integer

Description

Enables user-assigned job priority and specifies the maximum job priority a user can assign to a job.

LSF and queue administrators can assign a job priority higher than the specified value for jobs they own.

Compatibility

User-assigned job priority changes the behavior of bt op and bbot.

Example

MAX_USER_PRIORITY=100

Specifies that 100 is the maximum job priority that can be specified by a user.

Default

-1 (Not defined.)

See also

- bsub, bmod, btop, bbot
- JOB_PRIORITY_OVER_TIME

MBD_EGO_CONNECT_TIMEOUT

Syntax

MBD_EGO_CONNECT_TIMEOUT=seconds

Description

For EGO-enabled SLA scheduling, timeout parameter for network I/O connection with EGO vemkd.

Default

0 seconds

MBD_EGO_READ_TIMEOUT

Syntax

MBD_EGO_READ_TIMEOUT=seconds

Description

For EGO-enabled SLA scheduling, timeout parameter for network I/O read from EGO vemkd after connection with EGO.

Default

0 seconds

MBD_EGO_TIME2LIVE

Syntax

MBD_EGO_TIME2LIVE=minutes

Description

For EGO-enabled SLA scheduling, specifies how long EGO should keep information about host allocations in case mbatchd restarts,

Default

0 minutes

MBD_QUERY_CPUS

Syntax

 ${\tt MBD_QUERY_CPUS} {=} \textit{cpu_list}$

cpu_list defines the list of master host CPUS on which the mbatchd child query processes can run. Format the list as a white-space delimited list of CPU numbers.

For example, if you specify

MBD_QUERY_CPUS=1 2 3

the mbat chd child query processes will run only on CPU numbers 1, 2, and 3 on the master host.

Description

This parameter allows you to specify the master host CPUs on which mbatchd child query processes can run (hard CPU affinity). This improves mbatchd scheduling and dispatch performance by binding query processes to specific CPUs so that higher priority mbatchd processes can run more efficiently.

When you define this parameter, LSF runs mbatchd child query processes *only* on the specified CPUs. The operating system can assign other processes to run on the same CPU; however, if utilization of the bound CPU is lower than utilization of the unbound CPUs.

Important

- 1. You can specify CPU affinity only for master hosts that use one of the following operating systems:
 - Linux 2.6 or higher
 - Solaris 8 or higher
- 2. If failover to a master host candidate occurs, LSF maintains the hard CPU affinity, provided that the master host candidate has the same CPU configuration as the original master host. If the configuration differs, LSF ignores the CPU list and reverts to default behavior.

Related parameters

To improve scheduling and dispatch performance of all LSF daemons, you should use MBD_QUERY_CPUS together with EGO_DAEMONS_CPUS (in ego. conf), which controls LIM CPU allocation, and LSF_DAEMONS_CPUS, which binds mbat chd and mbschd daemon processes to specific CPUs so that higher priority daemon processes can run more efficiently. To get best performance, CPU allocation for all four daemons should be assigned their own CPUs. For example, on a 4 CPU SMP host, the following configuration will give the best performance:

EGO DAEMONS CPUS=0 LSF DAEMONS CPUS=1: 2 MBD QUERY CPUS=3

Default

Not defined

See also

LSF_DAEMONS_CPUS in 1 sf. conf

MBD_REFRESH_TIME

Syntax

MBD_REFRESH_TIME=seconds [min_refresh_time]

where *min_refresh_time* defines the minimum time (in seconds) that the child mbat chd will stay to handle queries.

Time interval, in seconds, when mbat chd will fork a new child mbat chd to service query requests to keep information sent back to clients updated. A child mbat chd processes query requests creating threads.

MBD_REFRESH_TIME applies only to UNIX platforms that support thread programming.

To enable MBD_REFRESH_TIME you must specify LSB_QUERY_PORT in 1 sf. conf. The child mbat chd listens to the port number specified by LSB_QUERY_PORT and creates threads to service requests until the job changes status, a new job is submitted, or MBD_REFRESH_TIME has expired.

- If MBD_REFRESH_TIME is < min_refresh_time, the child mbat chd exits at MBD_REFRESH_TIME even if the job changes status or a new job is submitted before MBD_REFRESH_TIME expires.
- If MBD_REFRESH_TIME > min_refresh_time.
 - the child mbat chd exits at min_refresh_time if a job changes status or a new job is submitted before
 the min_refresh_time
 - the child mbatchd exits after the min_refresh_time when a job changes status or a new job is submitted
- If MBD_REFRESH_TIME > min_refresh_time and no job changes status or a new job is submitted, the child mbat chd exits at MBD_REFRESH_TIME

The value of this parameter must be between 0 and 300. Any values specified out of this range are ignored, and the system default value is applied.

The bj obs command may not display up-to-date information if two consecutive query commands are issued before a child mbat chd expires because child mbat chd job information is not updated. If you use the bj obs command and do not get up-to-date information, you may need to decrease the value of this parameter. Note, however, that the lower the value of this parameter, the more you negatively affect performance.

The number of concurrent requests is limited by the number of concurrent threads that a process can have. This number varies by platform:

- Sun Solaris, 2500 threads per process
- AIX, 512 threads per process
- Digital, 256 threads per process
- HP-UX, 64 threads per process

Valid Values

5-300 seconds

Default

5 seconds

min refresh time default is 10 seconds

See also

LSB_QUERY_PORT in l sf. conf

MBD_SLEEP_TIME

Syntax

MBD_SLEEP_TIME=seconds

Description

Used in conjunction with the parameters SLOT_RESERVE, MAX_SBD_FAIL, and JOB_ACCEPT_INTERVAL

Amount of time in seconds used for calculating parameter values.

Default

If not defined, 60 seconds. MBD_SLEEP_TIME is set at installation to 10 seconds.

MBD_USE_EGO_MXJ

Syntax

MBD_USE_EGO_MXJ=Y | N

Description

By default, when EGO-enabled SLA scheduling is configured, EGO allocates an entire host to LSF, which uses its own MXJ definition to determine how many slots are available on the host. LSF gets its host allocation from EGO, and runs as many jobs as the LSF configured MXJ for that host dictates.

MBD_USE_EGO_MXJ forces LSF to use the job slot maximum configured in the EGO consumer. This allows partial sharing of hosts (for example, a large SMP computer) among different consumers or workload managers. When MBD_USE_EGO_MXJ is set, LSF schedules jobs based on the number of slots allocated from EGO. For example, if host A has 4 processors, but EGO allocates 2 slots to an EGO-enabled SLA consumer. LSF can schedule a maximum of 2 jobs from that SLA on host A.

Default

N (mbatcthd uses the LSF MXJ)

MC_PENDING_REASON_PKG_SIZE

Syntax

MC_PENDING_REASON_PKG_SIZE=kilobytes | 0

Description

MultiCluster job forwarding model only. Pending reason update package size, in KB. Defines the maximum amount of pending reason data this cluster will send to submission clusters in one cycle.

Specify the keyword 0 (zero) to disable the limit and allow any amount of data in one package.

Default

512

MC_PENDING_REASON_UPDATE_INTERVAL

Syntax

MC_PENDING_REASON_UPDATE_INTERVAL=seconds | 0

Description

MultiCluster job forwarding model only. Pending reason update interval, in seconds. Defines how often this cluster will update submission clusters about the status of pending MultiCluster jobs.

Specify the keyword 0 (zero) to disable pending reason updating between clusters.

Default

300

MC_PLUGIN_SCHEDULE_ENHANCE

Syntax

MC_PLUGIN_SCHEDULE_ENHANCE= RESOURCE_ONLY

MC_PLUGIN_SCHEDULE_ENHANCE= COUNT_PREEMPTABLE [HIGH_QUEUE_PRIORITY] [PREEMPTABLE_QUEUE_PRIORITY] [PENDING_WHEN_NOSLOTS]

Note:

When any one of HIGH_QUEUE_PRIORITY, PREEMPTABLE_QUEUE_PRIORITY or PENDING_WHEN_NOSLOTS is defined, COUNT_PREEMPTABLE is enabled automatically.

Description

MultiCluster job forwarding model only. The parameter MC_PLUGIN_SCHEDULE_ENHANCE enhances the scheduler for the MultiCluster job forwarding model based on the settings selected. Use in conjunction with MC_PLUGIN_UPDATE_INTERVAL to set the data update interval between remote clusters. MC_PLUGIN_UPDATE_INTERVAL must be a non-zero value to enable the MultiCluster enhanced scheduler.

With the parameter MC_PLUGIN_SCHEDULE_ENHANCE set to a valid value, remote resources are considered as if MC_PLUGIN_REMOTE_RESOURCE=Y regardless of the actual setting. In addition the submission cluster scheduler considers specific execution queue resources when scheduling jobs. See *Using IBM Platform MultiCluster* for details.

Note:

The parameter MC_PLUGIN_SCHEDULE_ENHANCE was introduced in LSF Version 7 Update 6. All clusters within a MultiCluster configuration must be running a version of LSF containing this parameter to enable the enhanced scheduler.

After a MultiCluster connection is established, counters take the time set in MC_PLUGIN_UPDATE_INTERVAL to update. Scheduling decisions

made before this first interval has passed do not accurately account for remote queue workload.

Default

Not defined.

The enhanced scheduler is not used. If MC_PLUGIN_REMOTE_RESOURCE=Y in 1 sf. conf remote resource availability is considered before jobs are forwarded to the queue with the most available slots.

See also

MC_PLUGIN_UPDATE_INTERVAL in 1 sb. params.

MC_PLUGIN_REMOTE_RESOURCE in 1 sf. conf.

MC_PLUGIN_UPDATE_INTERVAL

Syntax

MC_PLUGIN_UPDATE_INTERVAL=seconds | 0

Description

MultiCluster job forwarding model only; set for the execution cluster. The number of seconds between data updates between clusters.

A non-zero value enables collection of remote cluster queue data for use by the submission cluster enhanced scheduler.

Suggested value when enabled is MBD_SLEEP_TIME (default is 20 seconds).

A value of 0 disables collection of remote cluster queue data.

Default

0

See Also

MC_PLUGIN_SCHEDULE_ENHANCE in 1 sf. params.

MC_RECLAIM_DELAY

Syntax

MC_RECLAIM_DELAY=minutes

Description

MultiCluster resource leasing model only. The reclaim interval (how often to reconfigure shared leases) in minutes.

Shared leases are defined by Type=shared in the l sb. resources HostExport section.

Default

10 (minutes)

MC_RUSAGE_UPDATE_INTERVAL

Syntax

MC_RUSAGE_UPDATE_INTERVAL=seconds

Description

MultiCluster only. Enables resource use updating for MultiCluster jobs running on hosts in the cluster and specifies how often to send updated information to the submission or consumer cluster.

Default

300

MIN_SWITCH_PERIOD

Syntax

MIN_SWITCH_PERIOD=seconds

Description

The minimum period in seconds between event log switches.

Works together with MAX_JOB_NUM to control how frequently mbatchd switches the file. mbatchd checks if MAX_JOB_NUM has been reached every MIN_SWITCH_PERIOD seconds. If mbatchd finds that MAX_JOB_NUM has been reached, it switches the events file.

To significantly improve the performance of mbatchd for large clusters, set this parameter to a value equal to or greater than 600. This causes mbatchd to fork a child process that handles event switching, thereby reducing the load on mbatchd. mbatchd terminates the child process and appends delta events to new events after the MIN_SWITCH_PERIOD has elapsed.

Default

0

No minimum period. Log switch frequency is not restricted.

See also

MAX_JOB_NUM

NEWJOB_REFRESH

Syntax

NEWJOB_REFRESH=Y | N

Description

Enables a child mbatchd to get up to date information about new jobs from the parent mbatchd. When set to Y, job queries with bj obs display new jobs submitted after the child mbatchd was created.

If you have enabled multithreaded mbatchd support, the bj obs command may not display up-to-date information if two consecutive query commands are issued before a child mbatchd expires because child

mbatchd job information is not updated. Use **NEWJOB_REFRESH=Y** to enable the parent mbatchd to push new job information to a child mbatchd

When **NEWJOB_REFRESH=Y**, as users submit new jobs, the parent mbatchd pushes the new job event to the child mbatchd. The parent mbatchd transfers the following kinds of new jobs to the child mbatchd:

- Newly submitted jobs
- Restarted jobs
- · Remote lease model jobs from the submission cluster
- · Remote forwarded jobs from the submission cluster

When **NEWJOB_REFRESH=Y**, you should set MBD_REFRESH_TIME to a value greater than 10 seconds.

Required parameters

LSB_QUERY_PORT must be enabled in 1 sf. conf.

Restrictions

The parent mbatchd only pushes the new job event to a child mbatchd. The child mbatchd is not aware of status changes of existing jobs. The child mbatchd will not reflect the results of job control commands (bmod, bmig, bswitch, btop, bbot, brequeue, bstop, bresume, and so on) invoked after the child mbatchd is created.

Default

N (Not defined. New jobs are not pushed to the child mbat chd.)

See also

MBD_REFRESH_TIME

NO_PREEMPT_FINISH_TIME

Syntax

NO_PREEMPT_FINISH_TIME=minutes | percentage

Description

Prevents preemption of jobs that will finish within the specified number of minutes or the specified percentage of the estimated run time or run limit.

Specifies that jobs due to finish within the specified number of minutes or percentage of job duration should not be preempted, where *minutes* is wall-clock time, not normalized time. Percentage must be greater than 0 or less than 100% (between 1% and 99%).

For example, if the job run limit is 60 minutes and **NO_PREEMPT_FINISH_TIME=10%**, the job cannot be preempted after it running 54 minutes or longer.

If you specify percentage for NO_PREEMPT_RUN_TIME, requires a run time (bsub - We or RUNTIME in l sb. appl i cations), or run limit to be specified for the job (bsub - W, or RUNLIMIT in l sb. queues, or RUNLIMIT in l sb. appl i cations)

-1 (Not defined.)

NO_PREEMPT_INTERVAL

Syntax

NO PREEMPT INTERVAL=minutes

Description

Prevents preemption of jobs for the specified number of minutes of uninterrupted run time, where *minutes* is wall-clock time, not normalized time. **NO_PREEMPT_INTERVAL=0** allows immediate preemption of jobs as soon as they start or resume running.

The parameter of the same name in l sb. queues overrides this parameter. The parameter of the same name in l sb. appl i cat i ons overrides both this parameter and the parameter of the same name in l sb. queues.

Default

0

NO_PREEMPT_RUN_TIME

Syntax

NO_PREEMPT_RUN_TIME=minutes | percentage

Description

Prevents preemption of jobs that have been running for the specified number of minutes or the specified percentage of the estimated run time or run limit.

Specifies that jobs that have been running for the specified number of minutes or longer should not be preempted, where *minutes* is wall-clock time, not normalized time. Percentage must be greater than 0 or less than 100% (between 1% and 99%).

For example, if the job run limit is 60 minutes and **NO_PREEMPT_RUN_TIME=50%**, the job cannot be preempted after it running 30 minutes or longer.

If you specify percentage for NO_PREEMPT_RUN_TIME, requires a run time (bsub - We or RUNTIME in l sb. appl i cati ons), or run limit to be specified for the job (bsub - W, or RUNLIMIT in l sb. queues, or RUNLIMIT in l sb. appl i cati ons)

Default

-1 (Not defined.)

MAX_JOB_MSG_NUM

Syntax

MAX_JOB_MSG_NUM=integer | 0

Maximum number of message slots for each job. Maximum number of messages that can be posted to a job with the bpost command.

0 indicates that jobs cannot accept external messages.

Default

128

NQS_QUEUES_FLAGS

Syntax

NQS_QUEUES_FLAGS=integer

Description

For Cray NQS compatibility only. Used by LSF to get the NQS queue information.

If the NQS version on a Cray is NQS 1.1, 80.42 or NQS 71.3, this parameter does not need to be defined.

For other versions of NQS on Cray, define both NQS_QUEUES_FLAGS and NQS_REQUESTS_FLAGS.

To determine the value of this parameter, run the NQS qstat command. The value of Npk_int[1] in the output is the value you need for this parameter. Refer to the NQS chapter in *Administering IBM Platform LSF* for more details.

Default

2147483647 (Not defined.)

NQS_REQUESTS_FLAGS

Syntax

NQS_REQUESTS_FLAGS=integer

Description

For Cray NQS compatibility only.

If the NQS version on a Cray is NQS 80.42 or NQS 71.3, this parameter does not need to be defined.

If the version is NQS 1.1 on a Cray, set this parameter to 251918848. This is the is the qst at flag that LSF uses to retrieve requests on Cray in long format.

For other versions of NQS on a Cray, run the NQS qstat command. The value of Npk_i nt[1] in the output is the value you need for this parameter. Refer to the NQS chapter in *Administering IBM Platform LSF* for more details.

Default

2147483647 (Not defined.)

PARALLEL_SCHED_BY_SLOT

Syntax

PARALLEL_SCHED_BY_SLOT=y | Y

Description

If defined, LSF schedules jobs based on the number of slots assigned to the hosts instead of the number of CPUs. These slots can be defined by host in 1 sb. hosts or by slot limit in 1 sb. resources.

All slot-related messages still show the word "processors", but actually refer to "slots" instead. Similarly, all scheduling activities also use slots instead of processors.

Default

N (Disabled.)

See also

- JL/U and MXJ in l sb. hosts
- SLOTS and SLOTS_PER_PROCESSOR in 1 sb. resources

PEND_REASON_MAX_JOBS

Syntax

PEND_REASON_MAX_JOBS=integer

Description

Number of jobs for each user per queue for which pending reasons are calculated by the scheduling daemon mbschd. Pending reasons are calculated at a time period set by PEND_REASON_UPDATE_INTERVAL.

Default

20 jobs

PEND_REASON_UPDATE_INTERVAL

Syntax

PEND_REASON_UPDATE_INTERVAL=seconds

Description

Time interval that defines how often pending reasons are calculated by the scheduling daemon mbschd.

Default

30 seconds

PG_SUSP_IT

Syntax

PG SUSP IT=seconds

Description

The time interval that a host should be interactively idle (it > 0) before jobs suspended because of a threshold on the pg load index can be resumed.

This parameter is used to prevent the case in which a batch job is suspended and resumed too often as it raises the paging rate while running and lowers it while suspended. If you are not concerned with the interference with interactive jobs caused by paging, the value of this parameter may be set to 0.

Default

180 seconds

PREEMPT_FOR

Syntax

PREEMPT_FOR=[GROUP_JLP] [GROUP_MAX] [HOST_JLU] [LEAST_RUN_TIME] [MINI_JOB] [USER_JLP] [OPTIMAL_MINI_JOB]

Description

If preemptive scheduling is enabled, this parameter is used to disregard suspended jobs when determining if a job slot limit is exceeded, to preempt jobs with the shortest running time, and to optimize preemption of parallel jobs.

If preemptive scheduling is enabled, more lower-priority parallel jobs may be preempted than necessary to start a high-priority parallel job. Both running and suspended jobs are counted when calculating the number of job slots in use, except for the following limits:

- The total job slot limit for hosts, specified at the host level
- Total job slot limit for individual users, specified at the user level—by default, suspended jobs still count against the limit for user groups

Specify one or more of the following keywords. Use spaces to separate multiple keywords.

GROUP_JLP

Counts only running jobs when evaluating if a user group is approaching its perprocessor job slot limit (SLOTS_PER_PROCESSOR, USERS, and PER_HOST=all in the 1sb. resources file). Suspended jobs are ignored when this keyword is used.

GROUP_MAX

Counts only running jobs when evaluating if a user group is approaching its total job slot limit (SLOTS, PER_USER=all, and HOSTS in the lsb. resources file). Suspended jobs are ignored when this keyword is used. When preemptive scheduling is enabled, suspended jobs never count against the total job slot limit for individual users.

HOST_JLU

Counts only running jobs when evaluating if a user or user group is approaching its per-host job slot limit (SLOTS and USERS in the 1 sb. resources file). Suspended jobs are ignored when this keyword is used.

LEAST_RUN_TIME

Preempts the job that has been running for the shortest time. Run time is wall-clock time, not normalized run time.

MINI_JOB

Optimizes the preemption of parallel jobs by preempting only enough parallel jobs to start the high-priority parallel job.

OPTIMAL_MINI_JOB

Optimizes preemption of parallel jobs by preempting only low-priority parallel jobs based on the least number of jobs that will be suspended to allow the high-priority parallel job to start.

User limits and user group limits can interfere with preemption optimization of OPTIMAL_MINI_JOB. You should not configure OPTIMAL_MINI_JOB if you have user or user group limits configured.

You should configure PARALLEL_SCHED_BY_SLOT=Y when using OPTIMAL_MINI_JOB.

USER_JLP

Counts only running jobs when evaluating if a user is approaching their per-processor job slot limit (SLOTS_PER_PROCESSOR, USERS, and PER_HOST=all in thelsb. resources file). Suspended jobs are ignored when this keyword is used. Ignores suspended jobs when calculating the user-processor job slot limit for individual users. When preemptive scheduling is enabled, suspended jobs never count against the total job slot limit for individual users.

Default

0 (The parameter is not defined.)

Both running and suspended jobs are included in job slot limit calculations, except for job slots limits for hosts and individual users where only running jobs are ever included.

PREEMPT JOBTYPE

Syntax

PREEMPT_JOBTYPE=[EXCLUSIVE] [BACKFILL]

Description

If preemptive scheduling is enabled, this parameter enables preemption of exclusive and backfill jobs. Specify one or both of the following keywords. Separate keywords with a space.

EXCLUSIVE

Enables preemption of and preemption by exclusive jobs. LSB_DISABLE_LIMLOCK_EXCL=Y in 1 sf. conf must also be defined.

BACKFILL

Enables preemption of backfill jobs. Jobs from higher priority queues can preempt jobs from backfill queues that are either backfilling reserved job slots or running as normal jobs.

Default

Not defined. Exclusive and backfill jobs are only preempted if the exclusive low priority job is running on a different host than the one used by the preemptive high priority job.

PREEMPTABLE_RESOURCES

Syntax

PREEMPTABLE_RESOURCES=resource_name1 [resource_name2] [resource_name3] ...

Description

Enables resource preemption when preemptive scheduling is enabled (has no effect if PREEMPTIVE is not also specified). Specify shared numeric resources, static or decreasing, that LSF is configured to release (RELEASE=Y in 1 sf. shared, which is the default).

To kill preempted jobs instead of suspending them, set **TERMINATE_WHEN=PREEMPT** in 1 sb. queues, or set JOB_CONTROLS in 1 sb. queues and specify brequeue as the SUSPEND action.

Default

Not defined (if preemptive scheduling is configured, LSF preempts on job slots only)

PREEMPTION_WAIT_TIME

Syntax

PREEMPTION_WAIT_TIME=seconds

Description

You must also specify PREEMPTABLE RESOURCES in 1 sb. params).

The amount of time LSF waits, after preempting jobs, for preemption resources to become available. Specify at least 300 seconds.

If LSF does not get the resources after this time, LSF might preempt more jobs.

Default

300 (seconds)

PREEXEC EXCLUDE HOST EXIT VALUES

Syntax

PREEXEC_EXCLUDE_HOST_EXIT_VALUES=all [~exit_value] | exit_value [exit_value] [...]

Specify one or more values (between 1 and 255, but not 99) that corresponds to the exit code your preexecution scripts exits with in the case of failure. LSF excludes any hosts that attempt to run the pre-exec script and exit with the value specified in PREEXEC_EXCLUDE_HOST_EXIT_VALUES.

The exclusion list exists for this job until the mbat chd restarts.

Specify more than one value by separating them with a space. 99 is a reserved value. For example, PREEXEC EXCLUDE HOST EXIT VALUES=1 14 19 20 21.

Exclude values using a "~": PREEXEC_EXCLUDE_HOST_EXIT_VALUES=all ~40

In the case of failures that could be avoided by retrying on the same host, add the retry process to the preexec script.

Use in combination with MAX_PREEXEC_RETRY in 1 sb. params to limit the total number of hosts that are tried. In a multicluster environment, use in combination with LOCAL MAX PREEXEC RETRY and REMOTE MAX PREEXEC RETRY.

Default

None.

PRIVILEGED_USER_FORCE_BKILL

Syntax

PRIVILEGED_USER_FORCE_BKILL=y | Y

Description

If Y, only root or the LSF administrator can successfully run bki 11 - r. For any other users, -r is ignored. If not defined, any user can run bki 11 - r.

Default

Not defined.

REMOTE_MAX_PREEXEC_RETRY

Syntax

REMOTE_MAX_PREEXEC_RETRY=integer

Description

The maximum number of times to attempt the pre-execution command of a job from the remote cluster.

Valid values

 $0 < REMOTE_MAX_PREEXEC_RETRY < 2147483647$

Default

5

RESOURCE_RESERVE_PER_SLOT

Syntax

RESOURCE_RESERVE_PER_SLOT=y | Y

Description

If Y, mbat chd reserves resources based on job slots instead of per-host.

By default, mbatchd only reserves resources for parallel jobs on a per-host basis. For example, by default, the command:

```
bsub -n 4 -R "rusage[mem=500]" -q reservation my_j ob
```

requires the job to reserve 500 MB on each host where the job runs.

Some parallel jobs need to reserve resources based on job slots, rather than by host. In this example, if per-slot reservation is enabled by RESOURCE_RESERVE_PER_SLOT, the job my_j ob must reserve 500 MB of memory for each job slot (4*500=2 GB) on the host in order to run.

If RESOURCE_RESERVE_PER_SLOT is set, the following command reserves the resource my_resource on all 4 job slots instead of only 1 on the host where the job runs:

```
bsub -n 4 -R "my_resource > 0 rusage[my_resource=1]" myjob
```

Default

N (Not defined; reserve resources per-host.)

RUN_JOB_FACTOR

Syntax

RUN_JOB_FACTOR=number

Description

Used only with fairshare scheduling. Job slots weighting factor.

In the calculation of a user's dynamic share priority, this factor determines the relative importance of the number of job slots reserved and in use by a user.

This parameter can also be set for an individual queue in 1 sb. queues. If defined, the queue value takes precedence.

Default

3.0

RUN_TIME_DECAY

Syntax

RUN_TIME_DECAY=Y | y | N | n

Used only with fairshare scheduling. Enables decay for run time at the same rate as the decay set by HIST HOURS for cumulative CPU time and historical run time.

In the calculation of a user's dynamic share priority, this factor determines whether run time is decayed.

This parameter can also be set for an individual queue in 1 sb. queues. If defined, the queue value takes precedence.

Restrictions

Running badmin reconfig or restarting mbatchd during a job's run time results in the decayed run time being recalculated.

When a suspended job using run time decay is resumed, the decay time is based on the elapsed time.

Default

N

RUN_TIME_FACTOR

Syntax

RUN_TIME_FACTOR=number

Description

Used only with fairshare scheduling. Run time weighting factor.

In the calculation of a user's dynamic share priority, this factor determines the relative importance of the total run time of a user's running jobs.

This parameter can also be set for an individual queue in 1 sb. queues. If defined, the queue value takes precedence.

Default

0.7

SBD_SLEEP_TIME

Syntax

SBD_SLEEP_TIME=seconds

Description

The interval at which LSF checks the load conditions of each host, to decide whether jobs on the host must be suspended or resumed.

The job-level resource usage information is updated at a maximum frequency of every SBD_SLEEP_TIME seconds.

The update is done only if the value for the CPU time, resident memory usage, or virtual memory usage has changed by more than 10 percent from the previous update or if a new process or process group has been created.

Default

SBD_SLEEP_TIME is set at installation to 7 seconds. If not defined, 30 seconds.

SCHED_METRIC_ENABLE

Syntax

SCHED_METRIC_ENABLE=Y | N

Description

Enable scheduler performance metric collection.

Use badmin perfmon stop and badmin perfmon start to dynamically control performance metric collection

Default

N

SCHED_METRIC_SAMPLE_PERIOD

Syntax

SCHED_METRIC_SAMPLE_PERIOD=seconds

Description

Set a default performance metric sampling period in seconds.

Cannot be less than 60 seconds.

Use badmi n perfmon set peri od to dynamically change performance metric sampling period.

Default

60 seconds

SLA TIMER

Syntax

SLA_TIMER=seconds

Description

For EGO-enabled SLA scheduling. Controls how often each service class is evaluated and a network message is sent to EGO communicating host demand.

Valid values

Positive integer between 2 and 21474847

Default

0 (Not defined.)

STRICT_UG_CONTROL

Syntax

STRICT_UG_CONTROL=Y | N

Description

When **STRICT_UG_CONTROL=Y** is defined:

- Jobs submitted with -G *usergroup* specified can only be controlled by the usergroup administrator of the specified user group.
- user group administrators can be defined for user groups with all as a member

After adding or changing STRICT_UG_CONTROL in 1 sb. params, use badmin reconfig to reconfigure your cluster.

Default

N (Not defined.)

See also

DEFAULT_USER_GROUP, ENFORCE_ONE_UG_LIMIT, ENFORCE_UG_TREE

SUB_TRY_INTERVAL

Syntax

SUB_TRY_INTERVAL=integer

Description

The number of seconds for the requesting client to wait before resubmitting a job. This is sent by mbatchd to the client.

Default

60 seconds

See also

MAX PEND JOBS

SYSTEM_MAPPING_ACCOUNT

Syntax

SYSTEM_MAPPING_ACCOUNT=*user_account*

Description

Enables Windows workgroup account mapping, which allows LSF administrators to map all Windows workgroup users to a single Windows system account, eliminating the need to create multiple users and passwords in LSF. Users can submit and run jobs using their local user names and passwords, and LSF runs the jobs using the mapped system account name and password. With Windows workgroup account mapping, all users have the same permissions because all users map to the same system account.

To specify the user account, include the domain name in uppercase letters (*DOMAIN_NAME* \ *user_name*).

Define this parameter for LSF Windows Workgroup installations only.

Default

Not defined

USE_SUSP_SLOTS

Syntax

USE_SUSP_SLOTS=Y | N

Description

If **USE_SUSP_SLOTS=Y**, allows jobs from a low priority queue to use slots held by suspended jobs in a high priority queue, which has a preemption relation with the low priority queue.

Set USE_SUSP_SLOTS=N to prevent low priority jobs from using slots held by suspended jobs in a high priority queue, which has a preemption relation with the low priority queue.

Default

Y

Isb.queues

The l sb. queues file defines batch queues. Numerous controls are available at the queue level to allow cluster administrators to customize site policies.

This file is optional; if no queues are configured, LSF creates a queue named default, with all parameters set to default values.

This file is installed by default in LSB_CONFDIR/cluster_name/configdir.

Changing Isb.queues configuration

After making any changes to 1 sb. queues, run badmi n reconfig to reconfigure mbat chd.

Some parameters such as run window and run time limit do not take effect immediately for running jobs unless you run mbatchd restart or sbatchd restart on the job execution host.

Isb.queues structure

Each queue definition begins with the line Begin Queue and ends with the line End Queue. The queue name must be specified; all other parameters are optional.

ADMINISTRATORS

Syntax

ADMINISTRATORS=user_name | user_group ...

Description

List of queue administrators. To specify a Windows user account or user group, include the domain name in uppercase letters (*DOMAIN_NAME\user_name* or *DOMAIN_NAME\user_group*).

Queue administrators can perform operations on any user's job in the queue, as well as on the queue itself.

Default

Not defined. You must be a cluster administrator to operate on this queue.

APS PRIORITY

Syntax

```
APS_PRIORITY=WEIGHT[[factor, value] [subfactor, value]...]...] LIMIT[[factor, value] [subfactor, value]...]...] GRACE_PERIOD[[factor, value] [subfactor, value]...]...]
```

Description

Specifies calculation factors for absolute priority scheduling (APS). Pending jobs in the queue are ordered according to the calculated APS value.

If weight of a subfactor is defined, but the weight of parent factor is not defined, the parent factor weight is set as 1.

The WEIGHT and LIMIT factors are floating-point values. Specify a *value* for GRACE_PERIOD in seconds (*values*), minutes (*valuem*), or hours (*valueh*).

The default unit for grace period is hours.

For example, the following sets a grace period of 10 hours for the MEM factor, 10 minutes for the JPRIORITY factor, 10 seconds for the QPRIORITY factor, and 10 hours (default) for the RSRC factor: GRACE_PERI OD[[MEM, 10h] [JPRI ORI TY, 10m] [QPRI ORI TY, 10s] [RSRC, 10]]

You cannot specify zero (0) for the WEIGHT, LIMIT, and GRACE PERIOD of any factor or subfactor.

APS queues cannot configure cross-queue fairshare (FAIRSHARE_QUEUES). The QUEUE_GROUP parameter replaces FAIRSHARE_QUEUES, which is obsolete in LSF 7.0.

Suspended (bstop) jobs and migrated jobs (bmi g) are always scheduled before pending jobs. For migrated jobs, LSF keeps the existing job priority information.

If LSB_REQUEUE_TO_BOTTOM and LSB_MIG2PEND are configured in 1 sf. conf, the migrated jobs keep their APS information. When LSB_REQUEUE_TO_BOTTOM and LSB_MIG2PEND are configured, the migrated jobs need to compete with other pending jobs based on the APS value. If you want to reset the APS value, the you should use brequeue, not bmi g.

Default

Not defined

BACKFILL

Syntax

BACKFILL=Y | N

Description

If Y, enables backfill scheduling for the queue.

A possible conflict exists if BACKFILL and PREEMPTION are specified together. If PREEMPT_JOBTYPE = BACKFILL is set in the lsb.params file, a backfill queue can be preemptable. Otherwise a backfill queue cannot be preemptable. If BACKFILL is enabled do not also specify PREEMPTION = PREEMPTABLE.

BACKFILL is required for interruptible backfill queues (INTERRUPTIBLE_BACKFILL=seconds).

When MAX_SLOTS_IN_POOL, SLOT_RESERVE, and BACKFILL are defined for the same queue, jobs in the queue cannot backfill using slots reserved by other jobs in the same queue.

Default

Not defined. No backfilling.

CHKPNT

Syntax

CHKPNT=chkpnt_dir [chkpnt_period]

Description

Enables automatic checkpointing for the queue. All jobs submitted to the queue are checkpointable.

The checkpoint directory is the directory where the checkpoint files are created. Specify an absolute path or a path relative to CWD, do not use environment variables.

Specify the optional checkpoint period in minutes.

Only running members of a chunk job can be checkpointed.

If checkpoint-related configuration is specified in both the queue and an application profile, the application profile setting overrides queue level configuration.

If checkpoint-related configuration is specified in the queue, application profile, and at job level:

- Application-level and job-level parameters are merged. If the same parameter is defined at both job-level and in the application profile, the job-level value overrides the application profile value.
- The merged result of job-level and application profile settings override queue-level configuration.

To enable checkpointing of MultiCluster jobs, define a checkpoint directory in both the send-jobs and receive-jobs queues (CHKPNT in 1 sb. queues), or in an application profile (CHKPNT_DIR, CHKPNT_PERIOD, CHKPNT_INITPERIOD, CHKPNT_METHOD in 1 sb. appl i cati ons) of both submission cluster and execution cluster. LSF uses the directory specified in the execution cluster.

To make a MultiCluster job checkpointable, both submission and execution queues must enable checkpointing, and the application profile or queue setting on the execution cluster determines the checkpoint directory. Checkpointing is not supported if a job runs on a leased host.

The file path of the checkpoint directory can contain up to 4000 characters for UNIX and Linux, or up to 255 characters for Windows, including the directory and file name.

Default

Not defined

CHUNK_JOB_SIZE

Syntax

CHUNK_JOB_SIZE=integer

Description

Chunk jobs only. Enables job chunking and specifies the maximum number of jobs allowed to be dispatched together in a chunk. Specify a positive integer greater than 1.

The ideal candidates for job chunking are jobs that have the same host and resource requirements and typically take 1 to 2 minutes to run.

Job chunking can have the following advantages:

- Reduces communication between sbatchd and mbatchd and reduces scheduling overhead in mbschd.
- Increases job throughput in mbat chd and CPU utilization on the execution hosts.

However, throughput can deteriorate if the chunk job size is too big. Performance may decrease on queues with CHUNK_JOB_SIZE greater than 30. You should evaluate the chunk job size on your own systems for best performance.

With MultiCluster job forwarding model, this parameter does not affect MultiCluster jobs that are forwarded to a remote cluster.

Compatibility

This parameter is ignored in the following kinds of queues and applications:

- Interactive (INTERACTIVE=ONLY parameter)
- CPU limit greater than 30 minutes (CPULIMIT parameter)
- Run limit greater than 30 minutes (RUNLIMIT parameter)
- Runtime estimate greater than 30 minutes (RUNTIME parameter in 1 sb. appl i cati ons only)

If CHUNK_JOB_DURATION is set in 1 sb. params, chunk jobs are accepted regardless of the value of CPULIMIT, RUNLIMIT or RUNTIME.

Example

The following configures a queue named chunk, which dispatches up to 4 jobs in a chunk:

```
Begin Queue

QUEUE_NAME = chunk

PRI ORI TY = 50

CHUNK_JOB_SI ZE = 4

End Queue
```

Default

Not defined

COMMITTED_RUN_TIME_FACTOR

Syntax

COMMITTED_RUN_TIME_FACTOR=number

Description

Used only with fairshare scheduling. Committed run time weighting factor.

In the calculation of a user's dynamic priority, this factor determines the relative importance of the committed run time in the calculation. If the -W option of bsub is not specified at job submission and a RUNLIMIT has not been set for the queue, the committed run time is not considered.

If undefined, the cluster-wide value from the 1 sb. params parameter of the same name is used.

Valid values

Any positive number between 0.0 and 1.0

Default

Not defined.

CORELIMIT

Syntax

CORELIMIT=*integer*

The per-process (hard) core file size limit (in KB) for all of the processes belonging to a job from this queue (see getrl i mi t(2)).

Default

Unlimited

CPULIMIT

Syntax

CPULIMIT=[default_limit] maximum_limit

where default_limit and maximum_limit are:

[hour.]minute[/host_name | /host_model]

Description

Maximum normalized CPU time and optionally, the default normalized CPU time allowed for all processes of a job running in this queue. The name of a host or host model specifies the CPU time normalization host to use.

Limits the total CPU time the job can use. This parameter is useful for preventing runaway jobs or jobs that use up too many resources.

When the total CPU time for the whole job has reached the limit, a SIGXCPU signal is sent to all processes belonging to the job. If the job has no signal handler for SIGXCPU, the job is killed immediately. If the SIGXCPU signal is handled, blocked, or ignored by the application, then after the grace period expires, LSF sends SIGINT, SIGTERM, and SIGKILL to the job to kill it.

If a job dynamically spawns processes, the CPU time used by these processes is accumulated over the life of the job.

Processes that exist for fewer than 30 seconds may be ignored.

By default, if a default CPU limit is specified, jobs submitted to the queue without a job-level CPU limit are killed when the default CPU limit is reached.

If you specify only one limit, it is the maximum, or hard, CPU limit. If you specify two limits, the first one is the default, or soft, CPU limit, and the second one is the maximum CPU limit. The number of minutes may be greater than 59. Therefore, three and a half hours can be specified either as 3:30 or 210.

If no host or host model is given with the CPU time, LSF uses the default CPU time normalization host defined at the queue level (DEFAULT_HOST_SPEC in 1 sb. queues) if it has been configured, otherwise uses the default CPU time normalization host defined at the cluster level (DEFAULT_HOST_SPEC in 1 sb. params) if it has been configured, otherwise uses the host with the largest CPU factor (the fastest host in the cluster).

On Windows, a job that runs under a CPU time limit may exceed that limit by up to SBD_SLEEP_TIME. This is because sbatchd periodically checks if the limit has been exceeded.

On UNIX systems, the CPU limit can be enforced by the operating system at the process level.

You can define whether the CPU limit is a per-process limit enforced by the OS or a per-job limit enforced by LSF with LSB_JOB_CPULIMIT in 1 sf. conf.

Jobs submitted to a chunk job queue are not chunked if CPULIMIT is greater than 30 minutes.

Default

Unlimited

CPU_TIME_FACTOR

Syntax

CPU_TIME_FACTOR=number

Description

Used only with fairshare scheduling. CPU time weighting factor.

In the calculation of a user's dynamic share priority, this factor determines the relative importance of the cumulative CPU time used by a user's jobs.

If undefined, the cluster-wide value from the l sb. params parameter of the same name is used.

Default

0.7

DATALIMIT

Syntax

DATALIMIT=[default_limit] maximum_limit

Description

The per-process data segment size limit (in KB) for all of the processes belonging to a job from this queue (see getrl i mit (2)).

By default, if a default data limit is specified, jobs submitted to the queue without a job-level data limit are killed when the default data limit is reached.

If you specify only one limit, it is the maximum, or hard, data limit. If you specify two limits, the first one is the default, or soft, data limit, and the second one is the maximum data limit

Default

Unlimited

DEFAULT_EXTSCHED

Syntax

DEFAULT EXTSCHED=*external scheduler options*

Description

Specifies default external scheduling options for the queue.

-extsched options on the bsub command are merged with DEFAULT_EXTSCHED options, and -extsched options override any conflicting queue-level options set by DEFAULT_EXTSCHED.

Default

Not defined

DEFAULT_HOST_SPEC

Syntax

DEFAULT_HOST_SPEC=host_name | host_model

Description

The default CPU time normalization host for the queue.

The CPU factor of the specified host or host model is used to normalize the CPU time limit of all jobs in the queue, unless the CPU time normalization host is specified at the job level.

Default

Not defined. The queue uses the DEFAULT_HOST_SPEC defined in 1 sb. params. If DEFAULT_HOST_SPEC is not defined in either file, LSF uses the fastest host in the cluster.

DESCRIPTION

Syntax

DESCRIPTION=text

Description

Description of the job queue displayed by bqueues -1.

This description should clearly describe the service features of this queue, to help users select the proper queue for each job.

The text can include any characters, including white space. The text can be extended to multiple lines by ending the preceding line with a backslash (\). The maximum length for the text is 512 characters.

DISPATCH_ORDER

Syntax

DISPATCH_ORDER=QUEUE

Description

Defines an *ordered* cross-queue fairshare set. DISPATCH_ORDER indicates that jobs are dispatched according to the order of queue priorities first, then user fairshare priority.

By default, a user has the same priority across the master and slave queues. If the same user submits several jobs to these queues, user priority is calculated by taking into account all the jobs the user has submitted across the master-slave set.

If DISPATCH_ORDER=QUEUE is set in the master queue, jobs are dispatched according to queue priorities first, then user priority. Jobs from users with lower fairshare priorities who have pending jobs in higher priority queues are dispatched before jobs in lower priority queues. This avoids having users with higher fairshare priority getting jobs dispatched from low-priority queues.

Jobs in queues having the same priority are dispatched according to user priority.

Queues that are not part of the cross-queue fairshare can have any priority; they are not limited to fall outside of the priority range of cross-queue fairshare queues.

Default

Not defined

DISPATCH_WINDOW

Syntax

DISPATCH_WINDOW=*time_window* ...

Description

The time windows in which jobs from this queue are dispatched. Once dispatched, jobs are no longer affected by the dispatch window.

Default

Not defined. Dispatch window is always open.

ENABLE_HIST_RUN_TIME

Syntax

ENABLE_HIST_RUN_TIME=y | Y | n | N

Description

Used only with fairshare scheduling. If set, enables the use of historical run time in the calculation of fairshare scheduling priority.

If undefined, the cluster-wide value from the l sb. params parameter of the same name is used.

Default

Not defined.

EXCLUSIVE

Syntax

EXCLUSIVE=Y | **N** | **CU**[*cu_type*]

Description

If Y, specifies an exclusive queue.

If CU, CU[], or CU[cu_type], specifies an exclusive queue as well as a queue exclusive to compute units of type cu_type (as defined in lsb.params). If no type is specified, the default compute unit type is used.

Jobs submitted to an exclusive queue with bsub -x are only dispatched to a host that has no other LSF jobs running. Jobs submitted to a compute unit exclusive queue with bsub -R "cu[excl]" only run on a compute unit that has no other jobs running.

For hosts shared under the MultiCluster resource leasing model, jobs are not dispatched to a host that has LSF jobs running, even if the jobs are from another cluster.

Default

Ν

FAIRSHARE

Syntax

FAIRSHARE=USER_SHARES[[user, number_shares] ...]

- Specify at least one user share assignment.
- Enclose the list in square brackets, as shown.
- Enclose each user share assignment in square brackets, as shown.
- user: Specify users who are also configured to use queue. You can assign the shares to:
 - A single user (specify user_name). To specify a Windows user account, include the domain name
 in uppercase letters (DOMAIN_NAME\user_name).
 - Users in a group, individually (specify group_name@) or collectively (specify group_name). To
 specify a Windows user group, include the domain name in uppercase letters (DOMAIN_NAME
 \group_name).
 - Users not included in any other share assignment, individually (specify the keyword default) or collectively (specify the keyword others)
 - By default, when resources are assigned collectively to a group, the group members compete
 for the resources on a first-come, first-served (FCFS) basis. You can use hierarchical fairshare
 to further divide the shares among the group members.
 - When resources are assigned to members of a group individually, the share assignment is
 recursive. Members of the group and of all subgroups always compete for the resources
 according to FCFS scheduling, regardless of hierarchical fairshare policies.
- number_shares
 - Specify a positive integer representing the number of shares of the cluster resources assigned to the user.
 - The number of shares assigned to each user is only meaningful when you compare it to the shares
 assigned to other users or to the total number of shares. The total number of shares is just the sum
 of all the shares assigned in each share assignment.

Description

Enables queue-level user-based fairshare and specifies share assignments. Only users with share assignments can submit jobs to the queue.

Compatibility

Do not configure hosts in a cluster to use fairshare at both queue and host levels. However, you can configure user-based fairshare and queue-based fairshare together.

Default

Not defined. No fairshare.

FAIRSHARE_ADJUSTMENT_FACTOR

Syntax

FAIRSHARE_ADJUSTMENT_FACTOR=number

Description

Used only with fairshare scheduling. Fairshare adjustment plugin weighting factor.

In the calculation of a user's dynamic share priority, this factor determines the relative importance of the user-defined adjustment made in the fairshare plugin (libfairshareadjust.*).

A positive float number both enables the fairshare plugin and acts as a weighting factor.

If undefined, the cluster-wide value from the l sb. params parameter of the same name is used.

Default

Not defined.

FAIRSHARE QUEUES

Syntax

FAIRSHARE_QUEUES=queue_name[queue_name ...]

Description

Defines cross-queue fairshare. When this parameter is defined:

- The queue in which this parameter is defined becomes the "master queue".
- Queues listed with this parameter are "slave queues" and inherit the fairshare policy of the master queue.
- A user has the same priority across the master and slave queues. If the same user submits several jobs
 to these queues, user priority is calculated by taking into account all the jobs the user has submitted
 across the master-slave set.

Notes

- By default, the PRIORITY range defined for queues in cross-queue fairshare cannot be used with any other queues. For example, you have 4 queues: queue1, queue2, queue3, queue4. You configure cross-queue fairshare for queue1, queue2, queue3 and assign priorities of 30, 40, 50 respectively.
- By default, the priority of queue4 (which is not part of the cross-queue fairshare) cannot fall between the priority range of the cross-queue fairshare queues (30-50). It can be any number up to 29 or higher than 50. It does not matter if queue4 is a fairshare queue or FCFS queue. If DISPATCH_ORDER=QUEUE is set in the master queue, the priority of queue4 (which is not part of the cross-queue fairshare) can be any number, including a priority falling between the priority range of the cross-queue fairshare queues (30-50).
- FAIRSHARE must be defined in the master queue. If it is also defined in the queues listed in FAIRSHARE_QUEUES, it is ignored.
- Cross-queue fairshare can be defined more than once within 1 sb. queues. You can define several
 sets of master-slave queues. However, a queue cannot belong to more than one master-slave set. For
 example, you can define:

- In queue normal: FAI RSHARE_QUEUES=short
- In queue pri ori ty: FAI RSHARE_QUEUES=ni ght owners

Restriction:

You cannot, however, define ni ght, owners, or pri ori ty as slaves in the queue normal; or normal and short as slaves in the pri ori ty queue; or short, ni ght, owners as master queues of their own.

- Cross-queue fairshare cannot be used with host partition fairshare. It is part of queue-level fairshare.
- Cross-queue fairshare cannot be used with absolute priority scheduling.

Default

Not defined

FILELIMIT

Syntax

FILELIMIT=integer

Description

The per-process (hard) file size limit (in KB) for all of the processes belonging to a job from this queue (see getrl i mit(2)).

Default

Unlimited

HIST_HOURS

Syntax

HIST_HOURS=hours

Description

Used only with fairshare scheduling. Determines a rate of decay for cumulative CPU time, run time, and historical run time.

To calculate dynamic user priority, LSF scales the actual CPU time and the run time using a decay factor, so that 1 hour of recently-used time is equivalent to 0.1 hours after the specified number of hours has elapsed.

To calculate dynamic user priority with decayed run time and historical run time, LSF scales the accumulated run time of finished jobs and run time of running jobs using the same decay factor, so that 1 hour of recently-used time is equivalent to 0.1 hours after the specified number of hours has elapsed.

When HIST_HOURS=0, CPU time and run time accumulated by running jobs is not decayed.

If undefined, the cluster-wide value from the l sb. params parameter of the same name is used.

Default

Not defined.

HJOB_LIMIT

Syntax

HJOB_LIMIT=integer

Description

Per-host job slot limit.

Maximum number of job slots that this queue can use on any host. This limit is configured per host, regardless of the number of processors it may have.

Example

The following runs a maximum of one job on each of host A, host B, and host C:

```
Begin Queue
...

HJOB_LIMIT = 1

HOSTS=hostA hostB hostC
...

End Queue
```

Default

Unlimited

HOSTS

Syntax

HOSTS=host_list | none

- *host_list* is a space-separated list of the following items:
 - host_name[@cluster_name][[!] | +pref_level]
 - host_partition[+pref_level]
 - host_group[[!] | +pref_level]
 - compute_unit[[!] | +pref_level]
 - [~]host_name
 - [~] host_group
 - [~] compute_unit
- The list can include the following items only once:
 - al l @cluster_name
 - others[+pref_level]
 - all
 - allremote
- The none keyword is only used with the MultiCluster job forwarding model, to specify a remote-only queue.

A space-separated list of hosts on which jobs from this queue can be run.

If compute units, host groups, or host partitions are included in the list, the job can run on any host in the unit, group, or partition. All the members of the host list should either belong to a single host partition or not belong to any host partition. Otherwise, job scheduling may be affected.

Some items can be followed by a plus sign (+) and a positive number to indicate the preference for dispatching a job to that host. A higher number indicates a higher preference. If a host preference is not given, it is assumed to be 0. If there are multiple candidate hosts, LSF dispatches the job to the host with the highest preference; hosts at the same level of preference are ordered by load.

If compute units, host groups, or host partitions are assigned a preference, each host in the unit, group, or partition has the same preference.

Use the keyword others to include all hosts not explicitly listed.

Use the keyword al 1 to include all hosts not explicitly excluded.

Use the keyword all@cluster_name hostgroup_name or allremote hostgroup_name to include lease in hosts.

Use the not operator (~) to exclude hosts from the all specification in the queue. This is useful if you have a large cluster but only want to exclude a few hosts from the queue definition.

The not operator can only be used with the all keyword. It is *not* valid with the keywords others and none.

The not operator (~) can be used to exclude host groups.

For parallel jobs, specify first execution host candidates when you want to ensure that a host has the required resources or runtime environment to handle processes that run on the first execution host.

To specify one or more hosts, host groups, or compute units as first execution host candidates, add the exclamation point (!) symbol after the name.

Follow these guidelines when you specify first execution host candidates:

- If you specify a compute unit or host group, you must first define the unit or group in the file l sb. hosts.
- Do not specify a dynamic host group as a first execution host.
- Do not specify "all," "allremote," or "others," or a host partition as a first execution host.
- Do not specify a preference (+) for a host identified by (!) as a first execution host candidate.
- For each parallel job, specify enough regular hosts to satisfy the CPU requirement for the job. Once LSF selects a first execution host for the current job, the other first execution host candidates
 - Become unavailable to the current job
 - Remain available to other jobs as either regular or first execution hosts
- You cannot specify first execution host candidates when you use the brun command.

Restriction:

If you have enabled EGO, host groups and compute units are not honored.

With MultiCluster resource leasing model, use the format *host_name@cluster_name* to specify a borrowed host. LSF does not validate the names of remote hosts. The keyword others indicates all local hosts not

explicitly listed. The keyword all indicates all local hosts not explicitly excluded. Use the keyword all remote to specify all hosts borrowed from all remote clusters. Use all@cluster_name to specify the group of all hosts borrowed from one remote cluster. You cannot specify a host group or partition that includes remote resources, unless it uses the keyword allremote to include allremote hosts. You cannot specify a compute unit that includes remote resources.

With MultiCluster resource leasing model, the not operator (~) can be used to exclude local hosts or host groups. You cannot use the not operator (~) with remote hosts.

Restriction:

Hosts that participate in queue-based fairshare cannot be in a host partition.

Behavior with host intersection

Host preferences specified by bsub -m combine intelligently with the queue specification and advance reservation hosts. The jobs run on the hosts that are both specified at job submission and belong to the queue or have advance reservation.

Example 1

HOSTS=hostA+1 hostB hostC+1 hostD+3

This example defines three levels of preferences: run jobs on hostD as much as possible, otherwise run on either hostA or hostC if possible, otherwise run on hostB. Jobs should not run on hostB unless all other hosts are too busy to accept more jobs.

Example 2

HOSTS=hostD+1 others

Run jobs on host D as much as possible, otherwise run jobs on the least-loaded host available.

With MultiCluster resource leasing model, this queue does not use borrowed hosts.

Example 3

HOSTS=all ~hostA

Run jobs on all hosts in the cluster, except for host A.

With MultiCluster resource leasing model, this queue does not use borrowed hosts.

Example 4

HOSTS=Group1 ~hostA hostB hostC

Run jobs on host B, host C, and all hosts in Group1 except for host A.

With MultiCluster resource leasing model, this queue uses borrowed hosts if Group1 uses the keyword allremote.

Example 5

HOSTS=hostA! hostB+ hostC hostgroup1!

Runs parallel jobs using either hostA or a host defined in hostgroup1 as the first execution host. If the first execution host cannot run the entire job due to resource requirements, runs the rest of the job on hostB. If hostB is too busy to accept the job, or if hostB does not have enough resources to run the entire job, runs the rest of the job on hostC.

Example 6

HOSTS=computeunit1! hostB hostC

Runs parallel jobs using a host in computeunit1 as the first execution host. If the first execution host cannot run the entire job due to resource requirements, runs the rest of the job on other hosts in computeunit1 followed by hostB and finally hostC.

Example 7

HOSTS=hostgroup1! computeunitA computeunitB computeunitC

Runs parallel jobs using a host in hostgroup1 as the first execution host. If additional hosts are required, runs the rest of the job on other hosts in the same compute unit as the first execution host, followed by hosts in the remaining compute units in the order they are defined in the lsb.hosts ComputeUnit section.

Default

al 1 (the queue can use all hosts in the cluster, and every host has equal preference)

With MultiCluster resource leasing model, this queue can use all local hosts, but no borrowed hosts.

IGNORE_DEADLINE

Syntax

IGNORE DEADLINE=Y

Description

If Y, disables deadline constraint scheduling (starts all jobs regardless of deadline constraints).

IMPT JOBBKLG

Syntax

IMPT_JOBBKLG=integer |infinit

Description

MultiCluster job forwarding model only. Specifies the MultiCluster pending job limit for a receive-jobs queue. This represents the maximum number of MultiCluster jobs that can be pending in the queue; once the limit has been reached, the queue stops accepting jobs from remote clusters.

Use the keyword i nf i ni t to make the queue accept an unlimited number of pending MultiCluster jobs.

Default

50

INTERACTIVE

Syntax

INTERACTIVE=YES | NO | ONLY

YES causes the queue to accept both interactive and non-interactive batch jobs, NO causes the queue to reject interactive batch jobs, and ONLY causes the queue to accept interactive batch jobs and reject non-interactive batch jobs.

Interactive batch jobs are submitted via bsub - I.

Default

YES. The queue accepts both interactive and non-interactive jobs.

INTERRUPTIBLE_BACKFILL

Syntax

INTERRUPTIBLE_BACKFILL=seconds

Description

Configures interruptible backfill scheduling policy, which allows reserved job slots to be used by low priority small jobs that are terminated when the higher priority large jobs are about to start.

There can only be one interruptible backfill queue. It should be the lowest priority queue in the cluster.

Specify the minimum number of seconds for the job to be considered for backfilling. This minimal time slice depends on the specific job properties; it must be longer than at least one useful iteration of the job. Multiple queues may be created if a site has jobs of distinctively different classes.

An interruptible backfill job:

- Starts as a regular job and is killed when it exceeds the queue runtime limit, or
- Is started for backfill whenever there is a backfill time slice longer than the specified minimal time, and killed before the slot-reservation job is about to start

The queue RUNLIMIT corresponds to a maximum time slice for backfill, and should be configured so that the wait period for the new jobs submitted to the queue is acceptable to users. 10 minutes of runtime is a common value.

You should configure REQUEUE_EXIT_VALUES for interruptible backfill queues.

BACKFILL and RUNLIMIT must be configured in the queue. The queue is disabled if BACKFILL and RUNLIMIT are not configured.

Assumptions and limitations:

- The interruptible backfill job holds the slot-reserving job start until its calculated start time, in the same way as a regular backfill job. The interruptible backfill job are not preempted in any way other than being killed when its time come.
- While the queue is checked for the consistency of interruptible backfill, backfill and runtime specifications, the requeue exit value clause is not verified, nor executed automatically. Configure requeue exit values according to your site policies.
- The interruptible backfill job must be able to do at least one unit of useful calculations and save its
 data within the minimal time slice, and be able to continue its calculations after it has been restarted
- Interruptible backfill paradigm does not explicitly prohibit running parallel jobs, distributed across multiple nodes; however, the chance of success of such job is close to zero.

Default

Not defined. No interruptible backfilling.

JOB_ACCEPT_INTERVAL

Syntax

JOB_ACCEPT_INTERVAL=integer

Description

The number you specify is multiplied by the value of 1 sb. params MBD_SLEEP_TIME (60 seconds by default). The result of the calculation is the number of seconds to wait after dispatching a job to a host, before dispatching a second job to the same host.

If 0 (zero), a host may accept more than one job in each dispatch turn. By default, there is no limit to the total number of jobs that can run on a host, so if this parameter is set to 0, a very large number of jobs might be dispatched to a host all at once. This can overload your system to the point that it is unable to create any more processes. It is not recommended to set this parameter to 0.

JOB_ACCEPT_INTERVAL set at the queue level (1 sb. queues) overrides JOB_ACCEPT_INTERVAL set at the cluster level (1 sb. params).

Note:

The parameter JOB_ACCEPT_INTERVAL only applies when there are running jobs on a host. A host running a short job which finishes before JOB_ACCEPT_INTERVAL has elapsed is free to accept a new job without waiting.

Default

Not defined. The queue uses JOB_ACCEPT_INTERVAL defined in 1 sb. params, which has a default value of 1.

JOB_ACTION_WARNING_TIME

Syntax

JOB ACTION WARNING TIME=[hour:]minute

Description

Specifies the amount of time before a job control action occurs that a job warning action is to be taken. For example, 2 minutes before the job reaches runtime limit or termination deadline, or the queue's run window is closed, an URG signal is sent to the job.

Job action warning time is not normalized.

A job action warning time must be specified with a job warning action in order for job warning to take effect.

The warning time specified by the bsub $\,$ - wt option overrides JOB_ACTION_WARNING_TIME in the queue. JOB_ACTION_WARNING_TIME is used as the default when no command line option is specified.

Example

JOB_ACTION_WARNING_TIME=2

Default

Not defined

JOB_CONTROLS

Syntax

- *signal* is a UNIX signal name (for example, SIGTSTP or SIGTERM). The specified signal is sent to the job. The same set of signals is not supported on all UNIX systems. To display a list of the symbolic names of the signals (without the SIG prefix) supported on your system, use the kill -1 command.
- *command* specifies a /bi n/sh command line to be invoked.

Restriction:

Do not quote the command line inside an action definition. Do not specify a signal followed by an action that triggers the same signal. For example, do not specify JOB_CONTROLS=TERMI NATE[bki l l] or JOB_CONTROLS=TERMI NATE[brequeue] . This causes a deadlock between the signal and the action.

- CHKPNT is a special action, which causes the system to checkpoint the job. Only valid for SUSPEND and TERMINATE actions:
 - If the SUSPEND action is CHKPNT, the job is checkpointed and then stopped by sending the SIGSTOP signal to the job automatically.
 - If the TERMINATE action is CHKPNT, then the job is checkpointed and killed automatically.

Description

Changes the behavior of the SUSPEND, RESUME, and TERMINATE actions in LSF.

- The contents of the configuration line for the action are run with /bi n/sh -c so you can use shell features in the command.
- The standard input, output, and error of the command are redirected to the NULL device, so you cannot tell directly whether the command runs correctly. The default null device on UNIX is /dev/nul 1.
- The command is run as the user of the job.
- All environment variables set for the job are also set for the command action. The following additional
 environment variables are set:
 - LSB_JOBPGIDS: a list of current process group IDs of the job
 - LSB_JOBPIDS: a list of current process IDs of the job
- For the SUSPEND action command, the following environment variables are also set:
 - LSB_SUSP_REASONS: an integer representing a bitmap of suspending reasons as defined in l sbatch. h. The suspending reason can allow the command to take different actions based on the reason for suspending the job.

- LSB_SUSP_SUBREASONS: an integer representing the load index that caused the job to be suspended. When the suspending reason SUSP_LOAD_REASON (suspended by load) is set in LSB_SUSP_REASONS, LSB_SUSP_SUBREASONS set to one of the load index values defined in 1 sf. h. Use LSB_SUSP_REASONS and LSB_SUSP_SUBREASONS together in your custom job control to determine the exact load threshold that caused a job to be suspended.
- If an additional action is necessary for the SUSPEND command, that action should also send the
 appropriate signal to the application. Otherwise, a job can continue to run even after being suspended
 by LSF. For example, JOB_CONTROLS=SUSPEND[kill SLSB_JOBPIDS; command]
- If you set preemption with the signal SIGTSTP you use License Scheduler, define LIC_SCHED_PREEMPT_STOP=Y in 1 sf. conf for License Scheduler preemption to work.

Default

On UNIX, by default, SUSPEND sends SIGTSTP for parallel or interactive jobs and SIGSTOP for other jobs. RESUME sends SIGCONT. TERMINATE sends SIGINT, SIGTERM and SIGKILL in that order.

On Windows, actions equivalent to the UNIX signals have been implemented to do the default job control actions. Job control messages replace the SIGINT and SIGTERM signals, but only customized applications are able to process them. Termination is implemented by the Termi nateProcess() system call.

JOB IDLE

Syntax

JOB_IDLE=number

Description

Specifies a threshold for idle job exception handling. The value should be a number between 0.0 and 1.0 representing CPU time/runtime. If the job idle factor is less than the specified threshold, LSF invokes LSF_SERVERDIR/eadmin to trigger the action for a job idle exception.

The minimum job run time before mbatchd reports that the job is idle is defined as DETECT_I DLE_JOB_AFTER in 1 sb. params.

Valid values

Any positive number between 0.0 and 1.0

Example

JOB_I DLE=0. 10

A job idle exception is triggered for jobs with an idle value (CPU time/runtime) less than 0.10.

Default

Not defined. No job idle exceptions are detected.

JOB OVERRUN

Syntax

JOB_OVERRUN=run_time

Specifies a threshold for job overrun exception handling. If a job runs longer than the specified run time, LSF invokes LSF_SERVERDI R/eadmin to trigger the action for a job overrun exception.

Example

JOB_OVERRUN=5

A job overrun exception is triggered for jobs running longer than 5 minutes.

Default

Not defined. No job overrun exceptions are detected.

JOB_STARTER

Syntax

JOB_STARTER=starter [starter] ["%USRCMD"] [starter]

Description

Creates a specific environment for submitted jobs prior to execution.

starter is any executable that can be used to start the job (i.e., can accept the job as an input argument). Optionally, additional strings can be specified.

By default, the user commands run after the job starter. A special string, %USRCMD, can be used to represent the position of the user's job in the job starter command line. The %USRCMD string and any additional commands must be enclosed in quotation marks (" ").

If your job starter script runs on a Windows execution host and includes symbols (like & or |), you can use the JOB_STARTER_EXTEND=preservestarter parameter in 1 sf. conf and set JOB_STARTER=preservestarter in 1 sb. queues. A customized userstarter can also be used.

Example

JOB_STARTER=csh -c "%USRCMD; sleep 10"

In this case, if a user submits a job

% bsub myjob arguments

the command that actually runs is:

% csh -c "myjob arguments; sleep 10"

Default

Not defined. No job starter is used.

JOB UNDERRUN

Syntax

JOB_UNDERRUN=run_time

Specifies a threshold for job underrun exception handling. If a job exits before the specified number of minutes, LSF invokes LSF_SERVERDI R/eadmin to trigger the action for a job underrun exception.

Example

JOB UNDERRUN=2

A job underrun exception is triggered for jobs running less than 2 minutes.

Default

Not defined. No job underrun exceptions are detected.

JOB_WARNING_ACTION

Syntax

JOB_WARNING_ACTION=signal

Description

Specifies the job action to be taken before a job control action occurs. For example, 2 minutes before the job reaches runtime limit or termination deadline, or the queue's run window is closed, an URG signal is sent to the job.

A job warning action must be specified with a job action warning time in order for job warning to take effect

If JOB_WARNING_ACTION is specified, LSF sends the warning action to the job before the actual control action is taken. This allows the job time to save its result before being terminated by the job control action.

The warning action specified by the bsub - wa option overrides JOB_WARNING_ACTION in the queue. JOB_WARNING_ACTION is used as the default when no command line option is specified.

Example

JOB_WARNING_ACTION=URG

Default

Not defined

load_index

Syntax

load_index=loadSched[IloadStop]

Specify i o, i t, l s, mem, pg, r15s, r1m, r15m, swp, tmp, ut, or a non-shared custom external load index. Specify multiple lines to configure thresholds for multiple load indices.

Specify i o, i t, l s, mem, pg, r15s, r1m, r15m, swp, tmp, ut, or a non-shared custom external load index as a column. Specify multiple columns to configure thresholds for multiple load indices.

Scheduling and suspending thresholds for the specified dynamic load index.

The loadSched condition must be satisfied before a job is dispatched to the host. If a RESUME_COND is not specified, the loadSched condition must also be satisfied before a suspended job can be resumed.

If the loadStop condition is satisfied, a job on the host is suspended.

The loadSched and loadSt op thresholds permit the specification of conditions using simple AND/OR logic. Any load index that does not have a configured threshold has no effect on job scheduling.

LSF does not suspend a job if the job is the only batch job running on the host and the machine is interactively idle (i t>0).

The r15s, r1m, and r15m CPU run queue length conditions are compared to the effective queue length as reported by lsload-E, which is normalized for multiprocessor hosts. Thresholds for these parameters should be set at appropriate levels for single processor hosts.

Example

```
MEM=100/10
```

SWAP=200/30

These two lines translate into a loadSched condition of

mem>=100 && swap>=200

and a loadStop condition of

mem < 10 || swap < 30

Default

Not defined

LOCAL_MAX_PREEXEC_RETRY

Syntax

LOCAL_MAX_PREEXEC_RETRY=integer

Description

The maximum number of times to attempt the pre-execution command of a job on the local cluster.

Valid values

```
0 < MAX_PREEXEC_RETRY < INFINIT_INT
INFINIT INT is defined in 1 sf. h.
```

Default

Not defined. The number of preexec retry times is unlimited

MANDATORY_EXTSCHED

Syntax

MANDATORY_EXTSCHED=external_scheduler_options

Description

Specifies mandatory external scheduling options for the queue.

-extsched options on the bsub command are merged with MANDATORY_EXTSCHED options, and MANDATORY_EXTSCHED options override any conflicting job-level options set by -extsched.

Default

Not defined

MAX_JOB_PREEMPT

Syntax

MAX_JOB_PREEMPT=integer

Description

The maximum number of times a job can be preempted. Applies to queue-based preemption only.

Valid values

0 < MAX_JOB_PREEMPT < INFINIT_INT INFINIT_INT is defined in 1 sf. h.

Default

Not defined. The number of preemption times is unlimited.

MAX_JOB_REQUEUE

Syntax

MAX_JOB_REQUEUE=integer

Description

The maximum number of times to requeue a job automatically.

Valid values

0 < MAX_JOB_REQUEUE < INFINIT_INT INFINIT_INT is defined in l sf. h.

Default

Not defined. The number of requeue times is unlimited

MAX_PREEXEC_RETRY

Syntax

MAX_PREEXEC_RETRY=integer

Description

Use REMOTE_MAX_PREEXEC_RETRY instead. This parameter is maintained for backwards compatibility.

MultiCluster job forwarding model only. The maximum number of times to attempt the pre-execution command of a job from a remote cluster.

If the job's pre-execution command fails all attempts, the job is returned to the submission cluster.

Valid values

0 < MAX_PREEXEC_RETRY < INFINIT_INT INFINIT_INT is defined in 1 sf. h.

Default

5

MAX_RSCHED_TIME

Syntax

MAX_RSCHED_TIME=integer | infinit

Description

MultiCluster job forwarding model only. Determines how long a MultiCluster job stays pending in the execution cluster before returning to the submission cluster. The remote timeout limit in seconds is:

```
MAX_RSCHED_TI ME * MBD_SLEEP_TI ME=ti meout
```

Specify i nf i ni t to disable remote timeout (jobs always get dispatched in the correct FCFS order because MultiCluster jobs never get rescheduled, but MultiCluster jobs can be pending in the receive-jobs queue forever instead of being rescheduled to a better queue).

Note:

apply to the queue in the submission cluster (only). This parameter is ignored by the receiving queue.

Remote timeout limit never affects advance reservation jobs

Jobs that use an advance reservation always behave as if remote timeout is disabled.

Default

20 (20 minutes by default)

MAX_SLOTS_IN_POOL

Syntax

MAX_SLOTS_IN_POOL=integer

Description

Queue-based fairshare only. Maximum number of job slots available in the slot pool the queue belongs to for queue based fairshare.

Defined in the first queue of the slot pool. Definitions in subsequent queues have no effect.

When defined together with other slot limits (QJOB_LIMIT, HJOB_LIMIT or UJOB_LIMIT in 1 sb. queues or queue limits in 1 sb. resources) the lowest limit defined applies.

When MAX_SLOTS_IN_POOL, SLOT_RESERVE, and BACKFILL are defined for the same queue, jobs in the queue cannot backfill using slots reserved by other jobs in the same queue.

Valid values

MAX_SLOTS_IN_POOL can be any number from 0 to INFINIT_INT, where INFINIT_INT is defined in 1 sf. h.

Default

Not defined

MAX_TOTAL_TIME_PREEMPT

Syntax

MAX_TOTAL_TIME_PREEMPT=integer

Description

The accumulated preemption time in minutes after which a job cannot be preempted again, where *minutes* is wall-clock time, not normalized time.

Setting the parameter of the same name in $l\,sb.$ appl i cati ons overrides this parameter; setting this parameter overrides the parameter of the same name in $l\,sb.$ params.

Valid values

Any positive integer greater than or equal to one (1)

Default

Unlimited

MEMLIMIT

Syntax

MEMLIMIT=[default_limit] maximum_limit

The per-process (hard) process resident set size limit (in KB) for all of the processes belonging to a job from this queue (see getrlimit(2)).

Sets the maximum amount of physical memory (resident set size, RSS) that may be allocated to a process.

By default, if a default memory limit is specified, jobs submitted to the queue without a job-level memory limit are killed when the default memory limit is reached.

If you specify only one limit, it is the maximum, or hard, memory limit. If you specify two limits, the first one is the default, or soft, memory limit, and the second one is the maximum memory limit.

LSF has two methods of enforcing memory usage:

- OS Memory Limit Enforcement
- LSF Memory Limit Enforcement

OS memory limit enforcement

OS memory limit enforcement is the default MEMLIMIT behavior and does not require further configuration. OS enforcement usually allows the process to eventually run to completion. LSF passes MEMLIMIT to the OS that uses it as a guide for the system scheduler and memory allocator. The system may allocate more memory to a process if there is a surplus. When memory is low, the system takes memory from and lowers the scheduling priority (re-nice) of a process that has exceeded its declared MEMLIMIT. Only available on systems that support RLI MIT_RSS for setrlimit().

Not supported on:

- Sun Solaris 2.x
- Windows

LSF memory limit enforcement

To enable LSF memory limit enforcement, set LSB_MEMLIMIT_ENFORCE in 1 sf. conf to y. LSF memory limit enforcement explicitly sends a signal to kill a running process once it has allocated memory past MEMLIMIT.

You can also enable LSF memory limit enforcement by setting LSB_JOB_MEMLIMIT in 1 sf. conf to y. The difference between LSB_JOB_MEMLIMIT set to y and LSB_MEMLIMIT_ENFORCE set to y is that with LSB_JOB_MEMLIMIT, only the per-job memory limit enforced by LSF is enabled. The per-process memory limit enforced by the OS is disabled. With LSB_MEMLIMIT_ENFORCE set to y, both the per-job memory limit enforced by LSF and the per-process memory limit enforced by the OS are enabled.

Available for all systems on which LSF collects total memory usage.

Example

The following configuration defines a queue with a memory limit of 5000 KB:

```
Begin Queue

QUEUE_NAME = default

DESCRIPTION = Queue with memory limit of 5000 kbytes

MEMLIMIT = 5000

End Queue
```

Default

Unlimited

MIG

Syntax

MIG=minutes

Description

Enables automatic job migration and specifies the migration threshold for checkpointable or rerunnable jobs, in minutes.

LSF automatically migrates jobs that have been in the SSUSP state for more than the specified number of minutes. Specify a value of 0 to migrate jobs immediately upon suspension. The migration threshold applies to all jobs running on the host.

Job-level command line migration threshold overrides threshold configuration in application profile and queue. Application profile configuration overrides queue level configuration.

When a host migration threshold is specified, and is lower than the value for the job, the queue, or the application, the host value is used..

Members of a chunk job can be migrated. Chunk jobs in WAIT state are removed from the job chunk and put into PEND state.

Does not affect MultiCluster jobs that are forwarded to a remote cluster.

Default

Not defined. LSF does not migrate checkpointable or rerunnable jobs automatically.

NEW_JOB_SCHED_DELAY

Syntax

NEW_JOB_SCHED_DELAY=seconds

Description

The number of seconds that a new job waits, before being scheduled. A value of zero (0) means the job is scheduled without any delay.

Default

2 seconds

NICE

Syntax

NICE=*integer*

Adjusts the UNIX scheduling priority at which jobs from this queue execute.

The default value of 0 (zero) maintains the default scheduling priority for UNIX interactive jobs. This value adjusts the run-time priorities for batch jobs on a queue-by-queue basis, to control their effect on other batch or interactive jobs. See the ni ce(1) manual page for more details.

On Windows, this value is mapped to Windows process priority classes as follows:

- ni ce>=0 corresponds to an priority class of I DLE
- ni ce<0 corresponds to an priority class of NORMAL

LSF on Windows does not support HI GH or REAL- TI ME priority classes.

This value is overwritten by the NICE setting in 1 sb. appl i cati ons, if defined.

Default

0 (zero)

NO_PREEMPT_INTERVAL

Syntax

NO_PREEMPT_INTERVAL=minutes

Description

Prevents preemption of jobs for the specified number of minutes of uninterrupted run time, where *minutes* is wall-clock time, not normalized time. **NO_PREEMPT_INTERVAL=0** allows immediate preemption of jobs as soon as they start or resume running.

Setting the parameter of the same name in lsb. applications overrides this parameter; setting this parameter overrides the parameter of the same name in lsb. params.

Default

0

NQS_QUEUES

Syntax

 $NQS_QUEUES=NQS_queue_name@NQS_host_name...$

Description

Makes the queue an NQS forward queue.

NQS_host_name is an NQS host name that can be the official host name or an alias name known to the LSF master host.

NQS_queue_name is the name of an NQS destination queue on this host. NQS destination queues are considered for job routing in the order in which they are listed here. If a queue accepts the job, it is routed to that queue. If no queue accepts the job, it remains pending in the NQS forward queue.

1 sb. nqsmaps must be present for the LSF system to route jobs in this queue to NQS systems.

You must configure LSB_MAX_NQS_QUEUES in 1 sf. conf to specify the maximum number of NQS queues allowed in the LSF cluster. This is required for LSF to work with NQS.

Since many features of LSF are not supported by NQS, the following queue configuration parameters are ignored for NQS forward queues: PJOB_LIMIT, POLICIES, RUN_WINDOW, DISPATCH_WINDOW, RUNLIMIT, HOSTS, MIG. The application-level RUNTIME parameter in 1 sb. appl i cat i ons is also ignored. In addition, scheduling load threshold parameters are ignored because NQS does not provide load information about hosts.

Default

Not defined

PJOB LIMIT

Syntax

PJOB_LIMIT=float

Description

Per-processor job slot limit for the queue.

Maximum number of job slots that this queue can use on any processor. This limit is configured per processor, so that multiprocessor hosts automatically run more jobs.

Default

Unlimited

POST_EXEC

Syntax

POST_EXEC=command

Description

Enables post-execution processing at the queue level. The POST_EXEC command runs on the execution host after the job finishes. Post-execution commands can be configured at the application and queue levels. Application-level post-execution commands run *before* queue-level post-execution commands.

The POST_EXEC command uses the same environment variable values as the job, and, by default, runs under the user account of the user who submits the job. To run post-execution commands under a different user account (such as root for privileged operations), configure the parameter LSB PRE POST EXEC USER in 1 sf. sudoers.

When a job exits with one of the queue's REQUEUE_EXIT_VALUES, LSF requeues the job and sets the environment variable LSB_JOBPEND. The post-execution command runs after the requeued job finishes.

When the post-execution command is run, the environment variable LSB_JOBEXIT_STAT is set to the exit status of the job. If the execution environment for the job cannot be set up, LSB_JOBEXIT_STAT is set to 0 (zero).

The command path can contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows, including the directory, file name, and expanded values for %J (*job_ID*) and %I (*index_ID*).

For UNIX:

• The pre- and post-execution commands run in the /tmp directory under /bi n/sh - c, which allows the use of shell features in the commands. The following example shows valid configuration lines:

```
PRE_EXEC= /usr/share/lsf/misc/testq_pre >> /tmp/pre.out
```

POST_EXEC= /usr/share/lsf/misc/testq_post | grep -v "Hey!"

LSF sets the PATH environment variable to

PATH=' /bi n /usr/bi n /sbi n /usr/sbi n'

- The stdi n, stdout, and stderr are set to /dev/nul l
- To allow UNIX users to define their own post-execution commands, an LSF administrator specifies
 the environment variable \$USER_POSTEXEC as the POST_EXEC command. A user then defines the
 post-execution command:

setenv USER_POSTEXEC /path_name

Note:

The path name for the post-execution command must be an absolute path. Do not define POST_EXEC=\$USER_POSTEXEC when LSB_PRE_POST_EXEC_USER=root.

For Windows:

- The pre- and post-execution commands run under cmd. exe /c
- The standard input, standard output, and standard error are set to NULL
- The PATH is determined by the setup of the LSF Service

Note:

For post-execution commands that execute on a Windows Server 2003, x64 Edition platform, users must have read and execute privileges for cmd. exe.

Default

Not defined. No post-execution commands are associated with the queue.

PRE_EXEC

Syntax

PRE EXEC=command

Description

Enables pre-execution processing at the queue level. The PRE_EXEC command runs on the execution host before the job starts. If the PRE_EXEC command exits with a non-zero exit code, LSF requeues the job to the front of the queue.

Pre-execution commands can be configured at the queue, application, and job levels and run in the following order:

- 1. The queue-level command
- 2. The application-level or job-level command. If you specify a command at both the application and job levels, the job-level command overrides the application-level command; the application-level command is ignored.

The PRE_EXEC command uses the same environment variable values as the job, and runs under the user account of the user who submits the job. To run pre-execution commands under a different user account

(such as root for privileged operations), configure the parameter LSB_PRE_POST_EXEC_USER in $l\,sf.$ sudoers.

The command path can contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows, including the directory, file name, and expanded values for %J (job_ID) and %I (index_ID).

For UNIX:

• The pre- and post-execution commands run in the / tmp directory under / bi n/sh - c, which allows the use of shell features in the commands. The following example shows valid configuration lines:

```
PRE_EXEC= /usr/share/lsf/misc/testq_pre >> /tmp/pre.out
```

POST_EXEC= /usr/share/lsf/misc/testq_post | grep -v "Hey!"

- LSF sets the PATH environment variable to

 PATH=' /bi n /usr/bi n /sbi n /usr/sbi n'
- The stdi n, stdout, and stderr are set to /dev/nul l

For Windows:

- The pre- and post-execution commands run under cmd. exe /c
- The standard input, standard output, and standard error are set to NULL
- The PATH is determined by the setup of the LSF Service

Note:

For pre-execution commands that execute on a Windows Server 2003, x64 Edition platform, users must have read and execute privileges for cmd. exe.

Default

Not defined. No pre-execution commands are associated with the queue.

PREEMPTION

Syntax

$$\label{eq:preemption} \begin{split} & \texttt{PREEMPTION=PREEMPTIVE}[[low_queue_name[+pref_level]...]] \ \texttt{PREEMPTION=PREEMPTION=PREEMPTIVE}[[low_queue_name[+pref_level]...]]} \\ & \texttt{PREEMPTABLE}[[hi_queue_name...]] \end{split}$$

Description

PREEMPTIVE

Enables preemptive scheduling and defines this queue as preemptive. Jobs in this queue preempt jobs from the specified lower-priority queues or from all lower-priority queues if the parameter is specified with no queue names. PREEMPTI VE can be combined with PREEMPTABLE to specify that jobs in this queue can preempt jobs in lower-priority queues, and can be preempted by jobs in higher-priority queues.

PREEMPTABLE

Enables preemptive scheduling and defines this queue as preemptable. Jobs in this queue can be preempted by jobs from specified higher-priority queues, or from all higher-priority queues, even if the higher-priority queues are not preemptive. PREEMPTI VE can

be combined with PREEMPTI VE to specify that jobs in this queue can be preempted by jobs in higher-priority queues, and can preempt jobs in lower-priority queues.

low_queue_name

Specifies the names of lower-priority queues that can be preempted.

To specify multiple queues, separate the queue names with a space, and enclose the list in a single set of square brackets.

+pref_level

Specifies to preempt this queue before preempting other queues. When multiple queues are indicated with a preference level, an order of preference is indicated: queues with higher relative preference levels are preempted before queues with lower relative preference levels set.

hi_queue_name

Specifies the names of higher-priority queues that can preempt jobs in this queue.

To specify multiple queues, separate the queue names with a space and enclose the list in a single set of square brackets.

Example: configure selective, ordered preemption across queues

The following example defines four queues, as follows:

- high
 - Has the highest relative priority of 99
 - Jobs from this queue can preempt jobs from all other queues
- medium
 - Has the second-highest relative priority at 10
 - Jobs from this queue can preempt jobs from normal and low queues, beginning with
 jobs from low, as indicated by the preference (+1)
- normal
 - · Has the second-lowest relative priority, at 5
 - Jobs from this queue can preempt jobs from 1 ow, and can be preempted by jobs from both hi gh and medi um queues
- low
 - Has the lowest relative priority, which is also the default priority, at 1

• Jobs from this queue can be preempted by jobs from all preemptive queues, even though it does not have the PREEMPTABLE keyword set

Begin Queue
QUEUE_NAME=hi gh
PREEMPTI ON=PREEMPTI VE
PRI ORI TY=99
End Queue
Begin Queue
QUEUE_NAME=medi um
PREEMPTION=PREEMPTIVE[normal low+1]
PRI ORI TY=10
End Queue
Begin Queue
QUEUE_NAME=normal
PREEMPTI ON=PREEMPTI VE[1 ow]
PREEMPTABLE[hi gh medi um]
PRI ORI TY=5
End Queue
2nd quodo
Begin Queue
QUEUE_NAME=1 ow
PRI ORI TY=1

PRIORITY

Syntax

PRIORITY=integer

Description

Specifies the relative queue priority for dispatching jobs. A higher value indicates a higher job-dispatching priority, relative to other queues.

LSF schedules jobs from one queue at a time, starting with the highest-priority queue. If multiple queues have the same priority, LSF schedules all the jobs from these queues in first-come, first-served order.

LSF queue priority is independent of the UNIX scheduler priority system for time-sharing processes. In LSF, the NICE parameter is used to set the UNIX time-sharing priority for batch jobs.

integer

Specify a number greater than or equal to 1, where 1 is the lowest priority.

Default

1

PROCESSLIMIT

Syntax

PROCESSLIMIT=[default_limit] maximum_limit

Description

Limits the number of concurrent processes that can be part of a job.

By default, if a default process limit is specified, jobs submitted to the queue without a job-level process limit are killed when the default process limit is reached.

If you specify only one limit, it is the maximum, or hard, process limit. If you specify two limits, the first one is the default, or soft, process limit, and the second one is the maximum process limit.

Default

Unlimited

PROCLIMIT

Syntax

PROCLIMIT=[minimum_limit [default_limit]] maximum_limit

Description

Maximum number of slots that can be allocated to a job. For parallel jobs, the maximum number of processors that can be allocated to the job.

Job-level processor limits (bsub - n) override queue-level PROCLIMIT. Job-level limits must fall within the maximum and minimum limits of the application profile and the queue. Application-level PROCLIMIT in 1 sb. appl i cat i ons overrides queue-level specificiation.

Optionally specifies the minimum and default number of job slots.

All limits must be positive numbers greater than or equal to 1 that satisfy the following relationship:

1 <= minimum <= default <= maximum

You can specify up to three limits in the PROCLIMIT parameter:

Jobs that request fewer slots than the minimum PROCLIMIT or more slots than the maximum PROCLIMIT cannot use the queue and are rejected. If the job requests minimum and maximum job slots, the maximum slots requested cannot be less than the minimum PROCLIMIT, and the minimum slots requested cannot be more than the maximum PROCLIMIT.

Default

Unlimited, the default number of slots is 1

QJOB_LIMIT

Syntax

QJOB_LIMIT=integer

Description

Job slot limit for the queue. Total number of job slots that this queue can use.

Default

Unlimited

QUEUE_GROUP

Syntax

QUEUE_GROUP=queue1, queue2 ...

Description

Configures absolute priority scheduling (APS) across multiple queues.

When APS is enabled in the queue with APS_PRIORITY, the FAIRSHARE_QUEUES parameter is ignored. The QUEUE_GROUP parameter replaces FAIRSHARE_QUEUES, which is obsolete in LSF 7.0.

Default

Not defined

QUEUE_NAME

Syntax

QUEUE_NAME=string

Description

Required. Name of the queue.

Specify any ASCII string up to 59 characters long. You can use letters, digits, underscores (_) or dashes (-). You cannot use blank spaces. You cannot specify the reserved name default.

Default

You must specify this parameter to define a queue. The default queue automatically created by LSF is named default.

RCVJOBS_FROM

Syntax

RCVJOBS_FROM=cluster_name ... | allclusters

Description

MultiCluster only. Defines a MultiCluster receive-jobs queue.

Specify cluster names, separated by a space. The administrator of each remote cluster determines which queues in that cluster forward jobs to the local cluster.

Use the keyword allclusters to specify any remote cluster.

Example

RCVJOBS FROM=cluster2 cluster4 cluster6

This queue accepts remote jobs from clusters 2, 4, and 6.

REMOTE_MAX_PREEXEC_RETRY

Syntax

REMOTE_MAX_PREEXEC_RETRY=integer

Description

MultiCluster job forwarding model only. Applies to the execution cluster. Define the maximum number of times to attempt the pre-execution command of a job from the remote cluster.

Valid values

0 - INFINIT_INT

INFINIT_INT is defined in 1 sf. h.

Default

5

REQUEUE_EXIT_VALUES

Syntax

REQUEUE_EXIT_VALUES=[exit_code ...] [EXCLUDE(exit_code ...)]

Description

Enables automatic job requeue and sets the LSB_EXIT_REQUEUE environment variable. Use spaces to separate multiple exit codes. Application-level exit values override queue-level values. Job-level exit values (bsub - Q) override application-level and queue-level values.

exit_code has the following form:

```
"[all] [~number ...] | [number ...]"
```

The reserved keyword al 1 specifies all exit codes. Exit codes are typically between 0 and 255. Use a tilde (~) to exclude specified exit codes from the list.

Jobs are requeued to the head of the queue. The output from the failed run is not saved, and the user is not notified by LSF.

Define an exit code as EXCLUDE(*exit_code*) to enable exclusive job requeue, ensuring the job does not rerun on the samehost. Exclusive job requeue does not work for parallel jobs.

For MultiCluster jobs forwarded to a remote execution cluster, the exit values specified in the submission cluster with the EXCLUDE keyword are treated as if they were non-exclusive.

You can also requeue a job if the job is terminated by a signal.

If a job is killed by a signal, the exit value is 128+signal_value. The sum of 128 and the signal value can be used as the exit code in the parameter REQUEUE_EXIT_VALUES.

For example, if you want a job to rerun if it is killed with a signal 9 (SIGKILL), the exit value would be 128+9=137. You can configure the following requeue exit value to allow a job to be requeue if it was kill by signal 9:

REQUEUE_EXIT_VALUES=137

If mbat chd is restarted, it does not remember the previous hosts from which the job exited with an exclusive requeue exit code. In this situation, it is possible for a job to be dispatched to hosts on which the job has previously exited with an exclusive exit code.

You should configure REQUEUE_EXIT_VALUES for interruptible backfill queues (INTERRUPTIBLE_BACKFILL=*seconds*).

Example

REQUEUE_EXIT_VALUES=30 EXCLUDE(20)

means that jobs with exit code 30 are requeued, jobs with exit code 20 are requeued exclusively, and jobs with any other exit code are not requeued.

Default

Not defined. Jobs are not requeued.

RERUNNABLE

Syntax

RERUNNABLE=yes | no

Description

If yes, enables automatic job rerun (restart).

Rerun is disabled when RERUNNABLE is set to no. The yes and no arguments are not case sensitive.

For MultiCluster jobs, the setting in the submission queue is used, and the setting in the execution queue is ignored.

Members of a chunk job can be rerunnable. If the execution host becomes unavailable, rerunnable chunk job members are removed from the job chunk and dispatched to a different execution host.

Default

no

RESOURCE_RESERVE

Syntax

RESOURCE_RESERVE=MAX_RESERVE_TIME[integer]

Description

Enables processor reservation and memory reservation for pending jobs for the queue. Specifies the number of dispatch turns (MAX_RESERVE_TIME) over which a job can reserve job slots and memory.

Overrides the SLOT_RESERVE parameter. If both RESOURCE_RESERVE and SLOT_RESERVE are defined in the same queue, an error is displayed when the cluster is reconfigured, and SLOT_RESERVE

is ignored. Job slot reservation for parallel jobs is enabled by RESOURCE_RESERVE if the LSF scheduler plugin module names for both resource reservation and parallel batch jobs (schmod_parallel and schmod_reserve) are configured in the lsb. modules file: The schmod_parallel name *must* come before schmod_reserve in lsb. modules.

If a job has not accumulated enough memory or job slots to start by the time MAX_RESERVE_TIME expires, it releases all its reserved job slots or memory so that other pending jobs can run. After the reservation time expires, the job cannot reserve memory or slots for one scheduling session, so other jobs have a chance to be dispatched. After one scheduling session, the job can reserve available memory and job slots again for another period specified by MAX_RESERVE_TIME.

If BACKFILL is configured in a queue, and a run limit is specified with -W on bsub or with RUNLIMIT in the queue, backfill jobs can use the accumulated memory reserved by the other jobs in the queue, as long as the backfill job can finish before the predicted start time of the jobs with the reservation.

Unlike slot reservation, which only applies to parallel jobs, memory reservation and backfill on memory apply to sequential and parallel jobs.

Example

RESOURCE_RESERVE=MAX_RESERVE_TIME[5]

This example specifies that jobs have up to 5 dispatch turns to reserve sufficient job slots or memory (equal to 5 minutes, by default).

Default

Not defined. No job slots or memory is reserved.

RES_REQ

Syntax

RES_REQ=res_req

Description

Resource requirements used to determine eligible hosts. Specify a resource requirement string as usual. The resource requirement string lets you specify conditions in a more flexible manner than using the load thresholds. Resource requirement strings can be simple (applying to the entire job) or compound (applying to the specified number of slots).

When a compound resource requirement is set for a queue, it will be ignored unless it is the only resource requirement specified (no resource requirements are set at the job-level or application-level).

When a simple resource requirement is set for a queue and a compound resource requirement is set at the job-level or application-level, the queue-level requirements merge as they do for simple resource requirements. However, any job-based resources defined in the queue only apply to the first term of the merged compound resource requirements.

When LSF_STRICT_RESREQ=Y is configured in 1 sf. conf, resource requirement strings in select sections must conform to a more strict syntax. The strict resource requirement syntax only applies to the sel ect section. It does not apply to the other resource requirement sections (order, rusage, same, span, or cu). When LSF_STRICT_RESREQ=Y in 1 sf. conf, LSF rejects resource requirement strings where an rusage section contains a non-consumable resource.

For simple resource requirements, the sel ect sections from all levels must be satisfied and the same sections from all levels are combined, cu, order, and span sections at the job-level overwrite those at the application-level which overwrite those at the queue-level. Multiple rusage definitions are merged, with the job-level rusage taking precedence over the application-level, and application-level taking precedence over the queue-level.

The simple resource requirement rusage section can specify additional requests. To do this, use the OR (||) operator to separate additional rusage strings. Multiple - R options cannot be used with multiphase rusage resource requirements.

Note:

Compound resource requirements do not support use of the | | operator within rusage sections, multiple -R options, or the cu section.

The RES_REQ consumable resource requirements must satisfy any limits set by the parameter RESRSV_LIMIT in 1 sb. queues, or the RES_REQ will be ignored.

When both the RES_REQ and RESRSV_LIMIT are set in 1 sb. queues for a consumable resource, the queue-level RES_REQ no longer acts as a hard limit for the merged RES_REQ rusage values from the job and application levels. In this case only the limits set by RESRSV_LIMIT must be satisfied, and the queue-level RES_REQ acts as a default value.

For example:

Queue-level

RES_REQ=rusage[mem=200] ...

RES_REQ:

For the job submission:

bsub - R' rusage[mem=100]' ...

the resulting requirement for the job is

rusage[mem=100]

where mem=100 specified by the job overrides mem=200 specified by the queue.

Queue-level RES REQ with

RES_REQ=rusage[mem=200: duration=20: decay=1] ...

decay and duration defined:

For a job submission with no decay or duration:

bsub -R'rusage[mem=100]' ...

the resulting requirement for the job is: rusage[mem=100: duration=20: decay=1]

Queue-level duration and decay are merged with the job-level specification, and mem=100 for the job overrides mem=200 specified by the queue. However, durati on=20 and decay=1 from queue are kept, since job does not specify them.

Queue-level RES_REQ with multi-phase job-level

RES_REQ=rusage[mem=200: duration=20: decay=1] ...

For a job submission with no decay or duration:

bsub - R' rusage[mem=(300 200 100):duration=(10 10 10)]' ...

rusage: the resulting requirement for the job is:

rusage[mem=(300 200 100):duration=(10 10 10)]

Multi-phase rusage values in the job submission override the single phase specified by the queue.

- If RESRSV_LIMIT is defined in 1 sb. queues and has a maximum memory limit of 300 MB or greater, this job will be accepted.
- If RESRSV_LIMIT is defined in 1 sb. queues and has a maximum memory limit of less than 300 MB, this job will be rejected.
- If RESRSV_LIMIT is not defined in 1 sb. queues and the queue-level RES_REQ value of 200 MB acts as a ceiling, this job will be rejected.

Queue-level multi-phase rusage RES_REQ:

```
RES_REQ=rusage[mem=(350\ 200):duration=(20):decay=(1)] \dots
```

For a single phase job submission with no decay or duration:

bsub -q q_name -R'rusage[mem=100:swap=150]' ...

the resulting requirement for the job is:

rusage[mem=100:swap=150]

The job-level rusage string overrides the queue-level multi-phase rusage string.

The order section defined at the job level overwrites any resource requirements specified at the application level or queue level. The order section defined at the application level overwrites any resource requirements specified at the queue level. The default order string is r15s: pg.

If RES_REQ is defined at the queue level and there are no load thresholds defined, the pending reasons for each individual load index are not displayed by bj obs.

The span section defined at the queue level is ignored if the span section is also defined at the job level or in an application profile.

Note:

Define span[hosts=-1] in the application profile or $bsub\ -R$ resource requirement string to override the span section setting in the queue.

Resource requirements determined by the queue no longer apply to a running job after running badmin reconfig, For example, if you change the RES_REQ parameter in a queue and reconfigure the cluster, the previous queue-level resource requirements for running jobs are lost.

Default

select[type==local] order[r15s:pg]. If this parameter is defined and a host model or Boolean resource is specified, the default type is any.

RESRSV LIMIT

Syntax

RESRSV_LIMIT= $[res1=\{min1,\} max1]$ $[res2=\{min2,\} max2]...$

Where *res* is a consumable resource name, *min* is an optional minimum value and *max* is the maximum allowed value. Both *max* and *min* must be float numbers between 0 and 2147483647, and *min* cannot be greater than *max*.

Description

Sets a range of allowed values for RES_REQ resources.

Queue-level RES_REQ rusage values (set in 1 sb. queues) must be in the range set by RESRSV_LIMIT, or the queue-level RES_REQ is ignored. Merged RES_REQ rusage values from the job and application levels must be in the range of RESRSV_LIMIT, or the job is rejected.

Changes made to the rusage values of running jobs using bmod - R cannot exceed the maximum values of RESRSV_LIMIT, but can be lower than the minimum values.

When both the RES_REQ and RESRSV_LIMIT are set in 1 sb. queues for a consumable resource, the queue-level RES_REQ no longer acts as a hard limit for the merged RES_REQ rusage values from the job and application levels. In this case only the limits set by RESRSV_LIMIT must be satisfied, and the queue-level RES_REQ acts as a default value.

For MultiCluster, jobs must satisfy the RESRSV_LIMIT range set for the send-jobs queue in the submission cluster. After the job is forwarded the resource requirements are also checked against the RESRSV_LIMIT range set for the receive-jobs queue in the execution cluster.

Note:

Only consumable resource limits can be set in RESRSV_LIMIT. Other resources will be ignored.

Default

Not defined.

If *max* is defined and optional *min* is not, the default for *min* is 0.

RESUME_COND

Syntax

RESUME_COND=res_req

Use the sel ect section of the resource requirement string to specify load thresholds. All other sections are ignored.

Description

LSF automatically resumes a suspended (SSUSP) job in this queue if the load on the host satisfies the specified conditions.

If RESUME_COND is not defined, then the loadSched thresholds are used to control resuming of jobs. The loadSched thresholds are ignored, when resuming jobs, if RESUME_COND is defined.

Default

Not defined. The loadSched thresholds are used to control resuming of jobs.

RUN JOB FACTOR

Syntax

RUN_JOB_FACTOR=number

Description

Used only with fairshare scheduling. Job slots weighting factor.

In the calculation of a user's dynamic share priority, this factor determines the relative importance of the number of job slots reserved and in use by a user.

If undefined, the cluster-wide value from the 1 sb. params parameter of the same name is used.

Default

Not defined.

RUN_TIME_DECAY

Syntax

RUN_TIME_DECAY=Y | y | N | n

Description

Used only with fairshare scheduling. Enables decay for run time at the same rate as the decay set by HIST_HOURS for cumulative CPU time and historical run time.

In the calculation of a user's dynamic share priority, this factor determines whether run time is decayed.

If undefined, the cluster-wide value from the l sb. params parameter of the same name is used.

Restrictions

Running badmin reconfig or restarting mbatchd during a job's run time results in the decayed run time being recalculated.

When a suspended job using run time decay is resumed, the decay time is based on the elapsed time.

Default

Not defined

RUN_TIME_FACTOR

Syntax

RUN_TIME_FACTOR=number

Description

Used only with fairshare scheduling. Run time weighting factor.

In the calculation of a user's dynamic share priority, this factor determines the relative importance of the total run time of a user's running jobs.

If undefined, the cluster-wide value from the l sb. params parameter of the same name is used.

Default

Not defined.

RUN_WINDOW

Syntax

RUN WINDOW=time window...

Description

Time periods during which jobs in the queue are allowed to run.

When the window closes, LSF suspends jobs running in the queue and stops dispatching jobs from the queue. When the window reopens, LSF resumes the suspended jobs and begins dispatching additional jobs.

Default

Not defined. Queue is always active.

RUNLIMIT

Syntax

RUNLIMIT=[default limit] maximum limit

where default limit and maximum limit are:

[hour:]minute[/host_name | /host_model]

Description

The maximum run limit and optionally the default run limit. The name of a host or host model specifies the runtime normalization host to use.

By default, jobs that are in the RUN state for longer than the specified maximum run limit are killed by LSF. You can optionally provide your own termination job action to override this default.

Jobs submitted with a job-level run limit (bsub - W) that is less than the maximum run limit are killed when their job-level run limit is reached. Jobs submitted with a run limit greater than the maximum run limit are rejected by the queue.

If a default run limit is specified, jobs submitted to the queue without a job-level run limit are killed when the default run limit is reached. The default run limit is used with backfill scheduling of parallel jobs.

Note:

If you want to provide an estimated run time for scheduling purposes without killing jobs that exceed the estimate, define the RUNTIME parameter in an application profile instead of a run limit (see 1 sb. appl i cati ons for details).

If you specify only one limit, it is the maximum, or hard, run limit. If you specify two limits, the first one is the default, or soft, run limit, and the second one is the maximum run limit. The number of minutes may be greater than 59. Therefore, three and a half hours can be specified either as 3:30, or 210.

The run limit is in the form of [hour:]minute. The minutes can be specified as a number greater than 59. For example, three and a half hours can either be specified as 3:30, or 210.

The run limit you specify is the normalized run time. This is done so that the job does approximately the same amount of processing, even if it is sent to host with a faster or slower CPU. Whenever a normalized run time is given, the actual time on the execution host is the specified time multiplied by the CPU factor of the normalization host then divided by the CPU factor of the execution host.

If ABS_RUNLIMIT=Y is defined in 1 sb. params, the runtime limit is not normalized by the host CPU factor. Absolute wall-clock run time is used for all jobs submitted to a queue with a run limit configured.

Optionally, you can supply a host name or a host model name defined in LSF. You must insert '/' between the run limit and the host name or model name. (See $l \sin f o(1)$ to get host model information.)

If no host or host model is given, LSF uses the default runtime normalization host defined at the queue level (DEFAULT_HOST_SPEC in 1 sb. queues) if it has been configured; otherwise, LSF uses the default CPU time normalization host defined at the cluster level (DEFAULT_HOST_SPEC in 1 sb. params) if it has been configured; otherwise, the host with the largest CPU factor (the fastest host in the cluster).

For MultiCluster jobs, if no other CPU time normalization host is defined and information about the submission host is not available, LSF uses the host with the largest CPU factor (the fastest host in the cluster).

Jobs submitted to a chunk job queue are not chunked if RUNLIMIT is greater than 30 minutes.

RUNLIMIT is required for queues configured with INTERRUPTIBLE_BACKFILL.

Default

Unlimited

SLA_GUARANTEES_IGNORE

Syntax

SLA_GUARANTEES_IGNORE=Y| y | N | n

Description

Applies to SLA guarantees only.

SLA_GUARANTEES_IGNORE=Y allows jobs in the queue access to all guaranteed resources. As a result, some guarantees might not be honored.

Note:

Using SLA_GUARANTEES_IGNORE=Y defeats the purpose of guaranteeing resources. This should be used sparingly for low traffic queues only.

Default

Not defined (N). The queue must honor resource guarantees when dispatching jobs.

SLOT POOL

Syntax

SLOT_POOL=*pool_name*

Description

Name of the pool of job slots the queue belongs to for queue-based fairshare. A queue can only belong to one pool. All queues in the pool must share the same set of hosts.

Valid values

Specify any ASCII string up to 60 characters long. You can use letters, digits, underscores (_) or dashes (-). You cannot use blank spaces.

Default

Not defined. No job slots are reserved.

SLOT_RESERVE

Syntax

SLOT_RESERVE=MAX_RESERVE_TIME[integer]

Description

Enables processor reservation for the queue and specifies the reservation time. Specify the keyword MAX_RESERVE_TIME and, in square brackets, the number of MBD_SLEEP_TIME cycles over which a job can reserve job slots. MBD_SLEEP_TIME is defined in 1 sb. params; the default value is 60 seconds.

If a job has not accumulated enough job slots to start before the reservation expires, it releases all its reserved job slots so that other jobs can run. Then, the job cannot reserve slots for one scheduling session, so other jobs have a chance to be dispatched. After one scheduling session, the job can reserve job slots again for another period specified by SLOT_RESERVE.

SLOT_RESERVE is overridden by the RESOURCE_RESERVE parameter.

If both RESOURCE_RESERVE and SLOT_RESERVE are defined in the same queue, job slot reservation and memory reservation are enabled and an error is displayed when the cluster is reconfigured. SLOT_RESERVE is ignored.

Job slot reservation for parallel jobs is enabled by RESOURCE_RESERVE if the LSF scheduler plugin module names for both resource reservation and parallel batch jobs (schmod_parallel and schmod_reserve) are configured in the lsb. modules file: The schmod_parallel name *must* come before schmod_reserve in lsb. modules.

If BACKFILL is configured in a queue, and a run limit is specified at the job level (bsub -W), application level (RUNLIMIT in 1 sb. appl i cati ons), or queue level (RUNLIMIT in 1 sb. queues), or if an estimated run time is specified at the application level (RUNTIME in 1 sb. appl i cati ons), backfill parallel jobs can use job slots reserved by the other jobs, as long as the backfill job can finish before the predicted start time of the jobs with the reservation.

Unlike memory reservation, which applies both to sequential and parallel jobs, slot reservation applies only to parallel jobs.

Example

SLOT_RESERVE=MAX_RESERVE_TI ME[5]

This example specifies that parallel jobs have up to 5 cycles of MBD_SLEEP_TIME (5 minutes, by default) to reserve sufficient job slots to start.

Default

Not defined. No job slots are reserved.

SLOT_SHARE

Syntax

SLOT_SHARE=integer

Description

Share of job slots for queue-based fairshare. Represents the percentage of running jobs (job slots) in use from the queue. SLOT_SHARE must be greater than zero (0) and less than or equal to 100.

The sum of SLOT_SHARE for all queues in the pool does not need to be 100%. It can be more or less, depending on your needs.

Default

Not defined

SNDJOBS_TO

Syntax

SNDJOBS_TO=queue_name@cluster_name ...

Description

Defines a MultiCluster send-jobs queue.

Specify remote queue names, in the form queue_name@cluster_name, separated by a space.

This parameter is ignored if 1 sb. queues HOSTS specifies remote (borrowed) resources.

Example

 $SNDJOBS_T0= queue 2@cluster2 \ queue 3@cluster2 \ queue 3@cluster2 \ queue 3@cluster3$

STACKLIMIT

Syntax

STACKLIMIT=*integer*

Description

The per-process (hard) stack segment size limit (in KB) for all of the processes belonging to a job from this queue (see getrl i mit (2)).

Default

Unlimited

STOP_COND

Syntax

STOP_COND=res_req

Use the sel ect section of the resource requirement string to specify load thresholds. All other sections are ignored.

Description

LSF automatically suspends a running job in this queue if the load on the host satisfies the specified conditions.

- LSF does not suspend the only job running on the host if the machine is interactively idle (i t > 0).
- LSF does not suspend a forced job (brun f).
- LSF does not suspend a job because of paging rate if the machine is interactively idle.

If STOP_COND is specified in the queue and there are no load thresholds, the suspending reasons for each individual load index is not displayed by bj obs.

Example

```
STOP_COND= select[((!cs && it < 5) || (cs && mem < 15 && swp < 50))]
```

In this example, assume "cs" is a Boolean resource indicating that the host is a computer server. The stop condition for jobs running on computer servers is based on the availability of swap memory. The stop condition for jobs running on other kinds of hosts is based on the idle time.

SWAPLIMIT

Syntax

SWAPLIMIT=*integer*

Description

The amount of total virtual memory limit (in KB) for a job from this queue.

This limit applies to the whole job, no matter how many processes the job may contain.

The action taken when a job exceeds its SWAPLIMIT or PROCESSLIMIT is to send SIGQUIT, SIGINT, SIGTERM, and SIGKILL in sequence. For CPULIMIT, SIGXCPU is sent before SIGINT, SIGTERM, and SIGKILL.

Default

Unlimited

TERMINATE_WHEN

Syntax

TERMINATE_WHEN=[LOAD] [PREEMPT] [WINDOW]

Description

Configures the queue to invoke the TERMINATE action instead of the SUSPEND action in the specified circumstance.

- LOAD: kills jobs when the load exceeds the suspending thresholds.
- PREEMPT: kills jobs that are being preempted.
- WINDOW: kills jobs if the run window closes.

If the TERMINATE_WHEN job control action is applied to a chunk job, sbatchd kills the chunk job element that is running and puts the rest of the waiting elements into pending state to be rescheduled later.

Example

Set TERMINATE_WHEN to WINDOW to define a night queue that kills jobs if the run window closes:

```
Begin Queue

NAME = ni ght

RUN_WINDOW = 20: 00-08: 00

TERMI NATE_WHEN = WINDOW

JOB_CONTROLS = TERMI NATE[kill - KILL $LS_JOBPGIDS; mail - s "job $LSB_JOBID killed by queue run window" $USER < /dev/null]

End Queue
```

THREADLIMIT

Syntax

THREADLIMIT=[default_limit] maximum_limit

Description

Limits the number of concurrent threads that can be part of a job. Exceeding the limit causes the job to terminate. The system sends the following signals in sequence to all processes belongs to the job: SIGINT, SIGTERM, and SIGKILL.

By default, if a default thread limit is specified, jobs submitted to the queue without a job-level thread limit are killed when the default thread limit is reached.

If you specify only one limit, it is the maximum, or hard, thread limit. If you specify two limits, the first one is the default, or soft, thread limit, and the second one is the maximum thread limit.

Both the default and the maximum limits must be positive integers. The default limit must be less than the maximum limit. The default limit is ignored if it is greater than the maximum limit.

Examples

THREADLI MI T=6

No default thread limit is specified. The value 6 is the default and maximum thread limit.

THREADLI MI T=6 8

The first value (6) is the default thread limit. The second value (8) is the maximum thread limit.

Default

Unlimited

UJOB_LIMIT

Syntax

UJOB_LIMIT=*integer*

Description

Per-user job slot limit for the queue. Maximum number of job slots that each user can use in this queue.

UJOB_LIMIT must be within or greater than the range set by PROCLIMIT or bsub - n (if either is used), or jobs are rejected.

Default

Unlimited

USE_PAM_CREDS

Syntax

USE_PAM_CREDS=y | n

Description

If USE_PAM_CREDS=y, applies PAM limits to a queue when its job is dispatched to a Linux host using PAM. PAM limits are system resource limits defined in l i mi ts. conf.

When USE_PAM_CREDS is enabled, PAM limits override others. For example, the PAM limit is used even if queue-level soft limit is less than PAM limit. However, it still cannot exceed queue's hard limit.

If the execution host does not have PAM configured and this parameter is enabled, the job fails.

For parallel jobs, only takes effect on the first execution host.

USE_PAM_CREDS only applies on the following platforms:

- linux2.6-glibc2.3-ia64
- linux2.6-glibc2.3-ppc64
- linux2.6-glibc2.3-sn-ipf
- linux2.6-glibc2.3-x86
- linux2.6-glibc2.3-x86_64

Overrides MEMLIMIT_TYPE=Process.

Overridden (for CPU limit only) by LSB_JOB_CPULIMIT=y.

Overridden (for memory limits only) by LSB_JOB_MEMLIMIT=y.

Default

n

USE PRIORITY IN POOL

Syntax

USE_PRIORITY_IN_POOL= y | Y | n | N

Description

Queue-based fairshare only. After job scheduling occurs for each queue, this parameter enables LSF to dispatch jobs to any remaining slots in the pool in first-come first-served order across queues.

Default

Ν

USERS

Syntax

USERS=all [~user_name ...] [~user_group ...] | [user_name ...] [user_group [~user_group ...] ...]

Description

A space-separated list of user names or user groups that can submit jobs to the queue. LSF cluster administrators are automatically included in the list of users. LSF cluster administrators can submit jobs to this queue, or switch (bswitch) any user's jobs into this queue.

If user groups are specified, each user in the group can submit jobs to this queue. If FAIRSHARE is also defined in this queue, only users defined by both parameters can submit jobs, so LSF administrators cannot use the queue if they are not included in the share assignments.

User names must be valid login names. To specify a Windows user account, include the domain name in uppercase letters (*DOMAIN_NAME\user_name*).

User group names can be LSF user groups or UNIX and Windows user groups. To specify a Windows user group, include the domain name in uppercase letters (*DOMAIN_NAME\user_group*).

Use the keyword al 1 to specify all users or user groups in a cluster.

Use the not operator (~) to exclude users from the all specification or from user groups. This is useful if you have a large number of users but only want to exclude a few users or groups from the queue definition.

The not operator (~) can only be used with the all keyword or to exclude users from user groups.

Caution:

The not operator does not exclude LSF administrators from the queue definintion.

Default

al 1 (all users can submit jobs to the queue)

Examples

- USERS=user1 user2
- USERS=all ~user1 ~user2
- USERS=all ~ugroup1
- USERS=groupA ~user3 ~user4

Automatic time-based configuration

Variable configuration is used to automatically change LSF configuration based on time windows. You define automatic configuration changes in 1 sb. queues by using if-else constructs and time expressions. After you change the files, reconfigure the cluster with the badmin reconfig command.

The expressions are evaluated by LSF every 10 minutes based on mbatchd start time. When an expression evaluates true, LSF dynamically changes the configuration based on the associated configuration statements. Reconfiguration is done in real time without restarting mbatchd, providing continuous system availability.

Example

```
Begin Queue
...
#if time(8:30-18:30)

INTERACTIVE = ONLY # interactive only during day shift #endif
...
End Queue
```

Isb.resources

The l sb. resources file contains configuration information for resource allocation limits, exports, and resource usage limits. This file is optional.

The l sb. resources file is stored in the directory LSB_CONFDIR/cluster_name/configdir, where LSB_CONFDIR is defined in l sf. conf.

Changing lsb.resources configuration

After making any changes to lsb. resources, run badmin reconfigure mbatchd.

Limit section

The Limit section sets limits for the maximum amount of the specified resources that must be available for different classes of jobs to start, and which resource consumers the limits apply to. Limits are enforced during job resource allocation.

Tip:

For limits to be enforced, jobs must specify rusage resource requirements (bsub - R or RES_REQ in 1 sb. queues).

The blimits command displays view current usage of resource allocation limits configured in Limit sections in lsb. resources:

Limit section structure

Each set of limits is defined in a Limit section enclosed by Begin Limit and End Limit.

A Limit section has two formats:

- Vertical tabular
- Horizontal

The file can contain sections in both formats. In either format, you must configure a limit for at least one consumer and one resource. The Limit section cannot be empty.

Vertical tabular format

Use the vertical format for simple configuration conditions involving only a few consumers and resource limits.

The first row consists of an optional NAME and the following keywords for:

- Resource types:
 - SLOTS or SLOTS_PER_PROCESSOR
 - MEM (MB or percentage)
 - SWP (MB or percentage)
 - TMP (MB or percentage)
 - JOBS
 - RESOURCE
- Consumer types:

- USERS or PER_USER
- QUEUES or PER_QUEUE
- HOSTS or PER_HOST
- PROJECTS or PER_PROJECT

Each subsequent row describes the configuration information for resource consumers and the limits that apply to them. Each line must contain an entry for each keyword. Use empty parentheses () or a dash (-) to to indicate an empty field. Fields cannot be left blank.

Tip:

Multiple entries must be enclosed in parentheses. For RESOURCE limits, resource names must be enclosed in parentheses.

Horizontal format

Use the horizontal format to give a name for your limits and to configure more complicated combinations of consumers and resource limits.

The first line of the Limit section gives the name of the limit configuration.

Each subsequent line in the Limit section consists of keywords identifying the resource limits:

- Job slots and per-processor job slots
- Memory (MB or percentage)
- Swap space (MB or percentage)
- Tmp space (MB or percentage)
- Running and suspended (RUN, SSUSP, USUSP) jobs
- Other shared resources

and the resource *consumers* to which the limits apply:

- · Users and user groups
- Hosts and host groups
- Queues
- Projects

Example: Vertical tabular format

In the following limit configuration:

- Jobs from user1 and user3 are limited to 2 job slots on hostA
- Jobs from user2 on queue normal are limited to 20 MB of memory
- The short queue can have at most 200 running and suspended jobs

Begin Limit											
NAME	USERS	QUEUES	HOSTS	SL0TS	MEM	SWP	TMP	J0BS			
limit1	(user1 user3)	-	hostA	2	-	-	-	-			
-	user2	normal	-	-	20	-	-	-			
-	-	short	-	-	-	-	-	200			
End Limit											

Jobs that do not match these limits; that is, all users except user1 and user3 running jobs on host A and all users except user2 submitting jobs to queue normal, have no limits.

Example: Horizontal format

All users in user group ugroup1 except user1 using queue1 and queue2 and running jobs on hosts in host group hgroup1 are limited to 2 job slots per processor on each host:

```
Begin Limit

# ugroup1 except user1 uses queue1 and queue2 with 2 job slots

# on each host in hgroup1

NAME = limit1

# Resources

SLOTS_PER_PROCESSOR = 2

#Consumers

QUEUES = queue1 queue2

USERS = ugroup1 ~user1

PER_HOST = hgroup1

End Limit
```

Compatibility with Isb.queues, Isb.users, and Isb.hosts

The Limit section of 1 sb. resources does not support the keywords or format used in 1 sb. users, 1 sb. hosts, and 1 sb. queues. However, your existing job slot limit configuration in these files will continue to apply.

Job slot limits are the only type of limit you can configure in 1 sb. users, 1 sb. hosts, and 1 sb. queues. You cannot configure limits for user groups, host groups and projects in 1 sb. users, 1 sb. hosts, and 1 sb. queues. You should not configure any new resource allocation limits in 1 sb. users, 1 sb. hosts, and 1 sb. queues. Use 1 sb. resources to configure all new resource allocation limits, including job slot limits. Limits on running and suspended jobs can only be set in 1 sb. resources.

Existing limits in 1 sb. users, 1 sb. hosts, and 1 sb. queues with the same scope as a new limit in 1 sb. resources, but with a different value are ignored. The value of the new limit in 1 sb. resources is used. Similar limits with different scope enforce the most restrictive limit.

Parameters

- HOSTS
- JOBS
- MEM
- NAME
- PER HOST
- PER_PROJECT
- PER_QUEUE
- PER_USER
- PROJECTS
- QUEUES
- RESOURCE
- SLOTS
- SLOTS_PER_PROCESSOR
- SWP

- TMP
- USERS

HOSTS

Syntax

```
HOSTS=all [~] host_name ... | all [~] host_group ...
HOSTS
([-] | all [~] host_name ... | all [~] host_group ...)
```

Description

A space-separated list of hosts, host groups defined in 1 sb. hosts on which limits are enforced. Limits are enforced on all hosts or host groups listed.

If a group contains a subgroup, the limit also applies to each member in the subgroup recursively.

To specify a per-host limit, use the PER_HOST keyword. Do not configure HOSTS and PER_HOST limits in the same Limit section.

If you specify MEM, TMP, or SWP as a percentage, you must specify PER_HOST and list the hosts that the limit is to be enforced on. You cannot specify HOSTS.

In horizontal format, use only one HOSTS line per Limit section.

Use the keyword all to configure limits that apply to all hosts in a cluster.

Use the not operator (~) to exclude hosts from the all specification in the limit. This is useful if you have a large cluster but only want to exclude a few hosts from the limit definition.

In vertical tabular format, multiple host names must be enclosed in parentheses.

In vertical tabular format, use empty parentheses () or a dash (-) to indicate an empty field. Fields cannot be left blank.

Default

al l (limits are enforced on all hosts in the cluster).

Example 1

```
HOSTS=Group1 ~hostA hostB hostC
```

Enforces limits on host B, host C, and all hosts in Group 1 except for host A.

Example 2

```
HOSTS=all ~group2 ~hostA
```

Enforces limits on all hosts in the cluster, except for host A and the hosts in group 2.

Example 3

HOSTS SWP (all ~hostK ~hostM) 10

Enforces a 10 MB swap limit on all hosts in the cluster, except for host K and host M

JOBS

Syntax

JOBS=integer

JOBS

- | integer

Description

Maximum number of running or suspended (RUN, SSUSP, USUSP) jobs available to resource consumers. Specify a positive integer greater than or equal 0. Job limits can be defined in both vertical and horizontal limit formats.

With MultiCluster resource lease model, this limit applies only to local hosts being used by the local cluster. The job limit for hosts exported to a remote cluster is determined by the host export policy, not by this parameter. The job limit for borrowed hosts is determined by the host export policy of the remote cluster.

If SLOTS are configured in the Limit section, the most restrictive limit is applied.

If HOSTS are configured in the Limit section, JOBS is the number of running and suspended jobs on a host. If preemptive scheduling is used, the suspended jobs are not counted against the job limit.

Use this parameter to prevent a host from being overloaded with too many jobs, and to maximize the throughput of a machine.

If only QUEUES are configured in the Limit section, JOBS is the maximum number of jobs that can run in the listed queues.

If only USERS are configured in the Limit section, JOBS is the maximum number of jobs that the users or user groups can run.

If only HOSTS are configured in the Limit section, JOBS is the maximum number of jobs that can run on the listed hosts.

If only PROJECTS are configured in the Limit section, JOBS is the maximum number of jobs that can run under the listed projects.

Use QUEUES or PER_QUEUE, USERS or PER_USER, HOSTS or PER_HOST, or PROJECTS or PER_PROJECT in combination to further limit jobs available to resource consumers.

In horizontal format, use only one JOBS line per Limit section.

In vertical format, use empty parentheses () or a dash (-) to indicate the default value (no limit). Fields cannot be left blank.

Default

No limit

Example

J0BS=20

MEM

Syntax

MEM=integer[%]

MEM

- | integer[%]

Description

Maximum amount of memory available to resource consumers. Specify a value in MB or a percentage (%) as a positive integer greater than or equal 0. If you specify a percentage, you must also specify PER_HOST and list the hosts that the limit is to be enforced on.

The Limit section is ignored if MEM is specified as a percentage:

- Without PER_HOST, or
- With HOSTS

In horizontal format, use only one MEM line per Limit section.

In vertical tabular format, use empty parentheses () or a dash (-) to indicate the default value (no limit). Fields cannot be left blank.

If only QUEUES are configured in the Limit section, MEM must be an integer value. MEM is the maximum amount of memory available to the listed queues.

If only USERS are configured in the Limit section, MEM must be an integer value. MEM is the maximum amount of memory that the users or user groups can use.

If only HOSTS are configured in the Limit section, MEM must be an integer value. It cannot be a percentage. MEM is the maximum amount of memory available to the listed hosts.

If only PROJECTS are configured in the Limit section, MEM must be an integer value. MEM is the maximum amount of memory available to the listed projects.

Use QUEUES or PER_QUEUE, USERS or PER_USER, HOSTS or PER_HOST and PROJECTS or PER_PROJECT in combination to further limit memory available to resource consumers.

Default

No limit

Example

MEM=20

NAME

Syntax

NAME=limit_name

NAME

- | limit_name

Description

Name of the Limit section

Specify any ASCII string 40 characters or less. You can use letters, digits, underscores (_) or dashes (-). You cannot use blank spaces.

If duplicate limit names are defined, the Limit section is ignored. If value of NAME is not defined in vertical format, or defined as (-), bl i mt i s displays NONAME*nnn*.

Default

None. In horizontal format, you must provide a name for the Limit section. NAME is optional in the vertical format.

Example

NAME=short_limits

PER HOST

Syntax

```
PER_HOST=all [~] host_name ... | all [~] host_group ...

PER_HOST

( [-] | all [~] host_name ... | all [~] host_group ... )
```

Description

A space-separated list of host or host groups defined in 1 sb. hosts on which limits are enforced. Limits are enforced on each host or individually to each host of the host group listed. If a group contains a subgroup, the limit also applies to each member in the subgroup recursively.

Do not configure PER_HOST and HOSTS limits in the same Limit section.

In horizontal format, use only one PER_HOST line per Limit section.

If you specify MEM, TMP, or SWP as a percentage, you must specify PER_HOST and list the hosts that the limit is to be enforced on. You cannot specify HOSTS.

Use the keyword al 1 to configure limits that apply to each host in a cluster. If host groups are configured, the limit applies to each member of the host group, not the group as a whole.

Use the not operator (~) to exclude hosts or host groups from the all specification in the limit. This is useful if you have a large cluster but only want to exclude a few hosts from the limit definition.

In vertical tabular format, multiple host names must be enclosed in parentheses.

In vertical tabular format, use empty parentheses () or a dash (-) to indicate an empty field. Fields cannot be left blank.

Default

None. If no limit is specified for PER_HOST or HOST, no limit is enforced on any host or host group.

Example

PER_HOST=hostA hgroup1 ~hostC

PER_PROJECT

Syntax

```
PER_PROJECT=all [~] project_name ...

PER_PROJECT
( [-] | all [~] project_name ... )
```

Description

A space-separated list of project names on which limits are enforced. Limits are enforced on each project listed.

Do not configure PER_PROJECT and PROJECTS limits in the same Limit section.

In horizontal format, use only one PER_PROJECT line per Limit section.

Use the keyword all to configure limits that apply to each project in a cluster.

Use the not operator (~) to exclude projects from the all specification in the limit.

In vertical tabular format, multiple project names must be enclosed in parentheses.

In vertical tabular format, use empty parentheses () or a dash (-) to indicate an empty field. Fields cannot be left blank.

Default

None. If no limit is specified for PER_PROJECT or PROJECTS, no limit is enforced on any project.

Example

```
PER_PROJECT=proj 1 proj 2
```

PER_QUEUE

Syntax

```
PER_QUEUE=all [~] queue_name ..

PER_QUEUE

( [-] | all [~] queue_name ... )
```

Description

A space-separated list of queue names on which limits are enforced. Limits are enforced on jobs submitted to each queue listed.

Do not configure PER_QUEUE and QUEUES limits in the same Limit section.

In horizontal format, use only one PER_QUEUE line per Limit section.

Use the keyword al 1 to configure limits that apply to each queue in a cluster.

Use the not operator (~) to exclude queues from the all specification in the limit. This is useful if you have a large number of queues but only want to exclude a few queues from the limit definition.

In vertical tabular format, multiple queue names must be enclosed in parentheses.

In vertical tabular format, use empty parentheses () or a dash (-) to indicate an empty field. Fields cannot be left blank.

Default

None. If no limit is specified for PER_QUEUE or QUEUES, no limit is enforced on any queue.

Example

PER_QUEUE=priority night

PER_USER

Syntax

```
PER_USER=all [~]user_name ... | all [~]user_group ...

PER_USER

([-] | all [~]user_name ... | all [~]user_group ... )
```

Description

A space-separated list of user names or user groups on which limits are enforced. Limits are enforced on each user or individually to each user in the user group listed. If a user group contains a subgroup, the limit also applies to each member in the subgroup recursively.

User names must be valid login names. User group names can be LSF user groups or UNIX and Windows user groups. Note that for LSF and UNIX user groups, the groups must be specified in a UserGroup section in 1 sb. users first.

Do not configure PER_USER and USERS limits in the same Limit section.

In horizontal format, use only one PER_USER line per Limit section.

Use the keyword all to configure limits that apply to each user in a cluster. If user groups are configured, the limit applies to each member of the user group, not the group as a whole.

Use the not operator (~) to exclude users or user groups from the all specification in the limit. This is useful if you have a large number of users but only want to exclude a few users from the limit definition.

In vertical tabular format, multiple user names must be enclosed in parentheses.

In vertical tabular format, use empty parentheses () or a dash (-) to indicate an empty field. Fields cannot be left blank.

Default

None. If no limit is specified for PER_USER or USERS, no limit is enforced on any user or user group.

Example

```
PER_USER=user1 user2 ugroup1 ~user3
```

PROJECTS

Syntax

PROJECTS=all [~] project_name ...

PROJECTS

```
([-] | all [~] project_name ... )
```

Description

A space-separated list of project names on which limits are enforced. Limits are enforced on all projects listed.

To specify a per-project limit, use the PER_PROJECT keyword. Do not configure PROJECTS and PER_PROJECT limits in the same Limit section.

In horizontal format, use only one PROJECTS line per Limit section.

Use the keyword al 1 to configure limits that apply to all projects in a cluster.

Use the not operator (~) to exclude projects from the all specification in the limit. This is useful if you have a large number of projects but only want to exclude a few projects from the limit definition.

In vertical tabular format, multiple project names must be enclosed in parentheses.

In vertical tabular format, use empty parentheses () or a dash (-) to indicate an empty field. Fields cannot be left blank.

Default

al 1 (limits are enforced on all projects in the cluster)

Example

PROJECTS=proj A proj B

QUEUES

Syntax

```
QUEUES=all [~] queue_name ...

QUEUES

( [-] | all [~] queue_name ... )
```

Description

A space-separated list of queue names on which limits are enforced. Limits are enforced on all queues listed.

The list must contain valid queue names defined in 1 sb. queues.

To specify a per-queue limit, use the PER_QUEUE keyword. Do not configure QUEUES and PER_QUEUE limits in the same Limit section.

In horizontal format, use only one QUEUES line per Limit section.

Use the keyword all to configure limits that apply to all queues in a cluster.

Use the not operator (\sim) to exclude queues from the all specification in the limit. This is useful if you have a large number of queues but only want to exclude a few queues from the limit definition.

In vertical tabular format, multiple queue names must be enclosed in parentheses.

In vertical tabular format, use empty parentheses () or a dash (-) to indicate an empty field. Fields cannot be left blank.

Default

al l (limits are enforced on all queues in the cluster)

Example

QUEUES=normal night

RESOURCE

Syntax

```
RESOURCE=[shared_resource,integer] [[shared_resource,integer] ...]
```

RESOURCE

([[shared_resource,integer] [[shared_resource,integer] ...])

Description

Maximum amount of any user-defined shared resource available to consumers.

In horizontal format, use only one RESOURCE line per Limit section.

In vertical tabular format, resource names must be enclosed in parentheses.

In vertical tabular format, use empty parentheses () or a dash (-) to indicate an empty field. Fields cannot be left blank.

Default

None

Examples

```
RESOURCE=[stat_shared, 4]

Begin Limit

RESOURCE PER_HOST

([stat_shared, 4]) (all ~hostA)

([dyn_rsrc, 1] [stat_rsrc, 2]) (hostA)

End Limit
```

SLOTS

Syntax

SLOTS=integer

SLOTS

- | integer

Description

Maximum number of job slots available to resource consumers. Specify a positive integer greater than or equal 0.

With MultiCluster resource lease model, this limit applies only to local hosts being used by the local cluster. The job slot limit for hosts exported to a remote cluster is determined by the host export policy, not by this parameter. The job slot limit for borrowed hosts is determined by the host export policy of the remote cluster.

If JOBS are configured in the Limit section, the most restrictive limit is applied.

If HOSTS are configured in the Limit section, SLOTS is the number of running and suspended jobs on a host. If preemptive scheduling is used, the suspended jobs are not counted as using a job slot.

To fully use the CPU resource on multiprocessor hosts, make the number of job slots equal to or greater than the number of processors.

Use this parameter to prevent a host from being overloaded with too many jobs, and to maximize the throughput of a machine.

Use "!" to make the number of job slots equal to the number of CPUs on a host.

If the number of CPUs in a host changes dynamically, mbatchd adjusts the maximum number of job slots per host accordingly. Allow the mbatchd up to 10 minutes to get the number of CPUs for a host. During this period the value of SLOTS is 1.

If only QUEUES are configured in the Limit section, SLOTS is the maximum number of job slots available to the listed queues.

If only USERS are configured in the Limit section, SLOTS is the maximum number of job slots that the users or user groups can use.

If only HOSTS are configured in the Limit section, SLOTS is the maximum number of job slots that are available to the listed hosts.

If only PROJECTS are configured in the Limit section, SLOTS is the maximum number of job slots that are available to the listed projects.

Use QUEUES or PER_QUEUE, USERS or PER_USER, HOSTS or PER_HOST and PROJECTS or PER_PROJECT in combination to further limit job slots per processor available to resource consumers.

In horizontal format, use only one SLOTS line per Limit section.

In vertical format, use empty parentheses () or a dash (-) to indicate the default value (no limit). Fields cannot be left blank.

Default

No limit

Example

SL0TS=20

SLOTS_PER_PROCESSOR

Syntax

SLOTS_PER_PROCESSOR=number

SLOTS_PER_PROCESSOR

- | number

Description

Per processor job slot limit, based on the number of processors on each host affected by the limit.

Maximum number of job slots that each resource consumer can use per processor. This job slot limit is configured per processor so that multiprocessor hosts will automatically run more jobs.

You must also specify PER_HOST and list the hosts that the limit is to be enforced on. The Limit section is ignored if SLOTS_PER_PROCESSOR is specified:

- Without PER_HOST, or
- With HOSTS

In vertical format, use empty parentheses () or a dash (-) to indicate the default value (no limit). Fields cannot be left blank.

To fully use the CPU resource on multiprocessor hosts, make the number of job slots equal to or greater than the number of processors.

Use this parameter to prevent a host from being overloaded with too many jobs, and to maximize the throughput of a machine.

This number can be a fraction such as 0.5, so that it can also serve as a per-CPU limit on multiprocessor machines. This number is rounded up to the nearest integer equal to or greater than the total job slot limits for a host. For example, if SLOTS_PER_PREOCESSOR is 0.5, on a 4-CPU multiprocessor host, users can only use up to 2 job slots at any time. On a single-processor machine, users can use 1 job slot.

Use "!" to make the number of job slots equal to the number of CPUs on a host.

If the number of CPUs in a host changes dynamically, mbatchd adjusts the maximum number of job slots per host accordingly. Allow the mbatchd up to 10 minutes to get the number of CPUs for a host. During this period the number of CPUs is 1.

If only QUEUES and PER_HOST are configured in the Limit section, SLOTS_PER_PROCESSOR is the maximum amount of job slots per processor available to the listed queues for any hosts, users or projects.

If only USERS and PER_HOST are configured in the Limit section, SLOTS_PER_PROCESSOR is the maximum amount of job slots per processor that the users or user groups can use on any hosts, queues or projects.

If only PER_HOST is configured in the Limit section, SLOTS_PER_PROCESSOR is the maximum amount of job slots per processor available to the listed hosts for any users, queues or projects.

If only PROJECTS and PER_HOST are configured in the Limit section, SLOTS_PER_PROCESSOR is the maximum amount of job slots per processor available to the listed projects for any users, queues or hosts.

Use QUEUES or PER_QUEUE, USERS or PER_USER, PER_HOST, and PROJECTS or PER_PROJECT in combination to further limit job slots per processor available to resource consumers.

Default

No limit

Example

SLOTS_PER_PROCESSOR=2

SWP

Syntax

SWP=integer[%]

SWP

- | integer[%]

Description

Maximum amount of swap space available to resource consumers. Specify a value in MB or a percentage (%) as a positive integer greater than or equal 0. If you specify a percentage, you must also specify PER_HOST and list the hosts that the limit is to be enforced on.

The Limit section is ignored if SWP is specified as a percentage:

- Without PER_HOST, or
- With HOSTS

In horizontal format, use only one SWP line per Limit section.

In vertical format, use empty parentheses () or a dash (-) to indicate the default value (no limit). Fields cannot be left blank.

If only QUEUES are configured in the Limit section, SWP must be an integer value. SWP is the maximum amount of swap space available to the listed queues for any hosts, users or projects.

If only USERS are configured in the Limit section, SWP must be an integer value. SWP is the maximum amount of swap space that the users or user groups can use on any hosts, queues or projects.

If only HOSTS are configured in the Limit section, SWP must be an integer value. SWP is the maximum amount of swap space available to the listed hosts for any users, queues or projects.

If only PROJECTS are configured in the Limit section, SWP must be an integer value. SWP is the maximum amount of swap space available to the listed projects for any users, queues or hosts.

Use QUEUES or PER_QUEUE, USERS or PER_USER, HOSTS or PER_HOST, and PROJECTS or PER_PROJECT in combination to further limit swap space available to resource consumers.

Default

No limit

Example

SWP=60

TMP

Syntax

TMP=integer[%]

TMP

- | integer[%]

Description

Maximum amount of tmp space available to resource consumers. Specify a value in MB or a percentage (%) as a positive integer greater than or equal 0. If you specify a percentage, you must also specify PER_HOST and list the hosts that the limit is to be enforced on.

The Limit section is ignored if TMP is specified as a percentage:

- Without PER_HOST, or
- With HOSTS

In horizontal format, use only one TMP line per Limit section.

In vertical format, use empty parentheses () or a dash (-) to indicate the default value (no limit). Fields cannot be left blank.

If only QUEUES are configured in the Limit section, TMP must be an integer value. TMP is the maximum amount of tmp space available to the listed queues for any hosts, users or projects.

If only USERS are configured in the Limit section, TMP must be an integer value. TMP is the maximum amount of $t\ mp$ space that the users or user groups can use on any hosts, queues or projects.

If only HOSTS are configured in the Limit section, TMP must be an integer value. TMP is the maximum amount of tmp space available to the listed hosts for any users, queues or projects.

If only PROJECTS are configured in the Limit section, TMP must be an integer value. TMP is the maximum amount of tmp space available to the listed projects for any users, queues or hosts.

Use QUEUES or PER_QUEUE, USERS or PER_USER, HOSTS or PER_HOST and PROJECTS or PER_PROJECT in combination to further limit tmp space available to resource consumers.

Default

No limit

Example

TMP=20%

USERS

Syntax

```
USERS=all [~] user_name ... | all [~] user_group ...
USERS
([-] | all [~] user_name ... | all [~] user_group ... )
```

Description

A space-separated list of user names or user groups on which limits are enforced. Limits are enforced on all users or groups listed. Limits apply to a group as a whole.

If a group contains a subgroup, the limit also applies to each member in the subgroup recursively.

User names must be valid login names. User group names can be LSF user groups or UNIX and Windows user groups.

To specify a per-user limit, use the PER_USER keyword. Do not configure USERS and PER_USER limits in the same Limit section.

In horizontal format, use only one USERS line per Limit section.

Use the keyword all to configure limits that apply to all users or user groups in a cluster.

Use the not operator (~) to exclude users or user groups from the all specification in the limit. This is useful if you have a large number of users but only want to exclude a few users or groups from the limit definition.

In vertical format, multiple user names must be enclosed in parentheses.

In vertical format, use empty parentheses () or a dash (-) to indicate an empty field. Fields cannot be left blank.

Default

al 1 (limits are enforced on all users in the cluster)

Example

USERS=user1 user2

GuaranteedResourcePool section

Defines resource pools for use in resource-based service level agreements (SLAs) with guarantee goals. One guaranteed resource pool can be shared between many guarantee SLAs, and a single SLA can have shares in multiple resource pools.

To use guaranteed resources, configure SLAs with **GOALS=[GUARANTEE]** in the lsb. servi cecl asses file.

GuaranteedResourcePool section structure

Each resource pool is defined in a GuaranteedResourcePool section and enclosed by Begin GuaranteedResourcePool and End GuaranteedResourcePool.

You must configure a NAME, TYPE and DISTRIBUTION for each Guarant eedResourcePool section.

The order of Guarant eedResourcePool sections is important, as the sections are evaluated in the order configured. Each host can only be in one Guarant eedResourcePool section; ensure all Guarant eedResourcePool sections (except the last one) define the HOSTS parameter, so they do not contain the default of all hosts.

Example GuaranteedResourcePool sections

```
Begin GuaranteedResourcePool

NAME = linuxGuarantee

TYPE = slots

HOSTS = linux_group

DISTRIBUTION = [sla1, 25] [sla2, 30]

LOAN_POLICIES=QUEUES[all] DURATION[15]

DESCRIPTION = This is the resource pool for the hostgroup linux_group, with 25 slots guaranteed to sla1 and 30 slots guaranteed to sla2. Resources are loaned to jobs from any queue with runtimes of up to 15 minutes.

End GuaranteedResourcePool
```

Begin GuaranteedResourcePool

NAME = solarisGuarantee

TYPE = slots

HOSTS = solaris_group

DISTRIBUTION = [sla1, 25]

LOAN_POLICIES=QUEUES[short_j obs] DURATION[15]

DESCRIPTION = This is the resource pool for the hostgroup solaris_group using the queue solaris, with 25 slots guaranteed to sla1. Resources are loaned to jobs for up to 15 minutes

End GuaranteedResoucePool

Begin GuaranteedResourcePool

NAME = resource2pool

TYPE = resource[f2]

DI STRI BUTI ON = [sla1, 25%] [sla2, 25%]

LOAN_POLICIES=QUEUES[all] DURATION[10]

<code>DESCRIPTION</code> = This is the resource pool for all f2 resources, with 25% guaranteed to each of SLA1 and SLA2. Resources are loaned to jobs from any queue with runtimes of up to $10\ \text{mi}$ nutes.

End GuaranteedResourcePool

Parameters

- NAME
- TYPE
- HOSTS
- RES_SELECT
- DISTRIBUTION
- POLICIES
- DESCRIPTION
- SLOTS_PER_HOST

NAME

Syntax

NAME=name

Description

The name of the guarantee.

Default

None. You must provide a name for the guarantee.

TYPE

Syntax

TYPE=slots | hosts | resource[shared_resource]

Description

The type of the guarantee.

Specify slots to have slots on hosts within the resource pool reserved by SLA guarantee jobs.

Specify hosts to have entire hosts reserved by SLA guarantee jobs.

Specify resource[shared_resource] to guarantee licenses managed by License Scheduler to SLA guarantee jobs. Only one License Scheduler shared resource may be specified for a guaranteed resource pool, and it must be numeric, consumable, decreasing, and available from all hosts in the cluster.

Default

None. You must specify the type of guarantee.

HOSTS

Syntax

HOSTS=[~]host_name | [~]host_group | all | allremote | all@cluster_name...

Description

A space-separated list of hosts or host groups defined in 1 sb. hosts, on which the guarantee is enforced.

Use the keyword all to include all hosts in a cluster. Use the not operator (~) to exclude hosts from the all specification in the guarantee.

Use host groups for greater flexibility, since host groups have additional configuration options.

Ensure all Guarant eedResourcePool sections (except the last one) define the HOSTS parameter, so they do not contain the default of all hosts.

Default

al 1 (the guarantee is made over all hosts)

RES_SELECT

Syntax

RES_SELECT=res_req

Description

Resource requirement string all hosts used in the resource pool must satisfy. For example,

RES_SELECT=type==LINUX86

Only static host attributes can be used in RES_SELECT. Do not use consumable resources or dynamic resources.

Default

None. RES_SELECT is optional.

DISTRIBUTION

Syntax

DISTRIBUTION=([sla_name, shares]...)

Description

Resource distribution among SLAs, where *shares* can be absolute numbers or a percentage of the resources in the pool. The outer brackets are optional.

When configured as a percentage, the total can exceed 100% but each assigned share cannot exceed 100%. For example:

DISTRIBUTION=[SLA1,50%] [SLA2, 50%] [SLA3,50%] is an exceptable configuration even though the total shares assigned sum to 150%.

DISTRIBUTION=[SLA1,120%] is not an exceptable configuration, since the share for SLA1 is greater than 100%.

Each SLA (service level agreement) must be configured in l sb. servi cecl asses, with **GOALS=** [GUARANTEE].

Default

None. You must provide a distribution for the resource pool.

LOAN_POLICIES

Syntax

LOAN_POLICIES=QUEUES[queue_name ...|all] [CLOSE_ON_DEMAND] [DURATION[minutes]]

Description

Setting **LOAN_POLICIES=QUEUES[all]** enables loaning of unused resources within the resource pool by jobs from any queue. When not enabled, resources are reserved regardless of use by SLA jobs.

QUEUES[queue_name] loans only to jobs from the specified queue or queues.

DURATION[*minutes*] only allows jobs to borrow the resources if the job run limit (or estimated run time) is no larger than *minutes*. Loans limited by job duration make the guaranteed resources available within the time specified by *minutes*. Jobs running longer than the estimated run time will run to completion regardless of the actual run time.

CLOSE_ON_DEMAND halts loans within the resource pool when SLAs with unmet guarantees have pending demand for resources in the pool. This is useful when running large parallel jobs which may need to wait for sufficient resources to become available.

Default

None. LOAN_POLICIES is optional.

DESCRIPTION

Syntax

DESCRIPTION=description

Description

A description of the guarantee resource pool.

Default

None. DESCRIPTION is optional.

SLOTS_PER_HOST

Syntax

SLOTS_PER_HOST=number

Description

The maximum number of slots each host within the guaranteed resource pool contributes to the pool.

When defined, SLOTS_PER_HOST limits the number of slots any SLA jobs with guarantees in the guaranteed resource pool can use on each host. This limit applies to all hosts in the pool, regardless of guarantees.

Default

None. SLOTS_PER_HOST is optional.

HostExport section

Defines an export policy for a host or a group of related hosts. Defines how much of each host's resources are exported, and how the resources are distributed among the consumers.

Each export policy is defined in a separate HostExport section, so it is normal to have multiple HostExport sections in 1 sb. resources.

HostExport section structure

Use empty parentheses () or a dash (-) to specify the default value for an entry. Fields cannot be left blank.

Example HostExport section

Begin HostExport PER_HOST= hostA hostB SLOTS= 4 DISTRIBUTION= [cluster1, 1] [cluster2, 3] MEM= 100 SWP= 100 End HostExport

Parameters

- PER_HOST
- RES SELECT
- NHOSTS
- DISTRIBUTION
- MEM
- SLOTS
- SWAP
- TYPE

PER_HOST

Syntax

PER_HOST=host_name...

Description

Required when exporting special hosts.

Determines which hosts to export. Specify one or more LSF hosts by name. Separate names by space.

RES SELECT

Syntax

RES_SELECT=res_req

Description

Required when exporting workstations.

Determines which hosts to export. Specify the selection part of the resource requirement string (without quotes or parentheses), and LSF will automatically select hosts that meet the specified criteria. For this parameter, if you do not specify the required host type, the default is type==any.

When LSF_STRICT_RESREQ=Y is configured in 1 sf. conf, resource requirement strings in select sections must conform to a more strict syntax. The strict resource requirement syntax only applies to the sel ect section. It does not apply to the other resource requirement sections (order, rusage, same, span, or cu). When LSF_STRICT_RESREQ=Y in 1 sf. conf, LSF rejects resource requirement strings where an rusage section contains a non-consumable resource.

The criteria is only evaluated once, when a host is exported.

NHOSTS

Syntax

NHOSTS=integer

Description

Required when exporting workstations.

Maximum number of hosts to export. If there are not this many hosts meeting the selection criteria, LSF exports as many as it can.

DISTRIBUTION

Syntax

DISTRIBUTION=([cluster_name, number_shares]...)

Description

Required. Specifies how the exported resources are distributed among consumer clusters.

The syntax for the distribution list is a series of share assignments. The syntax of each share assignment is the cluster name, a comma, and the number of shares, all enclosed in square brackets, as shown. Use a space to separate multiple share assignments. Enclose the full distribution list in a set of round brackets.

cluster name

Specify the name of a remote cluster that will be allowed to use the exported resources. If you specify a local cluster, the assignment is ignored.

number_shares

Specify a positive integer representing the number of shares of exported resources assigned to the cluster.

The number of shares assigned to a cluster is only meaningful when you compare it to the number assigned to other clusters, or to the total number. The total number of shares is just the sum of all the shares assigned in each share assignment.

MEM

Syntax

MEM=megabytes

Description

Used when exporting special hosts. Specify the amount of memory to export on each host, in MB.

Default

- (provider and consumer clusters compete for available memory)

SLOTS

Syntax

SLOTS=integer

Description

Required when exporting special hosts. Specify the number of job slots to export on each host.

To avoid overloading a partially exported host, you can reduce the number of job slots in the configuration of the local cluster.

SWAP

Syntax

SWAP=megabytes

Description

Used when exporting special hosts. Specify the amount of swap space to export on each host, in MB.

Default

- (provider and consumer clusters compete for available swap space)

TYPE

Syntax

TYPE=shared

Description

Changes the lease type from exclusive to shared.

If you export special hosts with a shared lease (using PER_HOST), you cannot specify multiple consumer clusters in the distribution policy.

Default

Undefined (the lease type is exclusive; exported resources are never available to the provider cluster)

SharedResourceExport section

Optional. Requires HostExport section. Defines an export policy for a shared resource. Defines how much of the shared resource is exported, and the distribution among the consumers.

The shared resource must be available on hosts defined in the HostExport sections.

SharedResourceExport section structure

All parameters are required.

Example SharedResourceExport section

```
Begin SharedResourceExport

NAME= AppRes

NI NSTANCES= 10

DI STRI BUTI ON= ([C1, 30] [C2, 70])

End SharedResourceExport
```

Parameters

- NAME
- NINSTANCES
- DISTRIBUTION

NAME

Syntax

NAME=shared resource name

Description

Shared resource to export. This resource must be available on the hosts that are exported to the specified clusters; you cannot export resources without hosts.

NINSTANCES

Syntax

NINSTANCES=integer

Description

Maximum quantity of shared resource to export. If the total number available is less than the requested amount, LSF exports all that are available.

DISTRIBUTION

Syntax

DISTRIBUTION=([cluster name, number shares]...)

Description

Specifies how the exported resources are distributed among consumer clusters.

The syntax for the distribution list is a series of share assignments. The syntax of each share assignment is the cluster name, a comma, and the number of shares, all enclosed in square brackets, as shown. Use a space to separate multiple share assignments. Enclose the full distribution list in a set of round brackets.

cluster_name

Specify the name of a cluster allowed to use the exported resources.

number_shares

Specify a positive integer representing the number of shares of exported resources assigned to the cluster.

The number of shares assigned to a cluster is only meaningful when you compare it to the number assigned to other clusters, or to the total number. The total number of shares is the sum of all the shares assigned in each share assignment.

ResourceReservation section

By default, only LSF administrators or root can add or delete advance reservations.

The ResourceReservation section defines an advance reservation policy. It specifies:

- Users or user groups that can create reservations
- · Hosts that can be used for the reservation
- Time window when reservations can be created

Each advance reservation policy is defined in a separate ResourceReservation section, so it is normal to have multiple ResourceReservation sections in l sb. resources.

Example ResourceReservation section

Only user1 and user2 can make advance reservations on host A and host B. The reservation time window is between 8:00 a.m. and 6:00 p.m. every day:

```
Begin ResourceReservation

NAME = dayPolicy

USERS = user1 user2  # optional

HOSTS = hostA hostB  # optional

TIME_WINDOW = 8:00-18:00  # weekly recurring reservation

End ResourceReservation
```

user 1 can add the following reservation for user user 2 to use on host A every Friday between 9:00 a.m. and 11:00 a.m.:

```
% user1@hostB> brsvadd -m "hostA" -n 1 -u "user2" -t "5:9:0-5:11:0" Reservation "user2#2" is created
```

Users can only delete reservations they created themselves. In the example, only user user1 can delete the reservation; user2 cannot. Administrators can delete any reservations created by users.

Parameters

- HOSTS
- NAME
- TIME WINDOW
- USERS

HOSTS

Syntax

HOSTS=[~] host_name | [~] host_group | all | allremote | all@cluster_name ...

Description

A space-separated list of hosts, host groups defined in 1 sb. hosts on which administrators or users specified in the USERS parameter can create advance reservations.

The hosts can be local to the cluster or hosts leased from remote clusters.

If a group contains a subgroup, the reservation configuration applies to each member in the subgroup recursively.

Use the keyword all to configure reservation policies that apply to all local hosts in a cluster not explicitly excluded. This is useful if you have a large cluster but you want to use the not operator (~) to exclude a few hosts from the list of hosts where reservations can be created.

Use the keyword all remote to specify all hosts borrowed from all remote clusters.

Tip:

You cannot specify host groups or host partitions that contain the all $\ensuremath{\text{remote}}$ keyword.

Use al 1 @cluster_name to specify the group of all hosts borrowed from one remote cluster. You cannot specify a host group or partition that includes remote resources.

With MultiCluster resource leasing model, the not operator (~) can be used to exclude local hosts or host groups. You cannot use the not operator (~) with remote hosts.

Examples

HOSTS=hgroup1 ~hostA hostB hostC

Advance reservations can be created on host B, host C, and all hosts in hgroup1 except for host A.

HOSTS=all ~group2 ~hostA

Advance reservations can be created on all hosts in the cluster, except for host A and the hosts in group 2.

Default

all all remote (users can create reservations on all server hosts in the local cluster, and all leased hosts in a remote cluster).

NAME

Syntax

NAME=text

Description

Required. Name of the ResourceReservation section

Specify any ASCII string 40 characters or less. You can use letters, digits, underscores (_) or dashes (-). You cannot use blank spaces.

Example

NAME=reservation1

Default

None. You must provide a name for the ResourceReservation section.

TIME WINDOW

Syntax

TIME_WINDOW=time_window...

Description

Optional. Time window for users to create advance reservations. The time for reservations that users create must fall within this time window.

Use the same format for *time_window* as the recurring reservation option (-t) of brsvadd. To specify a time window, specify two time values separated by a hyphen (-), with no space in between:

time_window = begin_time-end_time

Time format

Times are specified in the format:

[day:]hour[:minute]

where all fields are numbers with the following ranges:

- day of the week: 0-6 (0 is Sunday)
- hour: 0-23
- *minute*: 0-59

Specify a time window one of the following ways:

- hour-hour
- hour.minute-hour.minute
- day.hour.minute-day.hour.minute

The default value for minute is 0 (on the hour); the default value for day is every day of the week.

You must specify at least the hour. Day of the week and minute are optional. Both the start time and end time values must use the same syntax. If you do not specify a minute, LSF assumes the first minute of the hour (: 00). If you do not specify a day, LSF assumes every day of the week. If you do specify the day, you must also specify the minute.

You can specify multiple time windows, but they cannot overlap. For example:

```
timeWindow(8: 00-14: 00 18: 00-22: 00)
```

is correct, but

timeWindow(8:00-14:00 11:00-15:00)

is not valid.

Example

```
TI ME_WI NDOW=8: 00-14: 00
```

Users can create advance reservations with begin time (brsvadd -b), end time (brsvadd -e), or time window (brsvadd -t) on any day between 8:00 a.m. and 2:00 p.m.

Default

Undefined (any time)

USERS

Syntax

```
USERS=[~] user_name | [~] user_group ... | all
```

Description

A space-separated list of user names or user groups who are allowed to create advance reservations. Administrators, root, and all users or groups listed can create reservations.

If a group contains a subgroup, the reservation policy applies to each member in the subgroup recursively.

User names must be valid login names. User group names can be LSF user groups or UNIX and Windows user groups.

Use the keyword al 1 to configure reservation policies that apply to all users or user groups in a cluster. This is useful if you have a large number of users but you want to exclude a few users or groups from the reservation policy.

Use the not operator (~) to exclude users or user groups from the list of users who can create reservations.

Caution:

The not operator does not exclude LSF administrators from the policy.

Example

USERS=user1 user2

Default

all (all users in the cluster can create reservations)

ReservationUsage section

To enable greater flexibility for reserving numeric resources that are reserved by jobs, configure the ReservationUsage section in 1 sb. resources to reserve resources as PER_JOB, PER_SLOT, or PER_HOST. For example:

Example ReservationUsage section

Begin Reservatio	onUsage			
RESOURCE	METHOD	RESERVE		
resourceX	PER_JOB	Y		
resourceY	PER_HOST	N		
resourceZ	PER_SLOT	N		
End ReservationU	Jsage			

Parameters

- RESOURCE
- METHOD
- RESERVE

RESOURCE

The name of the resource to be reserved. User-defined numeric resources can be reserved, but only if they are shared (they are not specific to one host).

The following built-in resources can be configured in the ReservationUsage section and reserved:

- mem
- tmp
- swp

Any custom resource can also be reserved if it is shared (defined in the Resource section of 1 sf. shared) or host based (listed in the Host section of the 1 sf. cl ust er file in the resource column).

METHOD

The resource reservation method. One of:

- PER JOB
- PER HOST
- PER_SLOT

The cluster-wide RESOURCE_RESERVE_PER_SLOT parameter in 1 sb. params is obsolete.

RESOURCE_RESERVE_PER_SLOT parameter still controls resources not configured in 1 sb. resources. Resources not reserved in 1 sb. resources are reserved per job.

PER_HOST reservation means that for the parallel job, LSF reserves one instance of a for each host. For example, some application are charged only once no matter how many applications are running provided those applications are running on the same host under the same user.

Use no method ("-") when setting mem, swp, or tmp as RESERVE=Y.

RESERVE

Reserves the resource for pending jobs that are waiting for another resource to become available.

For example, job A requires resources X, Y, and Z to run, but resource Z is a high demand or scarce resource. This job pends until Z is available. In the meantime, other jobs requiring only X and Y resources run. If X and Y are set as reservable resources (the RESERVE parameter is set to "Y"), as soon as Z resource is available, job A runs. If they are not, job A may never be able to run because all resources are never available at the same time.

Restriction:

Only the following built-in resources can be defined as reservable:

- mem
- swp
- tmp

Use no method ("-") when setting mem, swp, or tmp as RESERVE=Y.

When submitting a job, the queue must have RESOURCE_RESERVE defined.

Backfill of the reservable resources is also supported when you submit a job with reservable resources to a queue with BACKFILL defined.

Valid values are Y and N. If not specified, resources are not reserved.

Assumptions and limitations

- Per-resource configuration defines resource usage for individual resources, but it does not change any
 existing resource limit behavior (PER_JOB, PER_SLOT).
- In a MultiCluster environment, you should configure resource usage in the scheduling cluster (submission cluster in lease model or receiving cluster in job forward model).

Automatic time-based configuration

Variable configuration is used to automatically change LSF configuration based on time windows. You define automatic configuration changes in 1 sb. resources by using if-else constructs and time expressions. After you change the files, reconfigure the cluster with the badmin reconfig command.

The expressions are evaluated by LSF every 10 minutes based on mbatchd start time. When an expression evaluates true, LSF dynamically changes the configuration based on the associated configuration statements. Reconfiguration is done in real time without restarting mbatchd, providing continuous system availability.

Example

```
# limit usage of hosts for group and time
# based configuration
# - 10 jobs can run from normal queue
# - any number can run from short queue between 18:30
# and 19:30
# all other hours you are limited to 100 slots in the
# short queue
# - each other queue can run 30 jobs
Begin Limit
PER_QUEUE
                        HOSTS
                                    SL0TS
                                              # Example
                        resource1
# if time(18:30-19:30)
short
                        resource1
#el se
short
                        resource1
#endi f
(all ~normal ~short)
                     resource1
End Limit
```

Isb.serviceclasses

The l sb. servi cecl asses file defines the service-level agreements (SLAs) in an LSF cluster as *service classes*, which define the properties of the SLA.

This file is optional.

You can configure as many service class sections as you need.

Use bsl a to display the properties of service classes configured in l sb. servi cecl asses and dynamic information about the state of each configured service class.

By default, 1 sb. servi cecl asses is installed in LSB_CONFDIR/cluster_name/configdir.

Changing lsb.serviceclasses configuration

After making any changes to l sb. servi cecl asses, run badmi n reconfig to reconfigure mbatchd.

Isb.serviceclasses structure

Each service class definition begins with the line $Begin\ Servi\ ceCl\ ass$ and ends with the line $End\ Servi\ ceCl\ ass$.

Syntax

```
Begin ServiceClass
NAME
             = string
PRI ORI TY
             = integer
             = [throughput | velocity | deadline] [\...
CONTROL_ACTION = VIOLATION_PERIOD[minutes] CMD [action]
USER_GROUP
             = all | [user_name] [user_group]
DESCRI PTI ON
End Servi ceCl ass
Begin ServiceClass
NAME
             = string
GOALS
             = guarantee
AUTO\_ATTACH = Y \mid y \mid N \mid n
DESCRIPTION = text
End Servi ceCl ass
```

You must specify:

- Service class name
- Goals

Service classes with guarantee goals cannot have PRIORITY, CONTROL_ACTION or USER_GROUP defined.

To configure EGO-enabled SLA scheduling, you must specify an existing EGO consumer name to allow the SLA to get host allocations from EGO.

All other parameters are optional.

Example

```
Begin ServiceClass

NAME=Sooke

PRI ORI TY=20

GOALS=[DEADLI NE timeWindow (8: 30-16: 00)]

DESCRI PTI ON="working hours"

End ServiceClass

Begin ServiceClass

NAME=Newmarket

GOALS=[GUARANTEE]

ACCESS_CONTROL = QUEUES[batch] FAIRSHARE_GROUPS[team2]

AUTO_ATTACH = Y

DESCRI PTI ON="guarantee for team2 batch j obs"

End ServiceClass
```

Parameters

- ACCESS_CONTROL
- AUTO_ATTACH
- CONSUMER
- CONTROL_ACTION
- DESCRIPTION
- EGO_RES_REQ
- GOALS
- MAX_HOST_IDLE_TIME
- NAME
- PRIORITY
- USER_GROUP

ACCESS_CONTROL

Syntax

```
ACCESS_CONTROL=[QUEUES[ queue ...]] [USERS[ [user_name] [user_group] ...]] [FAIRSHARE_GROUPS[user_group ...]] [APPS[app_name ...]] [PROJECTS[proj_name...]]
```

Description

Guarantee SLAs (with GOALS=[GUARANTEE]) only.

Restricts access to a guarantee SLA. If more than one restriction is configured, all must be satisfied.

QUEUES restricts access to the queues listed; the queue is specified for jobs at submission using bsub-q.

USERS restricts access to jobs submitted by the users or user groups specified.

User names must be valid login names. To specify a Windows user account, include the domain name in uppercase letters (*DOMAIN_NAME\user_name*). User group names can be LSF user groups or UNIX and Windows user groups. To specify a Windows user group, include the domain name in uppercase letters (*DOMAIN_NAME\user_group*).

- FAIRSHARE_GROUPS restricts access to the fairshare groups listed; the fairshare group is specified for jobs at submission using bsub G.
- APPS restricts access to the application profiles listed; the application profile is specified for jobs at submission using bsub—app.
- PROJECTS restricts access to the projects listed; the project is specified for jobs at submission using bsub - P.

Example

```
ACCESS_CONTROL = QUEUES[normal short] USERS[ug1]
```

Jobs submitted to the queues normal or short by users in usergroup ug1 are the only jobs accepted by the guarantee SLA.

Default

None. Access to the guarantee SLA is not restricted.

AUTO ATTACH

Syntax

AUTO_ATTACH=Y | y | N | n

Description

Guarantee SLAs (with GOALS=[GUARANTEE]) only. Used with ACCESS_CONTROL.

Enabling AUTO_ATTACH when a guarantee SLA has ACCESS_CONTROL configured results in submitted jobs automatically attaching to the guarantee SLA if they have access. If a job can access multiple guarantee SLAs with AUTO_ATTACH enabled, the job is automatically attached to the first accessible SLA based on configuration order in the l sb. servi cecl asses file.

During restart or reconfiguration, automatic attachments to guarantee SLAs are checked and jobs may be attached to a different SLA. During live reconfiguration (using the bconf command) automatic attachments are not checked, and jobs remain attached to the same guarantee SLAs regardless of configuration changes.

Example

```
Begin ServiceClass
...

NAME = Maple

GOALS = [GUARANTEE]

ACCESS_CONTROL = QUEUES[priority] USERS[ug1]

AUTO_ATTACH = Y
...

End ServiceClass
```

All jobs submitted to the priority queue by users in user group ug1 and submitted without an SLA specified are automatically attached to the service class Mapl e.

Default

N

CONSUMER

Syntax

CONSUMER=*ego_consumer_name*

Description

For EGO-enabled SLA service classes, the name of the EGO consumer from which hosts are allocated to the SLA. This parameter is not mandatory, but must be configured for the SLA to receive hosts from EGO.

Guarantee SLAs (with **GOALS=[GUARANTEE]**) cannot have CONSUMER set. If defined, it will be ignored.

Important:

CONSUMER must specify the name of a valid consumer in EGO. If a default SLA is configured with ENABLE_DEFAULT_EGO_SLA in l sb. params, all services classes configured in l sb. servi cecl asses must specify a consumer name.

Default

None

CONTROL ACTION

Syntax

CONTROL_ACTION=VIOLATION_PERIOD[minutes] CMD [action]

Description

Optional. Configures a control action to be run if the SLA goal is delayed for a specified number of minutes.

If the SLA goal is delayed for longer than VIOLATION_PERIOD, the action specified by CMD is invoked. The violation period is reset and if the SLA is still active when the violation period expires again, the action runs again. If the SLA has multiple active goals that are in violation, the action is run for each of them.

Guarantee SLAs (with **GOALS=[GUARANTEE]**) cannot have CONTROL_ACTION set. If defined, it will be ignored.

Example

 $\begin{tabular}{ll} ${\tt CONTROL_ACTI\,ON=VI\,OLATI\,ON_PERI\,OD[10]}$ & CMD & [echo\ `date`: SLA is in violation >> ! /tmp/sla_violation.log] \end{tabular}$

Default

None

DESCRIPTION

Syntax

DESCRIPTION=text

Description

Optional. Description of the service class. Use bsl a to display the description text.

This description should clearly describe the features of the service class to help users select the proper service class for their jobs.

The text can include any characters, including white space. The text can be extended to multiple lines by ending the preceding line with a backslash (\).

Default

None

EGO_RES_REQ

Syntax

EGO_RES_REQ=res_req

Description

For EGO-enabled SLA service classes, the EGO resource requirement that specifies the characteristics of the hosts that EGO will assign to the SLA.

Must be a valid EGO resource requirement. The EGO resource requirement string supports the sel ect section, but the format is different from LSF resource requirements.

Guarantee SLAs (with **GOALS=[GUARANTEE]**) cannot have EGO_RES_REQ set. If defined, it will be ignored.

Example

EGO_RES_REQ=select(linux && maxmem > 100)

Default

None

GOALS

Syntax

```
GOALS=[throughput | velocity | deadline] [\
[throughput | velocity | deadline] ...]
GOALS=[guarantee]
```

Description

Required. Defines the service-level goals for the service class. A service class can have more than one goal, each active at different times of the day and days of the week. Outside of the time window, the SLA is inactive and jobs are scheduled as if no service class is defined. LSF does not enforce any service-level goal for an inactive SLA.

The time windows of multiple service-level goals can overlap. In this case, the largest number of jobs is run.

An active SLA can have a status of On time if it is meeting the goal, and a status Del ayed, if it is missing its goals.

A service-level goal defines:

throughput — expressed as *finished* jobs per hour and an optional time window when the goal is active. *throughput* has the form:

```
GOALS=[THROUGHPUT num_j obs timeWindow [(time_window)]]
```

If no time window is configured, THROUGHPUT can be the only goal in the service class. The service class is always active, and bsl a displays ACTI VE WI NDOW: Al ways Open.

velocity — expressed as *concurrently* running jobs and an optional time window when the goal is active. *velocity* has the form:

```
GOALS=[VELOCITY num_j obs timeWindow [(time_window)]]
```

If no time window is configured, VELOCITY can be the only goal in the service class. The service class is always active, and bsl a displays ACTI VE WI NDOW: Al ways Open.

deadline — indicates that all jobs in the service class should complete by the end of the specified time window. The time window is required for a deadline goal. *deadline* has the form:

```
GOALS=[DEADLINE timeWindow (time_window)]
```

guarantee — indicates the SLA has guaranteed resources defined in 1 sb. resources and is able to guarantee resources, depending on the scavenging policies configured. Guarantee goals cannot be combined with any other goals, and do not accept time windows.

GOALS=[GUARANTEE]

Restriction:

EGO-enabled SLA service classes only support velocity goals. Deadline, throughput, and guarantee goals are not supported. The configured velocity value for EGO-enabled SLA service classes is considered to be a *minimum* number of jobs that should be in run state from the SLA

Time window format

The time window of an SLA goal has the standard form:

begin_time-end_time

Times are specified in the format:

[day:]hour[:minute]

where all fields are numbers with the following ranges:

- day of the week: 0-6 (0 is Sunday)
- hour: 0-23
- *minute*: 0-59

Specify a time window one of the following ways:

- hour-hour
- hour.minute-hour.minute
- day.hour.minute-day.hour.minute

The default value for minute is 0 (on the hour); the default value for day is every day of the week.

You must specify at least the hour. Day of the week and minute are optional. Both the start time and end time values must use the same syntax. If you do not specify a minute, LSF assumes the first minute of the hour (: 00). If you do not specify a day, LSF assumes every day of the week. If you do specify the day, you must also specify the minute.

You can specify multiple time windows, but they cannot overlap. For example:

```
ti meWi ndow(8: 00- 14: 00 18: 00- 22: 00)
is correct, but
ti meWi ndow(8: 00- 14: 00 11: 00- 15: 00)
is not valid.
```

Tip:

To configure a time window that is always open, use the timeWindow keyword with empty parentheses.

Examples

```
GOALS=[THROUGHPUT 2 ti meWi ndow ()]

GOALS=[THROUGHPUT 10 ti meWi ndow (8: 30-16: 30)]

GOALS=[VELOCITY 5 ti meWi ndow ()]

GOALS=[DEADLI NE ti meWi ndow (16: 30-8: 30)] \

[VELOCITY 10 ti meWi ndow (8: 30-16: 30)]

GOALS=[GUARANTEE]
```

MAX_HOST_IDLE_TIME

Syntax

MAX_HOST_IDLE_TIME=seconds

Description

For EGO-enabled SLA service classes, number of seconds that the SLA will hold its idle hosts before LSF releases them to EGO. Each SLA can configure a different idle time. Do not set this parameter to a small value, or LSF may release hosts too quickly.

Guarantee SLAs (with **GOALS=[GUARANTEE]**) cannot have MAX_HOST_IDLE_TIME set. If defined, it will be ignored.

Default

120 seconds

NAME

Syntax

NAME=string

Description

Required. A unique name that identifies the service class.

Specify any ASCII string 60 characters or less. You can use letters, digits, underscores (_) or dashes (-). You cannot use blank spaces.

Important:

The name you use cannot be the same as an existing host partition, user group name, or fairshare queue name.

Example

NAME=Tofino

Default

None. You must provide a unique name for the service class.

PRIORITY

Syntax

PRIORITY=integer

Description

Required (time-based SLAs only). The service class priority. A higher value indicates a higher priority, relative to other service classes. Similar to queue priority, service classes access the cluster resources in priority order.

LSF schedules jobs from one service class at a time, starting with the highest-priority service class. If multiple service classes have the same priority, LSF runs all the jobs from these service classes in first-come, first-served order.

Service class priority in LSF is completely independent of the UNIX scheduler's priority system for time-sharing processes. In LSF, the NICE parameter is used to set the UNIX time-sharing priority for batch jobs.

Guarantee SLAs (with GOALS=[GUARANTEE]) cannot have PRIORITY set. If defined, it will be ignored.

Default

None.

USER_GROUP

Syntax

USER_GROUP=all | [user_name] [user_group] ...

Description

Optional. A space-separated list of user names or user groups who can submit jobs to the service class. Administrators, root, and all users or groups listed can use the service class.

Use the reserved word al 1 to specify all LSF users. LSF cluster administrators are automatically included in the list of users, so LSF cluster administrators can submit jobs to any service class, or switch any user's jobs into this service class, even if they are not listed.

If user groups are specified in 1 sb. users, each user in the group can submit jobs to this service class. If a group contains a subgroup, the service class policy applies to each member in the subgroup recursively. If the group can define fairshare among its members, the SLA defined by the service class enforces the fairshare policy among the users of the SLA.

User names must be valid login names. User group names can be LSF user groups (in 1 sb. users) or UNIX and Windows user groups.

Guarantee SLAs (with **GOALS=[GUARANTEE]**) cannot have USER_GROUP set. If defined, it will be ignored.

Example

USER_GROUP=user1 user2 ugroup1

Default

all (all users in the cluster can submit jobs to the service class)

Examples

• The resource-based service class AccountingSLA guarantees hosts to the user group account i ngUG for jobs submitted to the queue l ongj obs. Jobs submitted to this queue by this usergroup without an SLA specified will be automatically attached to the SLA. The guaranteed resource pools used by the SLA are configured in l sb. resources.

Begin ServiceClass

NAME=Account i ngSLA

GOALS=[GUARANTEE]

DESCRIPTION="Guaranteed hosts for the accounting department"

ACCESS_CONTROL = QUEUES[longjobs] USERS[accountingUG]

AUTO ATTACH = Y

End Servi ceCl ass

• The service class Sooke defines one deadline goal that is active during working hours between 8:30 AM and 4:00 PM. All jobs in the service class should complete by the end of the specified time window. Outside of this time window, the SLA is inactive and jobs are scheduled without any goal being enforced:

Begin ServiceClass

NAME=Sooke

PRI ORI TY=20

GOALS=[DEADLINE timeWindow (8: 30-16:00)]

DESCRIPTION="working hours"

End ServiceClass

The service class Nanai mo defines a deadline goal that is active during the weekends and at nights. Begin ServiceClass NAME=Nanai mo PRI ORI TY=20 GOALS=[DEADLINE timeWindow (5: 18: 00-1: 8: 30 20: 00-8: 30)] DESCRIPTION="weekend nighttime regression tests" End Servi ceCl ass The service class Si dney defines a throughput goal of 6 jobs per hour that is always active: Begin ServiceClass NAME=Si dney PRI ORI TY=20 GOALS=[THROUGHPUT 6 timeWindow ()] DESCRIPTION="constant throughput" End Servi ceClass The service class Tofi no defines two velocity goals in a 24 hour period. The first goal is to have a maximum of 10 concurrently running jobs during business hours (9:00 a.m. to 5:00 p.m). The second goal is a maximum of 30 concurrently running jobs during off-hours (5:30 p.m. to 8:30 a.m.) Begin ServiceClass NAME=Tofino PRI ORI TY=20 GOALS=[VELOCITY 10 timeWindow (9:00-17:00)] [VELOCITY 30 timeWindow (17:30-8:30)] DESCRIPTION="day and night velocity" End Servi ceCl ass The service class Duncan defines a velocity goal that is active during working hours (9:00 a.m. to 5:30 p.m.) and a deadline goal that is active during off-hours (5:30 p.m. to 9:00 a.m.) Only users user 1 and user 2 can submit jobs to this service class. Begin ServiceClass NAME=Duncan PRI ORI TY=23 USER_GROUP=user1 user2 GOALS=[VELOCITY 8 timeWindow (9:00-17:30)] [DEADLINE timeWindow (17:30-9:00)] DESCRIPTION="Daytime/Nighttime SLA"

End Servi ceClass

• The service class Tevere defines a combination similar to Duncan, but with a deadline goal that takes effect overnight and on weekends. During the working hours in weekdays the velocity goal favors a mix of short and medium jobs.

```
Begin ServiceClass

NAME=Tevere

PRI ORI TY=20

GOALS=[VELOCITY 100 timeWindow (9:00-17:00)] \

[DEADLINE timeWindow (17:30-8:30 5:17:30-1:8:30)]

DESCRIPTION="nine to five"

End ServiceClass
```

Isb.users

The 1 sb. users file is used to configure user groups, hierarchical fairshare for users and user groups, and job slot limits for users and user groups. It is also used to configure account mappings in a MultiCluster environment.

This file is optional.

The lsb. users file is stored in the directory LSB_CONFDIR/cluster_name/configdir, where LSB_CONFDIR is defined in lsf. conf.

Changing lsb.users configuration

After making any changes to lsb. users, run badmin reconfig to reconfigure mbatchd.

UserGroup section

Optional. Defines user groups.

The name of the user group can be used in other user group and queue definitions, as well as on the command line. Specifying the name of a user group in the GROUP_MEMBER section has exactly the same effect as listing the names of all users in the group.

The total number of user groups cannot be more than 1024.

Structure

The first line consists of two mandatory keywords, GROUP_NAME and GROUP_MEMBER. The USER_SHARES and GROUP_ADMI N keywords are optional. Subsequent lines name a group and list its membership and optionally its share assignments and administrator.

Each line must contain one entry for each keyword. Use empty parentheses () or a dash - to specify the default value for an entry.

Restriction:

If specifying a specific user name for a user group, that entry must precede all user groups.

Examples of a UserGroup section

Example 1:

Begin UserGroup							
GROUP_NAME	GROUP_MEMBER	GROUP_ADMI N					
groupA	(user1 user2 user3 user4)	(user5[full])					
groupB	(user7 user8 user9)	(groupA[usershares])					
groupC	(groupA user5)	(groupA)					
groupD	(!) ()						
End UserGroup							

Example 2:

Begin UserGroup							
GROUP_NAME	GROUP_MEMBER	GROUP_ADMI N					
groupA	(user1 user2 user3 user4	4) (user5)					
groupB	(groupA user5)	(groupA)					
groupC	(!)	()					
End UserGrou	p						
Example 2:							
Begin UserGr	oup						
GROUP_NAME	GROUP_MEMBER	USER_SHARES					
groupB	(user1 user2)	()					
groupC	(user3 user4)	([User3, 3] [User4, 4])					

GROUP_NAME

An alphanumeric string representing the user group name. You cannot use the reserved name all l or a l in a group name.

(GroupB GroupC user5) ([User5, 1] [default, 10])

GROUP MEMBER

groupA

End UserGroup

User group members are the users who belong to the group. You can specify both user names and user group names.

User and user group names can appear on multiple lines because users can belong to multiple groups.

Note:

When a user belongs to more than one group, any of the administrators specified for any of the groups the user belongs to can control that users' jobs. Limit administrative control by defining

 $\label{eq:strict_ug_control} \textbf{STRICT_UG_CONTROL=Y} \ \text{in} \ l \ \text{sb.} \ params \ \text{and} \ \text{submitting jobs} \ \text{with the} \\ \textbf{-G} \ \text{option, specifying which user group the job is submitted with.}$

User groups may be defined recursively but must not create a loop.

Syntax

```
(user_name | user_group ...) | (all) | (!)
```

Enclose the entire group member list in parentheses. Use space to separate multiple names.

You can combine user names and user group names in the same list.

Valid values

al l

The reserved name all specifies all users in the cluster.

•

An exclamation mark (!) indicates an externally-defined user group, which the egroup executable retrieves.

user_name

User names must be valid login names.

To specify a Windows user account, include the domain name in uppercase letters (*DOMAIN_NAME \user_name*).

user_group

User group names can be LSF user groups defined previously in this section, or UNIX and Windows user groups.

If you specify a name that is both a UNIX user group and also a UNIX user, append a backslash to make sure it is interpreted as a group (*user_group*/).

To specify a Windows user group, include the domain name in uppercase letters (*DOMAIN_NAME \user_group*).

GROUP ADMIN

User group administrators can administer the jobs of group members. You can specify both user names and user group names.

- If you specify a user group as an administrator for another user group, all members of the first user group become administrators for the second user group.
- You can also specify that all users of a group are also administrators of that same group.
- Users can be administrators for more than one user group at the same time.

Note:

When a user belongs to more than one group, any of the administrators specified for any of the groups the user belongs to can control that users' jobs. Define **STRICT_UG_CONTROL=Y** in lsb.params to limit user group administrator control to the user group specified by -G at job submission.

By default a user group administrator has privileges equivalent to those of a job owner, and is allowed to control any job belonging to member users of the group they administer. A user group administrator can also resume jobs stopped by the LSF administrator or queue administrator if the job belongs to a member of their user group.

Optionally, you can specify additional user group administrator rights for each user group administrator.

User group administrator rights are inherited. For example, if admin2 has full rights for user group ugA and user group ugB is a member of ugA, admin2 also has full rights for user group ugB.

Restriction:

Unlike a job owner, a user group administrator cannot run brestart and bread - a data_file.

To manage security concerns, you cannot specify user group administrators for any user group containing the keyword all as a member unless **STRICT_UG_CONTROL=Y** is defined in lsb. params.

Syntax

(user_name | user_name[admin_rights] | user_group | user_group[admin_rights] ...)

Enclose the entire group administrator list in parentheses. If you specify administrator rights for a user or group, enclose them in square brackets.

You can combine user names and user group names in the same list. Use space to separate multiple names.

Valid values

user_name

User names must be valid login names.

To specify a Windows user account, include the domain name in uppercase letters (*DOMAIN_NAME \user_name*).

user_group

User group names can be LSF user groups defined previously in this section, or UNIX and Windows user groups.

If you specify a name that is both a UNIX user group and also a UNIX user, append a backslash to make sure it is interpreted as a group (*user_group/*).

To specify a Windows user group, include the domain name in uppercase letters (*DOMAIN_NAME \user_group*).

- admin rights
 - If no rights are specified, only default job control rights are given to user group administrators.
 - usershares: user group administrators with usershares rights can adjust user shares using bconf update.
 - full: user group administrators with full rights can use boonf to adjust both usershares and group members, delete the user group, and create new user groups.

User group administrators with full rights can only add a user group member to the user group if they also have full rights for the member user group.

User group administrators adding a new user group with bconf create are automatically added to GROUP_ADMI N with full rights for the new user group.

Restrictions

- Wildcard and special characters are not supported (for example: *, !, \$, #, &, ~)
- The reserved keywords others, default, all remote are not supported.
- User groups with the keyword all as a member can only have user group administrators configured
 if STRICT_UG_CONTROL=Y is defined in lsb. params.
- User groups with the keyword all as a member cannot be user group administrators.
- User groups and user groups administrator definitions cannot be recursive or create a loop.

USER_SHARES

Optional. Enables hierarchical fairshare and defines a share tree for users and user groups.

By default, when resources are assigned collectively to a group, the group members compete for the resources according to FCFS scheduling. You can use hierarchical fairshare to further divide the shares among the group members.

Syntax

([user, number_shares])

Specify the arguments as follows:

• Enclose the list in parentheses, even if you do not specify any user share assignments.

- Enclose each user share assignment in square brackets, as shown.
- Separate the list of share assignments with a space.
- *user*—Specify users or user groups. You can assign the shares to:
 - A single user (specify user_name). To specify a Windows user account, include the domain name
 in uppercase letters (DOMAIN_NAME\user_name).
 - Users in a group, individually (specify group_name@) or collectively (specify group_name). To specify a Windows user group, include the domain name in uppercase letters (DOMAIN_NAME\group_name).
 - Users not included in any other share assignment, individually (specify the keyword defaul t or defaul t@) or collectively (specify the keyword others).

Note:

By default, when resources are assigned collectively to a group, the group members compete for the resources on a first-come, first-served (FCFS) basis. You can use hierarchical fairshare to further divide the shares among the group members. When resources are assigned to members of a group individually, the share assignment is recursive. Members of the group and of all subgroups always compete for the resources according to FCFS scheduling, regardless of hierarchical fairshare policies.

number_shares—Specify a positive integer representing the number of shares of the cluster resources
assigned to the user. The number of shares assigned to each user is only meaningful when you compare
it to the shares assigned to other users or to the total number of shares. The total number of shares is
just the sum of all the shares assigned in each share assignment.

User section

Optional. If this section is not defined, all users and user groups can run an unlimited number of jobs in the cluster.

This section defines the maximum number of jobs a user or user group can run concurrently in the cluster. This is to avoid situations in which a user occupies all or most of the system resources while other users' jobs are waiting.

Structure

One field is mandatory: USER_NAME.

MAX_JOBS, JL/P, and MAX_PEND_JOBS are optional.

You must specify a dash (-) to indicate the default value (unlimited) if a user or user group is specified. Fields cannot be left blank.

Example of a User section

Begin User					
USER_NAME	MAX_JOBS	JL/P	MAX_PEND_JOBS		
user1	10	=	1000		
user2	4	-	-		
user3	-	-	-		
groupA	10	1	100000		
groupA@	-	1	100		
groupC	-	-	500		
defaul t	6	1	10		
End User					

USER NAME

User or user group for which job slot limits are defined.

Use the reserved user name default to specify a job slot limit that applies to each user and user group not explicitly named. Since the limit specified with the keyword default applies to user groups also, make sure you select a limit that is high enough, or explicitly define limits for user groups.

User group names can be the LSF user groups defined previously, and/or UNIX and Windows user groups. To specify a Windows user account or user group, include the domain name in uppercase letters (DOMAIN_NAME\user_name or DOMAIN_NAME\user_group).

Job slot limits apply to a group as a whole. Append the at sign (@) to a group name to make the job slot limits apply individually to each user in the group. If a group contains a subgroup, the job slot limit also applies to each member in the subgroup recursively.

If the group contains the keyword all in the user list, the at sign (@) has no effect. To specify job slot limits for each user in a user group containing all, use the keyword default.

MAX_JOBS

Per-user or per-group job slot limit for the cluster. Total number of job slots that each user or user group can use in the cluster.

Note:

If a group contains the keyword al l as a member, all users and user groups are included in the group. The per-group job slot limit set for the group applies to the group as a whole, limiting the entire cluster even when <code>ENFORCE_ONE_UG_LIMIT</code> is set in l sb. params.

JL/P

Per processor job slot limit per user or user group.

Total number of job slots that each user or user group can use per processor. This job slot limit is configured per processor so that multiprocessor hosts will automatically run more jobs.

This number can be a fraction such as 0.5, so that it can also serve as a per-host limit. This number is rounded up to the nearest integer equal to or greater than the total job slot limits for a host. For example, if JL/P is 0.5, on a 4-CPU multiprocessor host, the user can only use up to 2 job slots at any time. On a uniprocessor machine, the user can use 1 job slot.

MAX PEND JOBS

Per-user or per-group pending job limit. This is the total number of pending job slots that each user or user group can have in the system. If a user is a member of multiple user groups, the user's pending jobs are counted towards the pending job limits of all groups from which the user has membership.

If ENFORCE_ONE_UG_LIMITS is set to Y in 1 sb. params and you submit a job while specifying a user group, only the limits for that user group (or any parent user group) apply to the job even if there are overlapping user group members.

UserMap section

Optional. Used only in a MultiCluster environment with a non-uniform user name space. Defines system-level cross-cluster account mapping for users and user groups, which allows users to submit a job from a local host and run the job as a different user on a remote host. Both the local and remote clusters must have corresponding user account mappings configured.

Structure

The following three fields are all required:

- LOCAL
- REMOTE
- DI RECTI ON

LOCAL

A list of users or user groups in the local cluster. To specify a Windows user account or user group, include the domain name in uppercase letters (*DOMAIN_NAME*\user_name or *DOMAIN_NAME*\user_group). Separate multiple user names by a space and enclose the list in parentheses ():

(user4 user6)

REMOTE

A list of remote users or user groups in the form <code>user_name@cluster_name</code> or <code>user_group@cluster_name</code>. To specify a Windows user account or user group, include the domain name in uppercase letters (<code>DOMAIN_NAME\user_name@cluster_name</code> or <code>DOMAIN_NAME\user_group@cluster_name</code>). Separate multiple user names by a space and enclose the list in parentheses ():

(user4@cluster2 user6@cluster2)

DIRECTION

Specifies whether the user account runs jobs locally or remotely. Both directions must be configured on the local and remote clusters.

- The export keyword configures local users/groups to run jobs as remote users/groups.
- The i mport keyword configures remote users/groups to run jobs as local users/groups.

Example of a UserMap section

On cluster1:

Begin Us	serMap		
LOCAL	REMOTE		DI RECTI ON
user1	user2@cluster2		export
user3	user6@cluster2	export	
End User	Мар		
On cluste	er2:		
Begin Us	serMap		
LOCAL	REMOTE		DI RECTI ON
user2	user1@cluster1		import
user6	user3@cluster1		i mport
End User	·Map		

Cluster1 configures user1 to run jobs as user2 and user3 to run jobs as user6.

Cluster2 configures user1 to run jobs as user2 and user3 to run jobs as user6.

Automatic time-based configuration

Variable configuration is used to automatically change LSF configuration based on time windows. You define automatic configuration changes in 1 sb. users by using if-else constructs and time expressions. After you change the files, reconfigure the cluster with the badmin reconfig command.

The expressions are evaluated by LSF every 10 minutes based on mbatchd start time. When an expression evaluates true, LSF dynamically changes the configuration based on the associated configuration statements. Reconfiguration is done in real time without restarting mbatchd, providing continuous system availability.

Example

From 12 - 1 p.m. daily, user smi th has 10 job slots, but during other hours, user has only 5 job slots.

Begin User	•					
USER_NAME	MAX_JOBS	JL/P				
#if time ([12-13)					
smi th	10	-				
#el se						
smi th	5	-				
defaul t	1	-				
#endi f						
End User						
Ziid ODOI						

Isf.acct

The 1 sf. acct file is the LSF task log file.

The LSF Remote Execution Server, RES (see res(8)), generates a record for each task completion or failure. If the RES task logging is turned on (see l sadmin(8)), it appends the record to the task log file l sf. acct. < host. name>.

Isf.acct structure

The task log file is an ASCII file with one task record per line. The fields of each record are separated by blanks. The location of the file is determined by the LSF_RES_ACCTDIR variable defined in $l\ sf.\ conf.$ If this variable is not defined, or the RES cannot access the log directory, the log file is created in /tmp instead.

Fields

The fields in a task record are ordered in the following sequence:

pid (%d)

Process ID for the remote task

userName (%s)

User name of the submitter

exitStatus (%d)

Task exit status

dispTime (%ld)

Dispatch time – time at which the task was dispatched for execution

termTime (%ld)

Completion time – time when task is completed/failed

fromHost (%s)

Submission host name

execHost (%s)

Execution host name

cwd (%s)

Current working directory

cmdln (%s)

Command line of the task

IsfRusage

The following fields contain resource usage information for the job (see get rusage(2)). If the value of some field is unavailable (due to job exit or the difference among the

```
measured in KB.
ru_utime (%f)
               User time used
ru_stime (%f)
               System time used
ru_maxrss (%f)
               Maximum shared text size
ru_ixrss (%f)
               Integral of the shared text size over time (in KB seconds)
ru_ismrss (%f)
               Integral of the shared memory size over time (valid only on Ultrix)
ru_idrss (%f)
               Integral of the unshared data size over time
ru_isrss (%f)
               Integral of the unshared stack size over time
ru_minflt (%f)
               Number of page reclaims
ru_majflt (%f)
               Number of page faults
ru_nswap (%f)
               Number of times the process was swapped out
ru_inblock (%f)
               Number of block input operations
ru_oublock (%f)
               Number of block output operations
ru_ioch (%f)
               Number of characters read and written (valid only on HP-UX)
ru_msgsnd (%f)
               Number of System V IPC messages sent
ru_msgrcv (%f)
               Number of messages received
ru_nsignals (%f)
```

operating systems), -1 will be logged. Times are measured in seconds, and sizes are

Number of signals received

ru_nvcsw (%f)

Number of voluntary context switches

ru_nivcsw (%f)

Number of involuntary context switches

ru_exutime (%f)

Exact user time used (valid only on ConvexOS)

Isf.cluster

- About lsf.cluster
- Parameters section
- ClusterAdmins section
- Host section
- ResourceMap section
- RemoteClusters section

Changing Isf.cluster configuration

After making any changes to l sf. cluster. *cluster_name*, run the following commands:

- l sadmin reconfig to reconfigure LIM
- badmin mbdrestart to restart mbatchd
- Isadmin limrestart to restart LIM (on all changed non-master hosts)

Location

This file is typically installed in the directory defined by LSF_ENVDIR.

Structure

The l sf. cluster. *cluster_name* file contains the following configuration sections:

- Parameters section
- ClusterAdmins section
- · Host section
- ResourceMap section
- RemoteClusters section

Parameters section

About Isf.cluster

This is the cluster configuration file. There is one for each cluster, called 1 sf. cluster. *cluster_name*. The *cluster_name* suffix is the name of the cluster defined in the Cluster section of 1 sf. shared. All LSF hosts are listed in this file, along with the list of LSF administrators and the installed LSF features.

The lsf. cluster. cluster_name file contains two types of configuration information:

- Cluster definition information affects all LSF applications. Defines cluster administrators, hosts
 that make up the cluster, attributes of each individual host such as host type or host model, and
 resources using the names defined in 1 sf. shared.
- LIM policy information affects applications that rely on LIM job placement policy. Defines load sharing and job placement policies provided by LIM.

Parameters

- ADJUST DURATION
- ELIM_ABORT_VALUE

- ELIM_POLL_INTERVAL
- ELIMARGS
- EXINTERVAL
- HOST_INACTIVITY_LIMIT
- LSF_ELIM_BLOCKTIME
- LSF ELIM DEBUG
- LSF_ELIM_RESTARTS
- LSF HOST ADDR RANGE
- MASTER_INACTIVITY_LIMIT
- PROBE_TIMEOUT
- RETRY_LIMIT

ADJUST_DURATION

Syntax

ADJUST_DURATION=integer

Description

Integer reflecting a multiple of EXINTERVAL that controls the time period during which load adjustment is in effect.

The l spl ace(1) and l sl oadadj(1) commands artificially raise the load on a selected host. This increase in load decays linearly to 0 over time.

Default

3

ELIM ABORT VALUE

Syntax

ELIM_ABORT_VALUE=integer

Description

Integer that triggers an abort for an ELIM.

Default

97 (triggers abort)

ELIM POLL INTERVAL

Syntax

ELIM POLL INTERVAL=seconds

Description

Time interval, in seconds, that the LIM samples external load index information. If your elimexecutable is programmed to report values more frequently than every 5 seconds, set the ELIM_POLL_INTERVAL so that it samples information at a corresponding rate.

Valid values

0.001 to 5

Default

5 seconds

ELIMARGS

Syntax

ELIMARGS=cmd_line_args

Description

Specifies command-line arguments required by an el i m executable on startup. Used only when the external load indices feature is enabled.

Default

Undefined

EXINTERVAL

Syntax

EXINTERVAL=time_in_seconds

Description

Time interval, in seconds, at which the LIM daemons exchange load information

On extremely busy hosts or networks, or in clusters with a large number of hosts, load may interfere with the periodic communication between LIM daemons. Setting EXINTERVAL to a longer interval can reduce network load and slightly improve reliability, at the cost of slower reaction to dynamic load changes.

Note that if you define the time interval as less than 5 seconds, LSF automatically resets it to 5 seconds.

Default

15 seconds

HOST_INACTIVITY_LIMIT

Syntax

HOST_INACTIVITY_LIMIT=integer

Description

Integer that is multiplied by EXINTERVAL, the time period you set for the communication between the master and slave LIMs to ensure all parties are functioning.

A slave LIM can send its load information any time from EXINTERVAL to (HOST_INACTIVITY_LIMIT-1)*EXINTERVAL seconds. A master LIM sends a master announce to each host at least every EXINTERVAL*(HOST_INACTIVITY_LIMIT-1) seconds.

The HOST_INACTIVITY_LIMIT must be greater than or equal to 2.

Increase or decrease the host inactivity limit to adjust for your tolerance for communication between master and slaves. For example, if you have hosts that frequently become inactive, decrease the host inactivity limit. Note that to get the right interval, you may also have to adjust your EXINTERVAL.

Default

5

LSF_ELIM_BLOCKTIME

Syntax

LSF_ELIM_BLOCKTIME=seconds

Description

UNIX only; used when the external load indices feature is enabled.

Maximum amount of time the master external load information manager (MELIM) waits for a complete load update string from an elimexecutable. After the time period specified by LSF_ELIM_BLOCKTIME, the MELIM writes the last string sent by an elimin the LIM log file (lim. log. host_name) and restarts the elim.

Defining LSF_ELIM_BLOCKTIME also triggers the MELIM to restart el i m executables if the el i m does not write a complete load update string within the time specified for LSF_ELIM_BLOCKTIME.

Valid values

Non-negative integers. For example, if your elimwrites name-value pairs with 1 second intervals between them, and your elimmeports 12 load indices, allow at least 12 seconds for the elim to finish writing the entire load update string. In this case, define LSF_ELIM_BLOCKTIME as 15 seconds or more.

A value of 0 indicates that the MELIM expects to receive the entire load string all at once.

If you comment out or delete LSF_ELIM_BLOCKTIME, the MELIM waits 2 seconds for a complete load update string.

Default

4 seconds

See also

LSF_ELIM_RESTARTS to limit how many times the ELIM can be restarted.

LSF ELIM DEBUG

Syntax

LSF_ELIM_DEBUG=y

Description

UNIX only; used when the external load indices feature is enabled.

When this parameter is set to y, all external load information received by the load information manager (LIM) from the master external load information manager (MELIM) is logged in the LIM log file (1 i m. 1 og. host_name).

Defining LSF_ELIM_DEBUG also triggers the MELIM to restart el i m executables if the el i m does not write a complete load update string within the time specified for LSF_ELIM_BLOCKTIME.

Default

Undefined; external load information sent by an to the MELIM is not logged.

See also

LSF_ELIM_BLOCKTIME to configure how long LIM waits before restarting the ELIM.

LSF_ELIM_RESTARTS to limit how many times the ELIM can be restarted.

LSF ELIM RESTARTS

Syntax

LSF_ELIM_RESTARTS=integer

Description

UNIX only; used when the external load indices feature is enabled.

Maximum number of times the master external load information manager (MELIM) can restart el i m executables on a host. Defining this parameter prevents an ongoing restart loop in the case of a faulty el i m. The MELIM waits the LSF_ELIM_BLOCKTIME to receive a complete load update string before restarting the el i m. The MELIM does not restart any el i m executables that exit with ELIM_ABORT_VALUE.

Important:

Either LSF_ELIM_BLOCKTIME or LSF_ELIM_DEBUG must also be defined; defining these parameters triggers the MELIM to restart ${\rm el}~i~m$ executables.

Valid values

Non-negative integers.

Default

Undefined; the number of el i m restarts is unlimited.

See also

LSF_ELIM_BLOCKTIME, LSF_ELIM_DEBUG

LSF HOST ADDR RANGE

Syntax

LSF_HOST_ADDR_RANGE=IP_address...

Description

Identifies the range of IP addresses that are allowed to be LSF hosts that can be dynamically added to or removed from the cluster.

Caution:

To enable dynamically added hosts after installation, you must define LSF_HOST_ADDR_RANGE in lsf.cluster.cluster_name, and LSF_DYNAMIC_HOST_WAIT_TIME in lsf.conf. If you enable dynamic hosts during installation, you must define an IP address range after installation to enable security.

If a value is defined, security for dynamically adding and removing hosts is enabled, and only hosts with IP addresses within the specified range can be added to or removed from a cluster dynamically.

Specify an IP address or range of addresses, using either a dotted quad notation (IPv4) or IP Next Generation (IPv6) format. LSF supports both formats; you do not have to map IPv4 addresses to an IPv6 format. Multiple ranges can be defined, separated by spaces.

Note:

To use IPv6 addresses, you must define the parameter LSF_ENABLE_SUPPORT_IPv6 in l sf. conf.

If there is an error in the configuration of LSF_HOST_ADDR_RANGE (for example, an address range is not in the correct format), no host will be allowed to join the cluster dynamically and an error message will be logged in the LIM log. Address ranges are validated at startup, reconfiguration, or restart, so they must conform to the required format.

If a requesting host belongs to an IP address that falls in the specified range, the host will be accepted to become a dynamic LSF host.

IP addresses are separated by spaces, and considered "OR" alternatives.

If you define the parameter LSF_HOST_ADDR_RANGE with:

- No range specified, all IPv4 and IPv6 clients are allowed.
- Only an IPv4 range specified, only IPv4 clients within the range are allowed.
- Only an IPv6 range specified, only IPv6 clients within the range are allowed.
- Both an IPv6 and IPv4 range specified, IPv6 and IPv4 clients within the ranges are allowed.

The asterisk (*) character indicates any value is allowed.

The dash (-) character indicates an explicit range of values. For example 1-4 indicates 1,2,3,4 are allowed.

Open ranges such as *-30, or 10-*, are allowed.

For IPv6 addresses, the double colon symbol (::) indicates multiple groups of 16-bits of zeros. You can also use (::) to compress leading and trailing zeros in an address filter, as shown in the following example:

LSF_HOST_ADDR_RANGE=1080::8:800:20fc:*

This definition allows hosts with addresses 1080:0:0:0:8:800:20fc:* (three leading zeros).

You cannot use the double colon (::) more than once within an IP address. You cannot use a zero before or after (::). For example, 1080:0::8:800:20fc:* is not a valid address.

If a range is specified with fewer fields than an IP address such as 10.161, it is considered as 10.161.*.*.

This parameter is limited to 2048 characters.

Notes

After you configure LSF_HOST_ADDR_RANGE, check the l i m. l og. *host_name* file to make sure this parameter is correctly set. If this parameter is not set or is wrong, this will be indicated in the log file.

Examples

LSF_HOST_ADDR_RANGE=100

All IPv4 and IPv6 hosts with a domain address starting with 100 will be allowed access.

- To specify only IPv4 hosts, set the value to 100.*
- To specify only IPv6 hosts, set the value to 100:*

```
LSF HOST ADDR RANGE=100-110.34.1-10.4-56
```

All hosts belonging to a domain with an address having the first number between 100 and 110, then 34, then a number between 1 and 10, then, a number between 4 and 56 will be allowed access. No IPv6 hosts are allowed. Example: 100.34.9.45, 100.34.1.4, 102.34.3.20, etc.

```
LSF_HOST_ADDR_RANGE=100. 172. 1. 13 100. *. 30-54 124. 24- *. 1. *-34
```

The host with the address 100.172.1.13 will be allowed access. All hosts belonging to domains starting with 100, then any number, then a range of 30 to 54 will be allowed access. All hosts belonging to domains starting with 124, then from 24 onward, then 1, then from 0 to 34 will be allowed access. No IPv6 hosts are allowed.

```
LSF HOST ADDR RANGE=12. 23. 45. *
```

All hosts belonging to domains starting with 12.23.45 are allowed. No IPv6 hosts are allowed.

```
LSF HOST ADDR RANGE=100. *43
```

The * character can only be used to indicate any value. The format of this example is not correct, and an error will be inserted in the LIM log and no hosts will be able to join the cluster dynamically. No IPv6 hosts are allowed.

```
LSF_HOST_ADDR_RANGE=100. *43 100. 172. 1. 13
```

Although one correct address range is specified, because *43 is not correct format, the entire line is considered not valid. An error will be inserted in the LIM log and no hosts will be able to join the cluster dynamically. No IPv6 hosts are allowed.

```
LSF\_HOST\_ADDR\_RANGE = 3ffe
```

All client IPv6 hosts with a domain address starting with 3ffe will be allowed access. No IPv4 hosts are allowed.

```
LSF_HOST_ADDR_RANGE = 3ffe: fffe: :88bb: *
```

Expands to 3ffe:fffe:0:0:0:0:88bb:*.All IPv6 client hosts belonging to domains starting with 3ffe:fffe::88bb:* are allowed. No IPv4 hosts are allowed.

```
LSF_HOST_ADDR_RANGE = 3ffe-4fff: fffe:: 88bb: aa-ff 12. 23. 45. *
```

All IPv6 client hosts belonging to domains starting with 3ffe up to 4fff, then fffe::88bb, and ending with aa up to ff are allowed. IPv4 client hosts belonging to domains starting with 12.23.45 are allowed.

```
LSF_HOST_ADDR_RANGE = 3ffe-*: fffe::88bb:*-ff
```

All IPv6 client hosts belonging to domains starting with 3ffe up to ffff and ending with 0 up to ff are allowed. No IPv4 hosts are allowed.

Default

Undefined (dynamic host feature disabled). If you enable dynamic hosts during installation, no security is enabled and all hosts can join the cluster.

See also

LSF_ENABLE_SUPPORT_IPV6

MASTER_INACTIVITY_LIMIT

Syntax

MASTER_INACTIVITY_LIMIT=integer

Description

An integer reflecting a multiple of EXINTERVAL. A slave will attempt to become master if it does not hear from the previous master after (HOST_INACTIVITY_LIMIT

 $+host_number^*MASTER_INACTIVITY_LIMIT)^*EXINTERVAL$ seconds, where $host_number$ is the position of the host in 1 sf. cl uster. $cluster_name$.

The master host is *host_number* 0.

Default

2

PROBE_TIMEOUT

Syntax

PROBE_TIMEOUT=time_in_seconds

Description

Specifies the timeout in seconds to be used for the connect (2) system call

Before taking over as the master, a slave LIM will try to connect to the last known master via TCP.

Default

2 seconds

RETRY_LIMIT

Syntax

RETRY_LIMIT=integer

Description

Integer reflecting a multiple of EXINTERVAL that controls the number of retries a master or slave LIM makes before assuming that the slave or master is unavailable.

If the master does not hear from a slave for HOST_INACTIVITY_LIMIT exchange intervals, it will actively poll the slave for RETRY_LIMIT exchange intervals before it will declare the slave as unavailable. If a slave does not hear from the master for HOST_INACTIVITY_LIMIT exchange intervals, it will actively poll the master for RETRY_LIMIT intervals before assuming that the master is down.

Default

2

ClusterAdmins section

(Optional) The Cluster Admins section defines the LSF administrators for the cluster. The only keyword is ADMINISTRATORS.

If the ClusterAdmins section is not present, the default LSF administrator is root. Using root as the primary LSF administrator is not recommended.

ADMINISTRATORS

Syntax

ADMINISTRATORS=administrator_name ...

Description

Specify UNIX user names.

You can also specify UNIX user group names, Windows user names, and Windows user group names. To specify a Windows user account or user group, include the domain name in uppercase letters (DOMAIN_NAME\user_name or DOMAIN_NAME\user_group).

The first administrator of the expanded list is considered the primary LSF administrator. The primary administrator is the owner of the LSF configuration files, as well as the working files under LSB_SHAREDI R/cluster_name. If the primary administrator is changed, make sure the owner of the configuration files and the files under LSB_SHAREDI R/cluster_name are changed as well.

Administrators other than the primary LSF administrator have the same privileges as the primary LSF administrator except that they do not have permission to change LSF configuration files. They can perform clusterwide operations on jobs, queues, or hosts in the system.

For flexibility, each cluster may have its own LSF administrators, identified by a user name, although the same administrators can be responsible for several clusters.

Use the -l option of the l scl usters command to display all of the administrators within a cluster.

Windows domain:

- If the specified user or user group is a domain administrator, member of the Power Users group or a group with domain administrative privileges, the specified user or user group must belong to the LSF user domain.
- If the specified user or user group is a user or user group with a lower degree of privileges than outlined
 in the previous point, the user or user group must belong to the LSF user domain and be part of the
 Global Admins group.

Windows workgroup

• If the specified user or user group is not a workgroup administrator, member of the Power Users group, or a group with administrative privileges on each host, the specified user or user group must belong to the Local Admins group on each host.

Compatibility

For backwards compatibility, ClusterManager and Manager are synonyms for ClusterAdmins and ADMINISTRATORS respectively. It is possible to have both sections present in the same lsf. cluster_name file to allow daemons from different LSF versions to share the same file.

Example

The following gives an example of a cluster with two LSF administrators. The user listed first, user2, is the primary administrator.

```
Begin ClusterAdmins

ADMINISTRATORS = user2 user7

End ClusterAdmins
```

Default

lsfadmin

Host section

The Host section is the last section in 1 sf. cluster. *cluster_name* and is the only required section. It lists all the hosts in the cluster and gives configuration information for each host.

The order in which the hosts are listed in this section is important, because the first host listed becomes the LSF master host. Since the master LIM makes all placement decisions for the cluster, it should be on a fast machine.

The LIM on the first host listed becomes the master LIM if this host is up; otherwise, that on the second becomes the master if its host is up, and so on. Also, to avoid the delays involved in switching masters if the first machine goes down, the master should be on a reliable machine. It is desirable to arrange the list such that the first few hosts in the list are always in the same subnet. This avoids a situation where the second host takes over as master when there are communication problems between subnets.

Configuration information is of two types:

- Some fields in a host entry simply describe the machine and its configuration.
- · Other fields set thresholds for various resources.

Example Host section

This example Host section contains descriptive and threshold information for three hosts:

Begin Host								
HOSTNAME	model	type	server	r1m	pg tn	пр	RESOURCES	RUNWI NDOW
hostA	SparcI PC	Sparc	1	3. 5	15	0	(sunos frame)	()
hostD	Sparc10	Sparc	1	3. 5	15	0	(sunos)	(5: 18: 30- 1: 8: 30)
hostD	!	!	1	2. 0	10	0	()	()
hostE	!	!	1	2. 0	10	0	(linux !bigmem)	()
End Host								

Descriptive fields

The following fields are required in the Host section:

- HOSTNAME
- RESOURCES
- type
- model

The following fields are optional:

- server
- nd
- RUNWINDOW
- REXPRI

HOSTNAME

Description

Official name of the host as returned by host name(1)

The name must be listed in l sf. shared as belonging to this cluster.

model

Description

Host model

The name must be defined in the HostModel section of 1 sf. shared. This determines the CPU speed scaling factor applied in load and placement calculations.

Optionally, the! keyword for the model or type column, indicates that the host model or type is to be automatically detected by the LIM running on the host.

nd

Description

Number of local disks

This corresponds to the ndi sks static resource. On most host types, LSF automatically determines the number of disks, and the nd parameter is ignored.

nd should only count local disks with file systems on them. Do not count either disks used only for swapping or disks mounted with NFS.

Default

The number of disks determined by the LIM, or 1 if the LIM cannot determine this

RESOURCES

Description

The static Boolean resources and static or dynamic numeric and string resources available on this host. The keyword LSF_Make is also allowed, to support partial licensing.

The resource names are strings defined in the Resource section of 1 sf. shared. You may list any number of resources, enclosed in parentheses and separated by blanks or tabs. For example:

```
(fs frame hpux)
```

Optionally, you can specify an exclusive resource by prefixing the resource with an exclamation mark (!). For example, resource bi gmem is defined in 1 sf. shared, and is defined as an exclusive resource for host E:

Begin Host							
HOSTNAME	model	type	server	r1m pg	gtmp	RESOURCES	RUNWI NDOW
hostE	!	!	1	2. 0 10) 0	(linux !bigmen	n) ()
HODEL		•	-	2.01	, 0	(1111dil 1 Di gine	,
End Host							

Square brackets are not valid and the resource name must be alphanumeric.

You must explicitly specify the exclusive resources in the resource requirements for the job to select a host with an exclusive resource for a job. For example:

bsub -R "bigmem" myjob

or

bsub -R "defined(bigmem)" myjob

You can specify static and dynamic numeric and string resources in the resource column of the Host clause. For example:

Begi n	Host						
HOSTNAM	E model	type	server	r1m	mem	swp	RESOURCES #Keywords
hostA	!	!	1	3. 5	()	()	(mg elimres patchrev=3 owner=user1)
hostB	!	!	1	3. 5	()	()	(specman=5 switch=1 owner=test)
hostC	!	!	1	3. 5	()	()	(switch=2 rack=rack2_2_3 owner=test)
hostD	!	!	1	3. 5	()	()	(switch=1 rack=rack2_2_3 owner=test)
End	Host						

Static resource information is displayed by 1 shost s, with exclusive resources prefixed by !!.

REXPRI

Description

UNIX only

Default execution priority for interactive remote jobs run under the RES

The range is from -20 to 20. REXPRI corresponds to the BSD-style nice value used for remote jobs. For hosts with System V-style nice values with the range 0 - 39, a REXPRI of -20 corresponds to a nice value of 0, and +20 corresponds to 39. Higher values of REXPRI correspond to lower execution priority; -20 gives the highest priority, 0 is the default priority for login sessions, and +20 is the lowest priority.

Default

0

RUNWINDOW

Description

Dispatch window for interactive tasks.

When the host is not available for remote execution, the host status is 1 ockW (locked by run window). LIM does not schedule interactive tasks on hosts locked by dispatch windows. Run windows only apply to interactive tasks placed by LIM. The LSF batch system uses its own (optional) host dispatch windows to control batch job processing on batch server hosts.

Format

A dispatch window consists of one or more time windows in the format <code>begin_time-end_time</code>. No blanks can separate <code>begin_time</code> and <code>end_time</code>. Time is specified in the form <code>[day:]hour[:minute]</code>. If only one field is specified, LSF assumes it is an <code>hour</code>. Two fields are assumed to be <code>hour:minute</code>. Use blanks to separate time windows.

Default

Always accept remote jobs

server

Description

Indicates whether the host can receive jobs from other hosts

Specify 1 if the host can receive jobs from other hosts; specify 0 otherwise. Servers that are set to 0 are LSF clients. Client hosts do not run the LSF daemons. Client hosts can submit interactive and batch jobs to the cluster, but they cannot execute jobs sent from other hosts.

Default

1

type

Description

Host type as defined in the HostType section of l sf. shared

The strings used for host types are determined by the system administrator: for example, SUNSOL, DEC, or HPPA. The host type is used to identify binary-compatible hosts.

The host type is used as the default resource requirement. That is, if no resource requirement is specified in a placement request, the task is run on a host of the same type as the sending host.

Often one host type can be used for many machine models. For example, the host type name SUNSOL6 might be used for any computer with a SPARC processor running SunOS 6. This would include many Sun models and quite a few from other vendors as well.

Optionally, the ! keyword for the model or type column, indicates that the host model or type is to be automatically detected by the LIM running on the host.

Threshold fields

The LIM uses these thresholds in determining whether to place remote jobs on a host. If one or more LSF load indices exceeds the corresponding threshold (too many users, not enough swap space, etc.), then the host is regarded as busy, and LIM will not recommend jobs to that host.

The CPU run queue length threshold values (r15s, r1m, and r15m) are taken as effective queue lengths as reported by 1 sl oad -E.

All of these fields are optional; you only need to configure thresholds for load indices that you wish to use for determining whether hosts are busy. Fields that are not configured are not considered when determining host status. The keywords for the threshold fields are not case sensitive.

Thresholds can be set for any of the following:

- The built-in LSF load indexes (r15s, r1m, r15m, ut, pg, it, io, ls, swp, mem, tmp)
- External load indexes defined in the Resource section of 1 sf. shared

ResourceMap section

The ResourceMap section defines shared resources in your cluster. This section specifies the mapping between shared resources and their sharing hosts. When you define resources in the Resources section of 1 sf. shared, there is no distinction between a shared and non-shared resource. By default, all resources are not shared and are local to each host. By defining the ResourceMap section, you can define resources that are shared by all hosts in the cluster or define resources that are shared by only some of the hosts in the cluster.

This section must appear after the Host section of 1 sf. cluster. *cluster_name*, because it has a dependency on host names defined in the Host section.

ResourceMap section structure

The first line consists of the keywords RESOURCENAME and LOCATION. Subsequent lines describe the hosts that are associated with each configured resource.

Example ResourceMap section

Begin Resource	е М ар
RESOURCENAME	LOCATI ON
veri l og	(5@[all])
local	([host1 host2] [others])
End ResourceMa	ap

The resource verilog must already be defined in the RESOURCE section of the lsf. shared file. It is a static numeric resource shared by all hosts. The value for verilog is 5. The resource local is a numeric shared resource that contains two instances in the cluster. The first instance is shared by two machines, host 1 and host 2. The second instance is shared by all other hosts.

Resources defined in the ResourceMap section can be viewed by using the -s option of the l shosts (for static resource) and l sl oad (for dynamic resource) commands.

LOCATION

Description

Defines the hosts that share the resource

For a static resource, you must define an initial value here as well. Do not define a value for a dynamic resource.

instance is a list of host names that share an instance of the resource. The reserved words all, others, and default can be specified for the instance:

al 1 — Indicates that there is only one instance of the resource in the whole cluster and that this resource is shared by all of the hosts

Use the not operator (\sim) to exclude hosts from the all specification. For example:

```
(2@[all ~host3 ~host4])
```

means that 2 units of the resource are shared by all server hosts in the cluster made up of host 1 host 2 . . . host n, except for host 3 and host 4. This is useful if you have a large cluster but only want to exclude a few hosts.

The parentheses are required in the specification. The not operator can only be used with the all keyword. It is not valid with the keywords others and default.

others — Indicates that the rest of the server hosts not explicitly listed in the LOCATION field comprise one instance of the resource

For example:

```
2@[host1] 4@[others]
```

indicates that there are 2 units of the resource on host 1 and 4 units of the resource shared by all other hosts.

default — Indicates an instance of a resource on each host in the cluster

This specifies a special case where the resource is in effect not shared and is local to every host. default means at each host. Normally, you should not need to use default, because by default all resources are local to each host. You might want to use ResourceMap for a non-shared static resource if you need to specify different values for the resource on different hosts.

RESOURCENAME

Description

Name of the resource

This resource name must be defined in the Resource section of 1 sf. shared. You must specify at least a name and description for the resource, using the keywords RESOURCENAME and DESCRIPTION.

- A resource name cannot begin with a number.
- A resource name cannot contain any of the following characters:

```
: . ( ) [ + - * / ! & | < > @ =
```

• A resource name cannot be any of the following reserved names:

```
cpu cpuf io logins ls idle maxmem maxswp maxtmp type model status it
mem ncpus define_ncpus_cores define_ncpus_procs
```

```
define_ncpus_threads ndisks pg r15m r15s r1m swap swp tmp ut
```

- To avoid conflict with i nf and nan keywords in 3rd-party libraries, resource names should not begin with i nf or nan (upper case or lower case). Resource requirment strings, such as -R "i nfra" or -R "nano" will cause an error. Use -R "defi ned(i nfxx)" or -R "defi ned(nanxx)", to specify these resource names.
- Resource names are case sensitive

Resource names can be up to 39 characters in length

RemoteClusters section

Optional. This section is used only in a MultiCluster environment. By default, the local cluster can obtain information about all other clusters specified in 1 sf. shared. The RemoteClusters section limits the clusters that the local cluster can obtain information about.

The RemoteClusters section is required if you want to configure cluster equivalency, cache interval, daemon authentication across clusters, or if you want to run parallel jobs across clusters. To maintain compatibility in this case, make sure the list includes all clusters specified in 1 sf. shared, even if you only configure the default behavior for some of the clusters.

The first line consists of keywords. CLUSTERNAME is mandatory and the other parameters are optional.

Subsequent lines configure the remote cluster.

Example RemoteClusters section

Begin Remote	Clusters	3		
CLUSTERNAME	EQUI V	CACHE_I NTERVAL	RECV_FROM	AUTH
cluster1	Y	60	Y	KRB
cluster2	N	60	Y	-
cluster4	N	60	N	PKI
End RemoteCl	usters			

CLUSTERNAME

Description

Remote cluster name

Defines the Remote Cluster list. Specify the clusters you want the local cluster to recognize. Recognized clusters must also be defined in 1 sf. shared. Additional clusters listed in 1 sf. shared but not listed here will be ignored by this cluster.

EQUIV

Description

Specify 'Y' to make the remote cluster equivalent to the local cluster. Otherwise, specify 'N'. The master LIM considers all equivalent clusters when servicing requests from clients for load, host, or placement information.

EQUIV changes the default behavior of LSF commands and utilities and causes them to automatically return load ($l \le l$ oad(l)), host (l shosts(l)), or placement (l spl ace(l)) information about the remote cluster as well as the local cluster, even when you don't specify a cluster name.

CACHE INTERVAL

Description

Specify the load information cache threshold, in seconds. The host information threshold is twice the value of the load information threshold.

To reduce overhead and avoid updating information from remote clusters unnecessarily, LSF displays information in the cache, unless the information in the cache is older than the threshold value.

Default

60 (seconds)

RECV_FROM

Description

Specifies whether the local cluster accepts parallel jobs that originate in a remote cluster

RECV_FROM does not affect regular or interactive batch jobs.

Specify 'Y' if you want to run parallel jobs across clusters. Otherwise, specify 'N'.

Default

Y

AUTH

Description

Defines the preferred authentication method for LSF daemons communicating across clusters. Specify the same method name that is used to identify the corresponding eauth program (eauth. *method_name*). If the remote cluster does not prefer the same method, LSF uses default security between the two clusters.

Default

- (only privileged port (setuid) authentication is used between clusters)

Isf.conf

The 1 sf. conf file controls the operation of LSF.

About Isf.conf

l sf. conf is created during installation and records all the settings chosen when LSF was installed. The l sf. conf file dictates the location of the specific configuration files and operation of individual servers and applications.

The 1 sf. conf file is used by LSF and applications built on top of it. For example, information in 1 sf. conf is used by LSF daemons and commands to locate other configuration files, executables, and network services. 1 sf. conf is updated, if necessary, when you upgrade to a new version.

This file can also be expanded to include application-specific parameters.

Parameters in this file can also be set as environment variables, except for the parameters related to job packs.

Corresponding parameters in ego.conf

When EGO is enabled in LSF, you can configure some LSF parameters in l sf. conf that have corresponding EGO parameter names in EGO_CONFDI R/ego. conf (LSF_CONFDI R/l sf. conf is a separate file from EGO_CONFDI R/ego. conf). If both the LSF and the EGO parameters are set in their respective files, the definition in ego. conf is used. You must continue to set LSF parameters only in l sf. conf.

When EGO is enabled in the LSF cluster (LSF_ENABLE_EGO=Y), you also can set the following EGO parameters related to LIM, PIM, and ELIM in either l sf. conf or ego. conf:

- EGO_DISABLE_UNRESOLVABLE_HOST (dynamically added hosts only)
- EGO ENABLE AUTO DAEMON SHUTDOWN
- EGO DAEMONS CPUS
- EGO_DEFINE_NCPUS
- EGO_SLAVE_CTRL_REMOTE_HOST
- EGO_WORKDIR
- EGO_PIM_SWAP_REPORT
- EGO_ESLIM_TIMEOUT

If EGO is not enabled, you do not need to set these parameters.

See Administering IBM Platform LSF for more information about configuring LSF for EGO.

Change Isf.conf configuration

Depending on the parameters you change in 1 sf. conf, you may need to run the following commands:

- l sadmi n reconfi g to reconfigure LIM
- badmin mbdrestart to restart mbatchd
- badmin hrestart to restart sbatchd

If you have installed LSF in a mixed cluster, you must make sure that 1 sf. conf parameters set on UNIX and Linux match any corresponding parameters in the local 1 sf. conf files on your Windows hosts.

Location

The default location of 1 sf. conf is in *\$LSF_TOP*/conf. This default location can be overridden when necessary by either the environment variable LSF_ENVDIR or the command line option -d available to some of the applications.

Format

Each entry in 1 sf. conf has one of the following forms:

NAME=VALUE

NAME=

NAME="STRI NG1 STRI NG2 . . . "

The equal sign = must follow each NAME even if no value follows and there should be no space beside the equal sign.

A value that contains multiple strings separated by spaces must be enclosed in quotation marks.

Lines starting with a pound sign (#) are comments and are ignored. Do not use #i f as this is reserved syntax for time-based configuration.

DAEMON_SHUTDOWN_DELAY

Syntax

DAEMON SHUTDOWN DELAY=time in seconds

Description

Applies when EGO_ENABLE_AUTO_DAEMON_SHUTDOWN=Y. Controls amount of time the slave LIM waits to communicate with other (RES and SBD) local daemons before exiting. Used to shorten or lengthen the time interval between a host attempting to join the cluster and, if it was unsuccessful, all of the local daemons shutting down.

The value should not be less than the minimum interval of RES and SBD housekeeping. Most administrators should set this value to somewhere between 3 minutes and 60 minutes.

Default

1800 seconds (30 minutes)

EGO DEFINE NCPUS

Syntax

EGO_DEFINE_NCPUS=procs | cores | threads

Description

If defined, enables an administrator to define a value other than the number of cores available. Follow one of the three equations below for an accurate value.

- EGO_DEFINE_NCPUS=procs-ncpus=number of processors
- EGO_DEFINE_NCPUS=cores-ncpus=number of processors x number of cores
- EGO_DEFINE_NCPUS=threads-ncpus=number of processors x number of cores x number of threads.

Note:

When PARALLEL_SCHED_BY_SLOT=Y in $l\,sb.$ params, the resource requirement string keyword ncpus refers to the number of slots instead of the number of CPUs, however $l\,shosts$ output will continue to show ncpus as defined by EGO_DEFINE_NCPUS in $l\,sf.$ conf.

Default

EGO_DEFINE_NCPUS=cores

EGO_ENABLE_AUTO_DAEMON_SHUTDOWN

Syntax

EGO_ENABLE_AUTO_DAEMON_SHUTDOWN="Y" | "N"

Description

For hosts that attempted to join the cluster but failed to communicate within the LSF_DYNAMIC_HOST_WAIT_TIME period, automatically shuts down any running daemons.

This parameter can be useful if an administrator remove machines from the cluster regularly (by editing lsf. cluster file) or when a host belonging to the cluster is imaged, but the new host should not be part of the cluster. An administrator no longer has to go to each host that is not a part of the cluster to shut down any running daemons.

Default

Y (daemons continue to run on hosts that were not successfully added to the cluster)

EGO_PARAMETER

EGO_ENABLE_AUTO_DAEMON_SHUTDOWN

EGO_ESLIM_TIMEOUT

Syntax

EGO_ESLIM_TIMEOUT=time seconds

Description

Controls how long the LIM waits for any external static LIM scripts to run. After the timeout period expires, the LIM stops the scripts.

Use the external static LIM to automatically detect the operating system type and version of hosts.

LSF automatically detects the operating systems types and versions and displays them when running l shosts -l or l shosts -s. You can then specify those types in any -R resource requriement string. For example, bsub -R "select[ostype=RHEL5.2]".

Default

10 seconds

EGO PARAMETER

EGO_ESLIM_TIMEOUT

JOB_STARTER_EXTEND

Syntax

JOB_STARTER_EXTEND="preservestarter" | "preservestarter userstarter"

Description

Applies to Windows execution hosts only.

Allows you to use a job starter that includes symbols (for example: &&, |, ||). The job starter configured in JOB_STARTER_EXTEND can handle these special characters. The file $LSF_TOP/8$. 0/mi sc/exampl es/preservestarter. c is the only extended job starter created by default. Users can also develop their own extended job starters based on preservestarter. c.

You must also set JOB_STARTER=preservestarter in l sb. queues.

Default

Not defined.

LSB_API_CONNTIMEOUT

Syntax

LSB_API_CONNTIMEOUT=time_seconds

Description

The timeout in seconds when connecting to LSF.

Valid values

Any positive integer or zero

Default

10

See also

LSB API RECVTIMEOUT

LSB_API_RECVTIMEOUT

Syntax

LSB_API_RECVTIMEOUT=time seconds

Description

Timeout in seconds when waiting for a reply from LSF.

Valid values

Any positive integer or zero

Default

10

See also

LSB_API_CONNTIMEOUT

LSB_API_VERBOSE

Syntax

LSB_API_VERBOSE=Y | N

Description

When LSB_API_VERBOSE=Y, LSF batch commands will display a retry error meesage to stderr when LIM is not available:

LSF daemon (LIM) not responding ... still trying

When LSB_API_VERBOSE=N, LSF batch commands will not display a retry error message when LIM is not available.

Default

Y. Retry message is displayed to stderr.

LSB_BJOBS_CONSISTENT_EXIT_CODE

Syntax

LSB_BJOBS_CONSISTENT_EXIT_CODE=Y | N

Description

When LSB_BJOBS_CONSISTENT_EXIT_CODE=Y, the bj obs command exits with 0 only when unfinished jobs are found, and 255 when no jobs are found, or a non-existent job ID is entered.

No jobs are running:

bjobs

No unfinished job found

echo \$?

255

Job 123 does not exist:

bjobs 123

Job <123> is not found

echo \$?

255

Job 111 is running:

bjobs 1	11						
JOBI D	USER	STAT	QUEUE	FROM_HOST	EXEC_HOST	JOB_NAME	SUBMI T_TI ME
111	user1	RUN	normal	hostA	hostB	myj ob	0ct 22 09: 22
	ech	o \$?					
	0						

Job 111 is running, and job 123 does not exist:

bjobs 111 123

JOBI D USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMI T_TI ME

111 user1 RUN normal hostA hostB myj ob Oct 22 09:22

Job <123> is not found

echo \$?

255

Job 111 is finished:

bjobs 111

No unfinished job found

echo \$?

255

When LSB_BJOBS_CONSISTENT_EXIT_CODE=N, the bj obs command exits with 255 only when a non-existent job ID is entered. bj obs returns 0 when no jobs are found, all jobs are finished, or if at least one job ID is valid.

No jobs are running:

bjobs

No unfinished job found

echo \$?

0

Job 123 does not exist:

bjobs 123

Job <123> is not found

echo \$?

0

Job 111 is running:

bjobs 111

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

111 user1 RUN normal hostA hostB myj ob Oct 22 09:22

echo \$?

Job 111 is running, and job 123 does not exist:

bjobs 1	11 123
JOBI D	USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
111	user1 RUN normal hostA hostB myj ob Oct 22 09:22
	Job <123> is not found
	echo \$?
	255
	Job 111 is finished:
	bjobs 111
	No unfinished job found
	echo \$?
	0

Default

N.

LSB_BLOCK_JOBINFO_TIMEOUT

Syntax

LSB_BLOCK_JOBINFO_TIMEOUT=time_minutes

Description

Timeout in minutes for job information query commands (e.g., bj obs).

Valid values

Any positive integer

Default

Not defined (no timeout)

See also

MAX_JOBINFO_QUERY_PERIOD in lsb.params

LSB_BPEEK_REMOTE_OUTPUT

Syntax

 $\textbf{LSB_BPEEK_REMOTE_OUTPUT} = y \mid Y \mid n \mid \mathbb{N}$

Description

If disabled (set to N), the bpeek command attempts to retrieve the job output from the local host first. If that fails, bpeek attempts to retrieve the job output from the remote host instead.

If enabled (set to Y), it is the opposite. The bpeek command attempts to retrieve the job output from the remote host first, then the local host.

When attempting to retrieve the job output from the remote host, bpeek attempts to use RES first, then rsh. If neither is running on the remote host, the bpeek command cannot retrieve job output.

Best Practices

Three directories are related to the bpeek command:

- the user's home directory
- JOB_SPOOL_DIR
- the checkpoint directory

If these directories are on a shared file system, this parameter can be disabled.

If any of these directories are not on a shared file system, this parameter should be enabled, and either RES or rsh should be started on the remote job execution host.

Default

N

LSB_CHUNK_RUSAGE

Syntax

LSB_CHUNK_RUSAGE=y

Description

Applies only to chunk jobs. When set, sbatchd contacts PIM to retrieve resource usage information to enforce resource usage limits on chunk jobs.

By default, resource usage limits are not enforced for chunk jobs because chunk jobs are typically too short to allow LSF to collect resource usage.

If LSB_CHUNK_RUSAGE=Y is defined, limits may not be enforced for chunk jobs that take less than a minute to run.

Default

Not defined. No resource usage is collected for chunk jobs.

LSB_CMD_LOG_MASK

Syntax

LSB_CMD_LOG_MASK=log_level

Description

Specifies the logging level of error messages from LSF batch commands.

To specify the logging level of error messages for LSF commands, use LSF_CMD_LOG_MASK. To specify the logging level of error messages for LSF daemons, use LSF_LOG_MASK.

LSB_CMD_LOG_MASK sets the log level and is used in combination with LSB_DEBUG_CMD, which sets the log class for LSF batch commands. For example:

LSB_CMD_LOG_MASK=LOG_DEBUG_LSB_DEBUG_CMD="LC_TRACE_LC_EXEC"

LSF commands log error messages in different levels so that you can choose to log all messages, or only log messages that are deemed critical. The level specified by LSB_CMD_LOG_MASK determines which messages are recorded and which are discarded. All messages logged at the specified level or higher are recorded, while lower level messages are discarded.

For debugging purposes, the level LOG_DEBUG contains the fewest number of debugging messages and is used for basic debugging. The level LOG_DEBUG3 records all debugging messages, and can cause log files to grow very large; it is not often used. Most debugging is done at the level LOG_DEBUG2.

The commands log to the sysl og facility unless LSB_CMD_LOGDIR is set.

Valid values

The log levels from highest to lowest are:

- LOG_EMERG
- LOG_ALERT
- LOG_CRIT
- LOG_ERR
- LOG_WARNING
- LOG_NOTICE
- LOG_INFO
- LOG_DEBUG
- LOG_DEBUG1
- LOG_DEBUG2
- LOG_DEBUG3

Default

LOG_WARNING

See also

LSB_CMD_LOGDIR, LSB_DEBUG, LSB_DEBUG_CMD, LSB_TIME_CMD, LSF_CMD_LOGDIR, LSF_CMD_LOG_MASK, LSF_LOG_MASK, LSF_LOGDIR, LSF_TIME_CMD

LSB_CMD_LOGDIR

Syntax

LSB_CMD_LOGDIR=path

Description

Specifies the path to the LSF command log files.

Default

/tmp

See also

LSB_CMD_LOGDIR, LSB_DEBUG, LSB_DEBUG_CMD, LSB_TIME_CMD, LSF_CMD_LOGDIR, LSF_CMD_LOG_MASK, LSF_LOG_MASK, LSF_LOGDIR, LSF_TIME_CMD

LSB_CONFDIR

Syntax

LSB_CONFDIR=path

Description

Specifies the path to the directory containing the LSF configuration files.

The configuration directories are installed under LSB_CONFDIR.

Configuration files for each cluster are stored in a subdirectory of LSB_CONFDIR. This subdirectory contains several files that define user and host lists, operation parameters, and queues.

All files and directories under LSB_CONFDIR must be readable from all hosts in the cluster. LSB_CONFDIR/cluster_name/configdir must be owned by the LSF administrator.

If live reconfiguration through the bconf command is enabled by the parameter LSF_LIVE_CONFDIR, configuration files are written to and read from the directory set by LSF_LIVE_CONFDIR.

Do not change this parameter after LSF has been installed.

Default

LSF_CONFDIR/lsbatch

See also

LSF_CONFDIR, LSF_LIVE_CONFDIR

LSB_CPUSET_BESTCPUS

Syntax

LSB_CPUSET_BESTCPUS=y | Y

Description

If set, enables the best-fit algorithm for SGI cpusets

Default

Y (best-fit)

LSB_CRDIR

Syntax

LSB_CRDIR=path

Description

Specifies the path and directory to the checkpointing executables on systems that support kernel-level checkpointing. LSB_CRDIR specifies the directory containing the chkpnt and restart utility programs that sbatchd uses to checkpoint or restart a job.

For example:

LSB CRDI R=/usr/bin

If your platform supports kernel-level checkpointing, and if you want to use the utility programs provided for kernel-level checkpointing, set LSB_CRDIR to the location of the utility programs.

Default

Not defined. The system uses /bi n.

LSB DEBUG

Syntax

LSB_DEBUG=1 | 2

Description

Sets the LSF batch system to debug.

If defined, LSF runs in single user mode:

- No security checking is performed
- Daemons do not run as root

When LSB_DEBUG is defined, LSF does not look in the system services database for port numbers. Instead, it uses the port numbers defined by the parameters LSB_MBD_PORT/LSB_SBD_PORT in 1 sf. conf. If these parameters are not defined, it uses port number 40000 for mbat chd and port number 40001 for sbat chd.

You should always specify 1 for this parameter unless you are testing LSF.

Can also be defined from the command line.

Valid values

LSB_DEBUG=1

The LSF system runs in the background with no associated control terminal.

LSB_DEBUG=2

The LSF system runs in the foreground and prints error messages to tty.

Default

Not defined

See also

LSB_DEBUG, LSB_DEBUG_CMD, LSB_DEBUG_MBD, LSB_DEBUG_NQS, LSB_DEBUG_SBD, LSB_DEBUG_SCH, LSF_DEBUG_LIM, LSF_DEBUG_RES, LSF_LIM_PORT, LSF_RES_PORT, LSB_MBD_PORT, LSB_SBD_PORT, LSF_LOGDIR, LSF_LIM_DEBUG, LSF_RES_DEBUG

LSB_DEBUG_CMD

Syntax

LSB_DEBUG_CMD=log_class

Description

Sets the debugging log class for commands and APIs.

Specifies the log class filtering to be applied to LSF batch commands or the API. Only messages belonging to the specified log class are recorded.

LSB_DEBUG_CMD sets the log class and is used in combination with LSB_CMD_LOG_MASK, which sets the log level. For example:

```
LSB_CMD_LOG_MASK=LOG_DEBUG_LSB_DEBUG_CMD="LC_TRACE_LC_EXEC"
```

Debugging is turned on when you define both parameters. In addition, LSF_SERVERDIR (l sf. conf) must be defined.

The daemons log to the sysl og facility unless LSB_CMD_LOGDIR is defined.

To specify multiple log classes, use a space-separated list enclosed by quotation marks. For example: LSB_DEBUG_CMD="LC_TRACE_LC_EXEC"

Can also be defined from the command line.

Valid values

Valid log classes are:

- LC_ADVRSV and LC2_ADVRSV: Log advance reservation modifications
- LC_AFS and LC2_AFS: Log AFS messages
- LC_AUTH and LC2_AUTH: Log authentication messages
- LC_CHKPNT and LC2_CHKPNT: Log checkpointing messages
- LC_COMM and LC2_COMM: Log communication messages
- LC_DCE and LC2_DCE: Log messages pertaining to DCE support
- LC_EEVENTD and LC2_EEVENTD: Log eeventd messages
- LC ELIM and LC2 ELIM: Log ELIM messages
- LC2_ENTITLEMENT: Log entitlement management messages
- LC_EXEC and LC2_EXEC: Log significant steps for job execution
- LC_FAIR and LC2_FAIR: Log fairshare policy messages
- LC_FILE and LC2_FILE: Log file transfer messages
- LC_FLEX and LC2_FLEX: Log messages related to FlexNet
- LC2_GUARANTEE: Log messages related to guarantee SLAs
- LC_HANG and LC2_HANG: Mark where a program might hang
- LC_JARRAY and LC2_JARRAY: Log job array messages
- LC_JLIMIT and LC2_JLIMIT: Log job slot limit messages
- LC2_LIVECONF: Log live reconfiguration messages
- LC_LOADINDX and LC2_LOADINDX: Log load index messages
- LC_M_LOG and LC2_M_LOG: Log multievent logging messages
- LC_MEMORY and LC2_MEMORY: Log messages related to MEMORY allocation
- LC_MPI and LC2_MPI: Log MPI messages
- LC_MULTI and LC2_MULTI: Log messages pertaining to MultiCluster
- LC_PEND and LC2_PEND: Log messages related to job pending reasons
- LC_PERFM and LC2_PERFM: Log performance messages
- LC_PIM and LC2_PIM: Log PIM messages
- LC_PREEMPT and LC2_PREEMPT: Log preemption policy messages

- LC_RESOURCE and LC2_RESOURCE: Log messages related to resource broker
- LC RESREQ and LC2 RESREQ: Log resource requirement messages
- LC_SCHED and LC2_SCHED: Log messages pertaining to the mbatchd scheduler.
- LC_SIGNAL and LC2_SIGNAL: Log messages pertaining to signals
- LC_SYS and LC2_SYS: Log system call messages
- LC_TRACE and LC2_TRACE: Log significant program walk steps
- LC_XDR and LC2_XDR: Log everything transferred by XDR
- LC XDRVERSION and LC2 XDRVERSION: Log messages for XDR version
- LC 2ENTITLEMENT: Log entitlement management messages

Default

Not defined

See also

LSB_CMD_LOG_MASK, LSB_CMD_LOGDIR, LSB_DEBUG, LSB_DEBUG_MBD, LSB_DEBUG_NQS, LSB_DEBUG_SBD, LSB_DEBUG_SCH, LSF_DEBUG_LIM, LSF_DEBUG_RES, LSF_LIM_PORT, LSF_RES_PORT, LSB_MBD_PORT, LSB_SBD_PORT, LSF_LOGDIR, LSF_LIM_DEBUG, LSF_RES_DEBUG

LSB_DEBUG_MBD

Syntax

LSB_DEBUG_MBD=log_class

Description

Sets the debugging log class for mbat chd.

Specifies the log class filtering to be applied to mbat chd. Only messages belonging to the specified log class are recorded.

LSB_DEBUG_MBD sets the log class and is used in combination with LSF_LOG_MASK, which sets the log level. For example:

LSF_LOG_MASK=LOG_DEBUG LSB_DEBUG_MBD="LC_TRACE LC_EXEC"

To specify multiple log classes, use a space-separated list enclosed in quotation marks. For example: LSB_DEBUG_MBD="LC_TRACE_LC_EXEC"

You need to restart the daemons after setting LSB_DEBUG_MBD for your changes to take effect.

If you use the command badmin $\,$ mbddebug to temporarily change this parameter without changing $1\,$ sf. $\,$ conf, you do not need to restart the daemons.

Valid values

Valid log classes are the same as for LSB_DEBUG_CMD except for the log class LC_ELIM, which cannot be used with LSB_DEBUG_MBD. See LSB_DEBUG_CMD.

Default

Not defined

See also

LSB_CMD_LOG_MASK, LSB_CMD_LOGDIR, LSB_DEBUG, LSB_DEBUG_MBD, LSB_DEBUG_NQS, LSB_DEBUG_SBD, LSB_DEBUG_SCH, LSF_DEBUG_LIM, LSF_DEBUG_RES, LSF_LIM_PORT, LSF_RES_PORT, LSB_MBD_PORT, LSB_SBD_PORT, LSF_LOGDIR, LSF_LIM_DEBUG, LSF_RES_DEBUG

LSB_DEBUG_NQS

Syntax

LSB_DEBUG_NQS=log_class

Description

Sets the log class for debugging the NQS interface.

Specifies the log class filtering to be applied to NQS. Only messages belonging to the specified log class are recorded.

LSB_DEBUG_NQS sets the log class and is used in combination with LSF_LOG_MASK, which sets the log level. For example:

LSF_LOG_MASK=LOG_DEBUG_LSB_DEBUG_NQS="LC_TRACE_LC_EXEC"

Debugging is turned on when you define both parameters.

To specify multiple log classes, use a space-separated list enclosed in quotation marks. For example: LSB_DEBUG_NQS="LC_TRACE_LC_EXEC"

This parameter can also be defined from the command line.

Valid values

For a list of valid log classes, see LSB_DEBUG_CMD.

Default

Not defined

See also

LSB DEBUG CMD, LSF CMD LOGDIR, LSF CMD LOG MASK, LSF LOG MASK, LSF LOGDIR

LSB_DEBUG_SBD

Syntax

LSB_DEBUG_SBD=log_class

Description

Sets the debugging log class for sbat chd.

Specifies the log class filtering to be applied to sbatchd. Only messages belonging to the specified log class are recorded.

LSB_DEBUG_SBD sets the log class and is used in combination with LSF_LOG_MASK, which sets the log level. For example:

LSF_LOG_MASK=LOG_DEBUG_LSB_DEBUG_SBD="LC_TRACE_LC_EXEC"

To specify multiple log classes, use a space-separated list enclosed in quotation marks. For example: LSB_DEBUG_SBD="LC_TRACE_LC_EXEC"

You need to restart the daemons after setting LSB_DEBUG_SBD for your changes to take effect.

If you use the command badmin sbddebug to temporarily change this parameter without changing lsf. conf, you do not need to restart the daemons.

Valid values

Valid log classes are the same as for LSB_DEBUG_CMD except for the log class LC_ELIM, which cannot be used with LSB_DEBUG_SBD. See LSB_DEBUG_CMD.

Default

Not defined

See also

LSB_DEBUG_MBD, LSF_CMD_LOGDIR, LSF_CMD_LOG_MASK, LSF_LOG_MASK, LSF_LOGDIR, badmi n

LSB DEBUG SCH

Syntax

LSB_DEBUG_SCH=log_class

Description

Sets the debugging log class for mbschd.

Specifies the log class filtering to be applied to mbschd. Only messages belonging to the specified log class are recorded.

LSB_DEBUG_SCH sets the log class and is used in combination with LSF_LOG_MASK, which sets the log level. For example:

LSF_LOG_MASK=LOG_DEBUG LSB_DEBUG_SCH="LC_SCHED"

To specify multiple log classes, use a space-separated list enclosed in quotation marks. For example: LSB DEBUG SCH="LC SCHED LC TRACE LC EXEC"

You need to restart the daemons after setting LSB_DEBUG_SCH for your changes to take effect.

Valid values

Valid log classes are the same as for LSB_DEBUG_CMD except for the log class LC_ELIM, which cannot be used with LSB_DEBUG_SCH, and LC_HPC and LC_SCHED, which are only valid for LSB_DEBUG_SCH. See LSB_DEBUG_CMD.

Default

Not defined

See also

LSB_DEBUG_MBD, LSB_DEBUG_SBD, LSF_CMD_LOGDIR, LSF_CMD_LOG_MASK, LSF_LOG_MASK, LSF_LOGDIR, badmi n

LSB_DISABLE_LIMLOCK_EXCL

Syntax

LSB_DISABLE_LIMLOCK_EXCL=y | n

Description

If preemptive scheduling is enabled, this parameter enables preemption of and preemption by exclusive jobs when PREEMPT_JOBTYPE=EXCLUSIVE in 1 sb. params. Changing this parameter requires a restart of all sbatchds in the cluster (badmin hrestart). Do not change this parameter while exclusive jobs are running.

When LSB_DISABLE_LIMLOCK_EXCL=y, for a host running an exclusive job:

- LIM is not locked on a host running an exclusive job
- 1 sl oad displays the host status ok.
- bhosts displays the host status closed.
- Users can run tasks on the host using 1 srun or 1 sgrun. To prevent users from running tasks during
 execution of an exclusive job, the parameter LSF_DISABLE_LSRUN=y must be defined in
 1 sf. conf.

Default

n. LSF locks the LIM on a host running an exclusive job and unlocks the LIM when the exclusive job finishes.

LSB_DISABLE_RERUN_POST_EXEC

Syntax

LSB_DISABLE_RERUN_POST_EXEC=y | Y

Description

If set, and the job is rerunnable, the POST_EXEC configured at the job level or the queue level is not executed if the job is rerun.

Running of post-execution commands upon restart of a rerunnable job may not always be desirable. For example, if the post-exec removes certain files, or does other cleanup that should only happen if the job finishes successfully, use LSB_DISABLE_RERUN_POST_EXEC to prevent the post-exec from running and allow the successful continuation of the job when it reruns.

The POST_EXEC may still run for a job rerun when the execution host loses contact with the master host due to network problems. In this case mbat chd assumes the job has failed and restarts the job on another host. The original execution host, out of contact with the master host, completes the job and runs the POST_EXEC.

Default

Not defined

LSB_DISPLAY_YEAR

Syntax

LSB_DISPLAY_YEAR=y|Y|n|N

Description

Toggles on and off inclusion of the year in the time string displayed by the commands bj obs -1, bacct -1, and bhi st -1 | -b | -t.

Default

N

LSB_ECHKPNT_KEEP_OUTPUT

Syntax

LSB_ECHKPNT_KEEP_OUTPUT=y | Y

Description

Saves the standard output and standard error of custom echkpnt and erestart methods to:

- checkpoi nt_di r/\$LSB_J0BI D/echkpnt. out
- checkpoi nt_di r/\$LSB_JOBI D/echkpnt. err
- checkpoi nt_di r/\$LSB_JOBI D/erestart. out
- checkpoint_dir/\$LSB_JOBI D/erestart.err

Can also be defined as an environment variable.

Default

Not defined. Standard error and standard output messages from custom echkpnt and erestart programs is directed to /dev/null and discarded by LSF.

See also

LSB_ECHKPNT_METHOD, LSB_ECHKPNT_METHOD_DIR

LSB_ECHKPNT_METHOD

Syntax

LSB_ECHKPNT_METHOD="method_name [method_name] ..."

Description

Name of custom echkpnt and erestart methods.

Can also be defined as an environment variable, or specified through the bsub -k option.

The name you specify here is used for both your custom echkpnt and erestart programs. You must assign your custom echkpnt and erestart programs the name echkpnt. $method_name$ and erestart. $method_name$. The programs echkpnt. $method_name$ and erestart. $method_name$. must be in LSF_SERVERDIR or in the directory specified by LSB_ECHKPNT_METHOD_DIR.

Do not define LSB_ECHKPNT_METHOD=default as default is a reserved keyword to indicate to use the default echkpnt and erestart methods of LSF. You can however, specify bsub -k "my_dir method=default" my_j ob to indicate that you want to use the default checkpoint and restart methods.

When this parameter is not defined in 1 sf. conf or as an environment variable and no custom method is specified at job submission through bsub -k, LSF uses echkpnt. default and erestart. default to checkpoint and restart jobs.

When this parameter is defined, LSF uses the custom checkpoint and restart methods specified.

Limitations

The method name and directory (LSB_ECHKPNT_METHOD_DIR) combination must be unique in the cluster.

For example, you may have two echkpnt applications with the same name such as echkpnt. mymethod but what differentiates them is the different directories defined with LSB_ECHKPNT_METHOD_DIR. It is the cluster administrator's responsibility to ensure that method name and method directory combinations are unique in the cluster.

Default

Not defined. LSF uses echkpnt. default and erestart. default to checkpoint and restart jobs

See also

LSB_ECHKPNT_METHOD_DIR, LSB_ECHKPNT_KEEP_OUTPUT

LSB_ECHKPNT_METHOD_DIR

Syntax

LSB_ECHKPNT_METHOD_DIR=path

Description

Absolute path name of the directory in which custom echkpnt and erestart programs are located.

The checkpoint method directory should be accessible by all users who need to run the custom echkpnt and erestart programs.

Can also be defined as an environment variable.

Default

Not defined. LSF searches in LSF_SERVERDIR for custom echkpnt and erestart programs.

See also

LSB_ESUB_METHOD, LSB_ECHKPNT_KEEP_OUTPUT

LSB_ESUB_METHOD

Syntax

LSB_ESUB_METHOD="esub_application [esub_application] ..."

Description

Specifies a mandatory esub that applies to all job submissions. LSB_ESUB_METHOD lists the names of the application-specific esub executables used in addition to any executables specified by the bsub - a option.

For example, LSB_ESUB_METHOD="dce fluent" runs LSF_SERVERDI R/esub. dce and LSF_SERVERDI R/esub. fl uent for all jobs submitted to the cluster. These esubs define, respectively, DCE as the mandatory security system and FLUENT as the mandatory application for all jobs.

LSB_ESUB_METHOD can also be defined as an environment variable.

The value of LSB_ESUB_METHOD must correspond to an actual esub file. For example, to use LSB_ESUB_METHOD=fluent, the file esub. fl uent must exist in LSF_SERVERDIR.

The name of the esub program must be a valid file name. Valid file names contain only alphanumeric characters, underscore (_) and hyphen (-).

Restriction:

The name $esub.\ user$ is reserved. Do not use the name $esub.\ user$ for an application-specific esub.

The master esub (mesub) uses the name you specify to invoke the appropriate esub program. The esub and esub. *esub_application* programs must be located in LSF_SERVERDIR.

LSF does not detect conflicts based on esub names. For example, if LSB_ESUB_METHOD="openmpi" and **bsub -a pvm** is specified at job submission, the job could fail because these esubs define two different types of parallel job handling.

Default

Not defined. LSF does not apply a mandatory esub to jobs submitted to the cluster.

LSB_EVENTS_FILE_KEEP_OPEN

Syntax

 $LSB_EVENTS_FILE_KEEP_OPEN=Y|N$

Description

Windows only.

Specify Y to open the events file once, and keep it open always.

Specify N to open and close the events file each time a record is written.

Default

Y

LSB_HJOB_PER_SESSION

Syntax

LSB_HJOB_PER_SESSION=max_num

Description

Specifies the maximum number of jobs that can be dispatched in each scheduling cycle to each host

Valid values

Any positive integer

Default

Not defined

Notes

LSB_HJOB_PER_SESSION is activated only if the JOB_ACCEPT_INTERVAL parameter is set to 0.

See also

JOB_ACCEPT_INTERVAL parameter in 1 sb. params

LSB_INDEX_BY_JOB

Syntax

LSB_INDEX_BY_JOB="JOBNAME"

Description

When set to JOBNAME, creates a job index of job names. Define when using job dependency conditions (bsub -w) with job names to optimize job name searches.

Valid values

JOBNAME

Default

Not defined. Job index is not created.

LSB_INTERACT_MSG_ENH

Syntax

LSB_INTERACT_MSG_ENH=y | Y

Description

If set, enables enhanced messaging for interactive batch jobs. To disable interactive batch job messages, set LSB_INTERACT_MSG_ENH to any value other than y or Y; for example, LSB_INTERACT_MSG_ENH=N.

Default

Not defined

See also

LSB_INTERACT_MSG_INTVAL

LSB_INTERACT_MSG_INTVAL

Syntax

LSB_INTERACT_MSG_INTVAL=time_seconds

Description

Specifies the update interval in seconds for interactive batch job messages. LSB_INTERACT_MSG_INTVAL is ignored if LSB_INTERACT_MSG_ENH is not set.

Job information that LSF uses to get the pending or suspension reason is updated according to the value of PEND_REASON_UPDATE_INTERVAL in 1 sb. params.

Default

Not defined. If LSB_INTERACT_MSG_INTVAL is set to an incorrect value, the default update interval is 60 seconds.

See also

LSB_INTERACT_MSG_ENH

LSB_JOB_CPULIMIT

Syntax

LSB_JOB_CPULIMIT=y | n

Description

Determines whether the CPU limit is a per-process limit enforced by the OS or whether it is a per-job limit enforced by LSF:

- The per-process limit is enforced by the OS when the CPU time of one process of the job exceeds the CPU limit.
- The per-job limit is enforced by LSF when the total CPU time of all processes of the job exceed the CPU limit.

This parameter applies to CPU limits set when a job is submitted with bsub-c, and to CPU limits set for queues by CPULIMIT in $l \, sb$. queues.

LSF-enforced per-job limit: When the sum of the CPU time of all processes of a job exceed the CPU limit, LSF sends a SIGXCPU signal (where supported by the operating system) from the operating system to all processes belonging to the job, then SIGINT, SIGTERM and SIGKILL. The interval between signals is 10 seconds by default. The time interval between SIGXCPU, SIGINT, SIGKILL, SIGTERM can be configured with the parameter JOB_TERMINATE_INTERVAL in 1 sb. params.

Restriction:	
SIGXCPU is not supported by Windows.	

• OS-enforced per process limit: When one process in the job exceeds the CPU limit, the limit is enforced by the operating system. For more details, refer to your operating system documentation for setrlimit ().

The setting of LSB_JOB_CPULIMIT has the following effect on how the limit is enforced:

LSB_JOB_CPULIMIT LSF per-job limit OS per-process limit

y Enabled Disabled

n Disabled Enabled

Not defined Enabled Enabled

Default

Not defined

Notes

To make LSB_JOB_CPULIMIT take effect, use the command badmin hrestart all to restart all sbatchds in the cluster.

Changing the default Terminate job control action: You can define a different terminate action in 1 sb. queues with the parameter JOB_CONTROLS if you do not want the job to be killed. For more details on job controls, see *Administering IBM Platform LSF*.

Limitations

If a job is running and the parameter is changed, LSF is not able to reset the type of limit enforcement for running jobs.

- If the parameter is changed from per-process limit enforced by the OS to per-job limit enforced by LSF (LSB_JOB_CPULIMIT=n changed to LSB_JOB_CPULIMIT=y), both per-process limit and per-job limit affect the running job. This means that signals may be sent to the job either when an individual process exceeds the CPU limit or the sum of the CPU time of all processes of the job exceed the limit. A job that is running may be killed by the OS or by LSF.
- If the parameter is changed from per-job limit enforced by LSF to per-process limit enforced by the OS (LSB_JOB_CPULIMIT=y changed to LSB_JOB_CPULIMIT=n), the job is allowed to run without limits because the per-process limit was previously disabled.

See also

lsb.queues, bsub, JOB_TERMINATE_INTERVAL in lsb.params, LSB_MOD_ALL_JOBS

LSB_JOB_MEMLIMIT

Syntax

LSB_JOB_MEMLIMIT=y | n

Description

Determines whether the memory limit is a per-process limit enforced by the OS or whether it is a per-job limit enforced by LSF.

 The per-process limit is enforced by the OS when the memory allocated to one process of the job exceeds the memory limit. The per-job limit is enforced by LSF when the sum of the memory allocated to all processes of the job exceeds the memory limit.

This parameter applies to memory limits set when a job is submitted with bsub - M *mem_limit*, and to memory limits set for queues with MEMLIMIT in 1 sb. queues.

The setting of LSB_JOB_MEMLIMIT has the following effect on how the limit is enforced:

When LSB_JOB_MEMLIMIT is	LSF-enforced per-job limit	OS-enforced per-process limit
у	Enabled	Disabled
n or not defined	Disabled	Enabled

When LSB_JOB_MEMLIMIT is Y, the LSF-enforced per-job limit is enabled, and the OS-enforced per-process limit is disabled.

When LSB_JOB_MEMLIMIT is N or not defined, the LSF-enforced per-job limit is disabled, and the OS-enforced per-process limit is enabled.

LSF-enforced per-job limit: When the total memory allocated to all processes in the job exceeds the memory limit, LSF sends the following signals to kill the job: SIGINT, SIGTERM, then SIGKILL. The interval between signals is 10 seconds by default.

On UNIX, the time interval between SIGINT, SIGKILL, SIGTERM can be configured with the parameter $JOB_TERMINATE_INTERVAL$ in 1 sb. params.

OS-enforced per process limit: When the memory allocated to one process of the job exceeds the memory limit, the operating system enforces the limit. LSF passes the memory limit to the operating system. Some operating systems apply the memory limit to each process, and some do not enforce the memory limit at all.

OS memory limit enforcement is only available on systems that support RLI MI T_RSS for setrlimit ().

The following operating systems do not support the memory limit at the OS level and the job is allowed to run without a memory limit:

- Windows
- Sun Solaris 2.x

Default

Not defined. Per-process memory limit enforced by the OS; per-job memory limit enforced by LSF disabled

Notes

To make LSB_JOB_MEMLIMIT take effect, use the command badmin hrestart all to restart all sbatchds in the cluster.

If LSB_JOB_MEMLIMIT is set, it overrides the setting of the parameter LSB_MEMLIMIT_ENFORCE. The parameter LSB_MEMLIMIT_ENFORCE is ignored.

The difference between LSB_JOB_MEMLIMIT set to y and LSB_MEMLIMIT_ENFORCE set to y is that with LSB_JOB_MEMLIMIT, only the per-job memory limit enforced by LSF is enabled. The per-process memory limit enforced by the OS is disabled. With LSB_MEMLIMIT_ENFORCE set to y, both the per-job memory limit enforced by LSF and the per-process memory limit enforced by the OS are enabled.

Changing the default Terminate job control action: You can define a different Terminate action in 1 sb. queues with the parameter JOB_CONTROLS if you do not want the job to be killed. For more details on job controls, see *Administering IBM Platform LSF*.

Limitations

If a job is running and the parameter is changed, LSF is not able to reset the type of limit enforcement for running jobs.

- If the parameter is changed from per-process limit enforced by the OS to per-job limit enforced by LSF (LSB_JOB_MEMLIMIT=n or not defined changed to LSB_JOB_MEMLIMIT=y), both per-process limit and per-job limit affect the running job. This means that signals may be sent to the job either when the memory allocated to an individual process exceeds the memory limit or the sum of memory allocated to all processes of the job exceed the limit. A job that is running may be killed by LSF.
- If the parameter is changed from per-job limit enforced by LSF to per-process limit enforced by the OS (LSB_JOB_MEMLIMIT=y changed to LSB_JOB_MEMLIMIT=n or not defined), the job is allowed to run without limits because the per-process limit was previously disabled.

See also

LSB_MEMLIMIT_ENFORCE, LSB_MOD_ALL_JOBS, l sb. queues, bsub, JOB_TERMINATE_INTERVAL in l sb. params

LSB_JOB_OUTPUT_LOGGING

Syntax

LSB_JOB_OUTPUT_LOGGING=Y | N

Description

Determines whether jobs write job notification messages to the logfile.

Default

Not defined (jobs do not write job notification messages to the logfile).

LSB_JOBID_DISP_LENGTH

Syntax

LSB_JOBID_DISP_LENGTH=integer

Description

By default, LSF commands bjobs and bhist display job IDs with a maximum length of 7 characters. Job IDs greater than 9999999 are truncated on the left.

When LSB_JOBID_DISP_LENGTH=10, the width of the JOBID column in bj obs and bhi st increases to 10 characters.

Valid values

Specify an integer between 7 and 10.

Default

Not defined. LSF uses the default 7-character length for job ID display.

LSB_KEEP_SYSDEF_RLIMIT

Syntax

 $LSB_KEEP_SYSDEF_RLIMIT=y \mid n$

Description

If resource limits are configured for a user in the SGI IRIX User Limits Database (ULDB) domain specified in LSF_ULDB_DOMAIN, and there is no domain default, the system default is honored.

If LSB_KEEP_SYSDEF_RLIMIT=n, and no resource limits are configured in the domain for the user and there is no domain default, LSF overrides the system default and sets system limits to unlimited.

Default

Not defined. No resource limits are configured in the domain for the user and there is no domain default.

LSB_LOCALDIR

Syntax

LSB_LOCALDIR=path

Description

Enables duplicate logging.

Specify the path to a local directory that exists only on the first LSF master host. LSF puts the primary copies of the event and accounting log files in this directory. LSF puts the duplicates in LSB SHAREDIR.

Important:

Always restart both the mbactchd and sbatchd when modifying LSB_LOCALDIR.

Example

LSB_LOCALDIR=/usr/share/lsbatch/loginfo

Default

Not defined

See also

LSB_SHAREDIR, EVENT_UPDATE_INTERVAL in 1 sb. params

LSB_MAIL_FROM_DOMAIN

Syntax

LSB MAIL FROM DOMAIN=domain name

Description

Windows only.

LSF uses the username as the from address to send mail. In some environments the from address requires domain information. If LSB_MAIL_FROM_DOMAIN is set, the domain name specified in this parameter will be added to the from address.

Default

Not defined.

LSB_MAILPROG

Syntax

LSB_MAILPROG=file name

Description

Path and file name of the mail program used by LSF to send email. This is the electronic mail program that LSF uses to send system messages to the user. When LSF needs to send email to users it invokes the program defined by LSB_MAILPROG in 1 sf. conf. You can write your own custom mail program and set LSB_MAILPROG to the path where this program is stored.

LSF administrators can set the parameter as part of cluster reconfiguration. Provide the name of any mail program. For your convenience, LSF provides the sendmail mail program, which supports the sendmail protocol on UNIX.

In a mixed cluster, you can specify different programs for Windows and UNIX. You can set this parameter during installation on Windows. For your convenience, LSF provides the 1 smai 1 . exe mail program, which supports SMTP and Microsoft Exchange Server protocols on Windows. If 1 smai 1 is specified, the parameter LSB_MAILSERVER must also be specified.

If you change your mail program, the LSF administrator must restart sbatchd on all hosts to retrieve the new value.

UNIX

By default, LSF uses /usr/lib/sendmail to send email to users. LSF calls LSB_MAILPROG with two arguments; one argument gives the full name of the sender, and the other argument gives the return address for mail.

LSB_MAILPROG must read the body of the mail message from the standard input. The end of the message is marked by end-of-file. Any program or shell script that accepts the arguments and input, and delivers the mail correctly, can be used.

LSB_MAILPROG must be executable by any user.

Windows

If LSB_MAILPROG is not defined, no email is sent.

Examples

LSB_MAILPROG=l smail.exe

LSB MAILPROG=/serverA/tools/lsf/bin/unixhost.exe

Default

/usr/lib/sendmail (UNIX)

blank (Windows)

See also

LSB_MAILSERVER, LSB_MAILTO

LSB_MAILSERVER

Syntax

LSB_MAILSERVER=mail_protocol:mail_server

Description

Part of mail configuration on Windows.

This parameter only applies when 1 smai 1 is used as the mail program (LSB_MAILPROG=lsmail.exe).Otherwise, it is ignored.

Both *mail_protocol* and *mail_server* must be indicated.

Set this parameter to either SMTP or Microsoft Exchange protocol (SMTP or EXCHANGE) and specify the name of the host that is the mail server.

This parameter is set during installation of LSF on Windows or is set or modified by the LSF administrator.

If this parameter is modified, the LSF administrator must restart sbatchd on all hosts to retrieve the new value.

Examples

 $LSB_MAI\ LSERVER = EXCHANGE:\ Host\ 2@company.\ com$

LSB_MAILSERVER=SMTP: Mail Host

Default

Not defined

See also

LSB_LOCALDIR

LSB_MAILSIZE_LIMIT

Syntax

LSB_MAILSIZE_LIMIT=email_size_KB

Description

Limits the size in KB of the email containing job output information.

The system sends job information such as CPU, process and memory usage, job output, and errors in email to the submitting user account. Some batch jobs can create large amounts of output. To prevent large job output files from interfering with your mail system, use LSB_MAILSIZE_LIMIT to set the maximum size in KB of the email containing the job information. Specify a positive integer.

If the size of the job output email exceeds LSB_MAILSIZE_LIMIT, the output is saved to a file under JOB_SPOOL_DIR or to the default job output directory if JOB_SPOOL_DIR is not defined. The email informs users of where the job output is located.

If the -o option of bsub is used, the size of the job output is not checked against LSB MAILSIZE LIMIT.

If you use a custom mail program specified by the LSB_MAILPROG parameter that can use the LSB_MAILSIZE environment variable, it is not necessary to configure LSB_MAILSIZE_LIMIT.

Default

By default, LSB_MAILSIZE_LIMIT is not enabled. No limit is set on size of batch job output email.

See also

LSB MAILPROG, LSB MAILTO

LSB_MAILTO

Syntax

LSB_MAILTO=mail_account

Description

LSF sends electronic mail to users when their jobs complete or have errors, and to the LSF administrator in the case of critical errors in the LSF system. The default is to send mail to the user who submitted the job, on the host on which the daemon is running; this assumes that your electronic mail system forwards messages to a central mailbox.

The LSB_MAILTO parameter changes the mailing address used by LSF. LSB_MAILTO is a format string that is used to build the mailing address.

Common formats are:

- ! U: Mail is sent to the submitting user's account name on the local host. The substring! U, if found, is replaced with the user's account name.
- !U@company_name. com: Mail is sent to user@company_name. com on the mail server. The mail server is specified by LSB MAILSERVER.
- ! U@! H: Mail is sent to *user@submission_hostname*. The substring! H is replaced with the name of the submission host. This format is valid on UNIX only. It is not supported on Windows.

All other characters (including any other '!') are copied exactly.

If this parameter is modified, the LSF administrator must restart sbatchd on all hosts to retrieve the new value.

Windows only: When a job exception occurs (for example, a job is overrun or underrun), an email is sent to the primary administrator set in the lsf. cluster. <code>cluster_name</code> file to the doman set in LSB_MAILTO. For example, if the primary administrator is lsfadmin and LSB_MAILTO=fred@company.com, an email is sent to lsfadmin@company.com. The email must be a valid Windows email account.

Default

! U

See also

LSB_MAILPROG, LSB_MAILSIZE_LIMIT

LSB_MAX_ASKED_HOSTS_NUMBER

Syntax

LSB_MAX_ASKED_HOSTS_NUMBER=integer

Description

Limits the number of hosts a user can specify with the -m (host preference) option of the following commands:

- bsub
- brun
- bmod
- brestart
- brsvadd
- brsvmod
- brsvs

The job is rejected if more hosts are specified than the value of LSB_MAX_ASKED_HOSTS_NUMBER.

Caution:

If this value is set high, there will be a performance effect if users submit or modify jobs using the -m option and specify a large number of hosts. 512 hosts is the suggested upper limit.

Valid values

Any whole, positive integer.

Default

512

LSB_MAX_JOB_DISPATCH_PER_SESSION

Syntax

LSB_MAX_JOB_DISPATCH_PER_SESSION=integer

Description

Defines the maximum number of jobs that mbatchd can dispatch during one job scheduling session.

Both mbat chd and sbat chd must be restarted when you change the value of this parameter.

If set to a value greater than 300, the file descriptor limit is increased on operating systems that support a file descriptor limit greater than 1024.

Use together with MAX_SBD_CONNS in 1 sb. params. Set LSB_MAX_JOB_DISPATCH_PER_SESSION to a value no greater than one-half the value of MAX_SBD_CONNS. This setting configures mbatchd to dispatch jobs at a high rate while maintaining the processing speed of other mbatchd tasks.

Examples

LSB_MAX_JOB_DI SPATCH_PER_SESSI ON=300

The file descriptor limit is 1024.

LSB_MAX_JOB_DI SPATCH_PER_SESSI ON=1000

The file descriptor limit is greater than 1024 on operating systems that support a greater limit.

Default

300

See also

MAX SBD CONNS in 1 sb. params

LSB_MAX_NQS_QUEUES

Syntax

LSB_MAX_NQS_QUEUES=nqs_queues

Description

The maximum number of NQS queues allowed in the LSF cluster. Required for LSF to work with NQS. You must restart mbat chd if you change the value of LSB_MAX_NQS_QUEUES.

The total number of NQS queues configured by NQS_QUEUES in 1 sb. queues cannot exceed the value of LSB_MAX_NQS_QUEUES. NQS queues in excess of the maximum queues are ignored.

If you do not define LSB_MAX_NQS_QUEUES or define an incorrect value, LSF-NQS interoperation is disabled.

Valid values

Any positive integer

Default

None

LSB_MAX_PACK_JOBS

Syntax

LSB_MAX_PACK_JOBS=integer

Description

Applies to job packs only. Enables the job packs feature and specifies the maximum number of job submission requests in one job pack.

If the value is 0, job packs are disabled.

If the value is 1, jobs from the file are submitted individually, as if submitted directly using the bsub command.

We recommend 100 as the initial pack size. Tune this parameter based on cluster performance. The larger the pack size, the faster the job submission rate is for all the job requests the job submission file. However, while mbat chd is processing a pack, mbat chd is blocked from processing other requests, so increasing pack size can affect mbat chd response time for other job submissions.

If you change the configuration of this parameter, you must restart mbat chd.

Parameters related to job packs are not supported as environment variables.

Valid Values

Any positive integer or 0.

Default

0 (disabled)

LSB MAX PROBE SBD

Syntax

LSB_MAX_PROBE_SBD=integer

Description

Specifies the maximum number of sbatchd instances can be polled by mbatchd in the interval MBD_SLEEP_TIME/10 (6 seconds by default). Use this parameter in large clusters to reduce the time it takes for mbatchd to probe all sbatchds.

The value of LSB_MAX_PROBE_SBD cannot be greater than the number of hosts in the cluster. If it is, mbatchd adjusts the value of LSB_MAX_PROBE_SBD to be same as the number of hosts.

After modifying LSB_MAX_PROBE_SBD, use badmin mbdrestart to restart mbatchd and let the modified value take effect.

If LSB_MAX_PROBE_SBD is defined, the value of MAX_SBD_FAIL in 1 sb. params can be less than 3.

Valid values

Any positive integer between 0 and 64

Default

20

See also

MAX_SBD_FAIL in 1 sb. params

LSB_MBD_BUSY_MSG

Syntax

LSB_MBD_BUSY_MSG="message_string"

Description

Specifies the message displayed when $mbat\ chd$ is too busy to accept new connections or respond to client requests.

Define this parameter if you want to customize the message.

Valid values

String, either non-empty or empty.

Default

Not defined. By default, LSF displays the message "LSF is processing your request. Please wait..."

Batch commands retry the connection to mbatchd at the intervals specified by the parameters LSB_API_CONNTIMEOUT and LSB_API_RECVTIMEOUT.

LSB_MBD_CONNECT_FAIL_MSG

Syntax

LSB_MBD_CONNECT_FAIL_MSG="message_string"

Description

Specifies the message displayed when internal system connections to mbat chd fail.

Define this parameter if you want to customize the message.

Valid values

String, either non-empty or empty.

Default

Not defined. By default, LSF displays the message "Cannot connect to LSF. Please wait..."

Batch commands retry the connection to mbat chd at the intervals specified by the parameters LSB_API_CONNTIMEOUT and LSB_API_RECVTIMEOUT.

LSB_MBD_DOWN_MSG

Syntax

LSB_MBD_DOWN_MSG="message_string"

Description

Specifies the message displayed by the bhosts command when mbatchd is down or there is no process listening at either the LSB_MBD_PORT or the LSB_QUERY_PORT.

Define this parameter if you want to customize the message.

Valid values

String, either non-empty or empty.

Default

Not defined. By default, LSF displays the message "LSF is down. Please wait..."

Batch commands retry the connection to mbat chd at the intervals specified by the parameters LSB_API_CONNTIMEOUT and LSB_API_RECVTIMEOUT.

LSB_MBD_MAX_SIG_COUNT

Syntax

LSB_MBD_MAX_SIG_COUNT=integer

Description

When a host enters an unknown state, the mbatchd attempts to retry any pending jobs. This parameter specifies the maximum number of pending signals that the mbatchd deals with concurrently in order not to overload it. A high value for LSB_MBD_MAX_SIG_COUNT can negatively impact the performance of your cluster.

Valid Valid values

Integers between 5-100, inclusive.

Default

5

LSB_MBD_PORT

See LSF_LIM_PORT, LSF_RES_PORT, LSB_MBD_PORT, LSB_SBD_PORT.

LSB_MC_CHKPNT_RERUN

Syntax

LSB_MC_CHKPNT_RERUN=y | n

Description

For checkpointable MultiCluster jobs, if a restart attempt fails, the job is rerun from the beginning (instead of from the last checkpoint) without administrator or user intervention.

The submission cluster does not need to forward the job again. The execution cluster reports the job's new pending status back to the submission cluster, and the job is dispatched to the same host to restart from the beginning

Default

n

LSB_MC_INITFAIL_MAIL

Syntax

LSB_MC_INITFAIL_MAIL=Y | AII | Administrator

Description

MultiCluster job forwarding model only.

Specify Y to make LSF email the job owner when a job is suspended after reaching the retry threshold.

Specify ${\bf Administrator}$ to make LSF email the primary administrator when a job is suspended after reaching the retry threshold.

Specify All to make LSF email both the job owner and the primary administrator when a job is suspended after reaching the retry threshold.

Default

not defined

LSB_MC_INITFAIL_RETRY

Syntax

LSB_MC_INITFAIL_RETRY=integer

Description

MultiCluster job forwarding model only. Defines the retry threshold and causes LSF to suspend a job that repeatedly fails to start. For example, specify 2 retry attempts to make LSF attempt to start a job 3 times before suspending it.

Default

5

LSB_MEMLIMIT_ENFORCE

Syntax

LSB_MEMLIMIT_ENFORCE=y | n

Description

Specify y to enable LSF memory limit enforcement.

If enabled, LSF sends a signal to kill all processes that exceed queue-level memory limits set by MEMLIMIT in 1 sb. queues or job-level memory limits specified by bsub - M *mem_limit*.

Otherwise, LSF passes memory limit enforcement to the OS. UNIX operating systems that support RLI MI T_RSS for set rlimit() can apply the memory limit to each process.

The following operating systems do not support memory limit at the OS level:

- Windows
- Sun Solaris 2.x

Default

Not defined. LSF passes memory limit enforcement to the OS.

See also

lsb. queues

LSB_MIG2PEND

Syntax

LSB_MIG2PEND=0 | 1

Description

Applies only to migrating checkpointable or rerunnable jobs.

When defined with a value of 1, requeues migrating jobs instead of restarting or rerunning them on the first available host. Requeues the jobs in the PEND state in order of the original submission time and with the original job priority.

If you want to place the migrated jobs at the bottom of the queue without considering submission time, define both LSB_MIG2PEND=1 and LSB_REQUEUE_TO_BOTTOM=1 in l sf. conf.

Ignored in a MultiCluster environment.

Default

Not defined. LSF restarts or reruns migrating jobs on the first available host.

See also

LSB_REQUEUE_TO_BOTTOM

LSB_MIXED_PATH_DELIMITER

Syntax

LSB_MIXED_PATH_DELIMITER="|"

Description

Defines the delimiter between UNIX and Windows paths if LSB_MIXED_PATH_ENABLE=y. For example, / home/tmp/J. out $|c: \times f|$ out.

Default

A pipe "|" is the default delimiter.

See also

LSB_MIXED_PATH_ENABLE

LSB_MIXED_PATH_ENABLE

Syntax

 $LSB_MIXED_PATH_ENABLE=y \mid n$

Description

Allows you to specify both a UNIX and Windows path when submitting a job in a mixed cluster (both Windows and UNIX hosts).

The format is always $unix_path_cmd|windows_path_cmd$.

Applies to the following options of bsub:

- -0, -00
- -е, -ео
- -i, -is
- -cwd
- -E, -Ep
- CMD
- queue level PRE EXEC, POST EXEC
- application level PRE_EXEC, POST_EXEC

For example

bsub -o "/home/tmp/j ob%J. out | c: \tmp\j ob%J. out " -e "/home/tmp/err%J. out | c: \tmp\err%J. out " -E "sleep 9| sleep 8" -Ep "sleep 7| sleep 6" -cwd "/home/tmp|c: \tmp" "sleep 121|sleep 122"

The delimiter is configurable: LSB_MIXED_PATH_DELIMITER.

Note:

LSB_MIXED_PATH_ENABLE doesn't support interactive mode (bsub $\,$ - $\,$ I).

Default

Not defined. LSF jobs submitted.

See also

LSB_MIXED_PATH_DELIMITER

LSB MOD ALL JOBS

Syntax

LSB_MOD_ALL_JOBS=y | Y

Description

If set, enables bmod to modify resource limits and location of job output files for running jobs.

After a job has been dispatched, the following modifications can be made:

- CPU limit (-c [hour.]minute[/host_name | /host_model] | -cn)
- Memory limit (-M mem_limit | -Mn)
- Rerunnable jobs (-r | -rn)
- Resource requirements (-R "res_req" except -R "cu[cu_string]")
- Run limit (-W run_limit[/host_name | /host_model] | -Wn)
- Standard output file name (-o output_file | -on)
- Standard error file name (-e error_file | -en)
- Overwrite standard output (st dout) file name up to 4094 characters for UNIX or 255 characters for Windows (-oo output_file)
- Overwrite standard error (stderr) file name up to 4094 characters for UNIX or 255 characters for Windows (-eo *error_file*)

To modify the CPU limit or the memory limit of running jobs, the parameters LSB_JOB_CPULIMIT=Y and LSB_JOB_MEMLIMIT=Y must be defined in l sf. conf.

Important:

Always run badmi n mbdrestart after modifying LSB_MOD_ALL_JOBS.

Default

Y

See also

LSB_JOB_CPULIMIT, LSB_JOB_MEMLIMIT

LSB_NCPU_ENFORCE

Description

When set to 1, enables parallel fairshare and considers the number of CPUs when calculating dynamic priority for queue-level user-based fairshare. LSB_NCPU_ENFORCE does not apply to host-partition

user-based fairshare. For host-partition user-based fairshare, the number of CPUs is automatically considered.

Default

Not defined

LSB_NQS_PORT

Syntax

LSB_NQS_PORT=port_number

Description

Required for LSF to work with NQS.

TCP service port to use for communication with NQS.

Where defined

This parameter can alternatively be set as an environment variable or in the services database such as / etc/servi ces.

Example

LSB_NQS_PORT=607

Default

Not defined

LSB_NUM_NIOS_CALLBACK_THREADS

Syntax

LSB_NUM_NIOS_CALLBACK_THREADS=integer

Description

Specifies the number of callback threads to use for batch queries.

If your cluster runs a large amount of blocking mode (bsub $\,$ -K) and interactive jobs (bsub $\,$ -I), response to batch queries can become very slow. If you run large number of bsub $\,$ -I or bsub $\,$ -K jobs, you can define the threads to the number of processors on the master host.

Default

Not defined

LSB_PACK_MESUB

Syntax

LSB_PACK_MESUB=Y|y|N|n

Description

Applies to job packs only.

If LSB_PACK_MESUB=N, mesub will not be executed for any jobs in the job submission file, even if there are esubs configured at the application level (-a option of bsub), or using LSB_ESUB_METHOD in 1 sf. conf, or through a named esub executable under LSF_SERVERDIR.

If LSB_PACK_MESUB=Y, mesub is executed for every job in the job submission file.

Parameters related to job packs are not supported as environment variables.

Default

Y

LSB_PACK_SKIP_ERROR

Syntax

LSB_PACK_SKIP_ERROR=Y|y|N|n

Description

Applies to job packs only.

If LSB_PACK_SKIP_ERROR=Y, all requests in the job submission file are submitted, even if some of the job submissions fail. The job submission process always continues to the end of the file.

If LSB_PACK_SKIP_ERROR=N, job submission stops if one job submission fails. The remaining requests in the job submission file are not submitted.

If you change the configuration of this parameter, you must restart mbat chd.

Parameters related to job packs are not supported as environment variables.

Default

N

LSB_PSET_BIND_DEFAULT

Syntax

LSB_PSET_BIND_DEFAULT=y | Y

Description

If set, LSF binds a job that is not explicitly associated with an HP-UX pset to the default pset 0. If LSB_PSET_BIND_DEFAULT is not set, LSF must still attach the job to a pset, and so binds the job to the same pset used by the LSF HPC daemons.

Use LSB_PSET_BIND_DEFAULT to improve LSF daemon performance by automatically unbinding a job with no pset options from the pset used by the LSF daemons, and binding it to the default pset.

Default

Not defined

LSB_QUERY_PORT

Syntax

LSB_QUERY_PORT=port_number

Description

Optional. Applies only to UNIX platforms that support thread programming.

When using MultiCluster, LSB_QUERY_PORT must be defined on all clusters.

This parameter is recommended for busy clusters with many jobs and frequent query requests to increase mbatchd performance when you use the bj obs command.

This may indirectly increase overall mbatchd performance.

The port_number is the TCP/IP port number to be used by mbatchd to only service query requests from the LSF system. mbatchd checks the query port during initialization.

If LSB QUERY PORT is not defined:

- mbat chd uses the port specified by LSB_MBD_PORT in 1 sf. conf, or, if LSB_MBD_PORT is not defined, looks into the system services database for port numbers to communicate with other hosts in the cluster
- For each query request it receives, mbatchd forks one child mbatchd to service the request. Each child mbatchd processes one request and then exits.

If LSB_QUERY_PORT is defined:

- mbat chd prepares this port for connection. The default behavior of mbat chd changes, a child mbat chd is forked, and the child mbat chd creates threads to process requests.
- mbatchd responds to requests by forking one child mbatchd. As soon as mbatchd has forked a child
 mbatchd, the child mbatchd takes over and listens on the port to process more query requests. For
 each request, the child mbatchd creates a thread to process it.

The interval used by mbatchd for forking new child mbatchds is specified by the parameter MBD_REFRESH_TIME in l sb. params.

The child mbat chd continues to listen to the port number specified by LSB_QUERY_PORT and creates threads to service requests until the job changes status, a new job is submitted, or the time specified in MBD_REFRESH_TIME in 1 sb. params has passed (see MBD_REFRESH_TIME in 1 sb. params for more details). When any of these happens, the parent mbat chd sends a message to the child mbat chd to exit

LSB_QUERY_PORT must be defined when NEWJOB_REFRESH=Y in 1 sb. params to enable a child mbat chd to get up to date information about new jobs from the parent mbat chd.

Operating system support

Tip:

See product support for the latest information about operating systems that support multithreaded mbat chd.

Default

Not defined

See also

MBD_REFRESH_TIME and NEWJOB_REFRESH in 1 sb. params

LSB_REQUEUE_TO_BOTTOM

Syntax

LSB_REQUEUE_TO_BOTTOM=0 | 1

Description

Specify 1 to put automatically requeued jobs at the bottom of the queue instead of at the top. Also requeues migrating jobs to the bottom of the queue if LSB_MIG2PEND is also defined with a value of 1.

Specify 0 to requeue jobs to the top of the queue.

Ignored in a MultiCluster environment.

Default

0 (LSF requeues jobs to the top of the queue).

See also

LSB_MIG2PEND, REQUEUE_EXIT_VALUES in l sb. queues

LSB_RLA_PORT

Syntax

LSB_RLA_PORT=port_number

Description

TCP port used for communication between the LSF topology adapter (RLA) and the HPC scheduler plugin.

Default

6883

LSB_RLA_UPDATE

Syntax

LSB_RLA_UPDATE=time_seconds

Description

Specifies how often the HPC scheduler refreshes free node information from the LSF topology adapter (RLA).

Default

600 seconds

LSB_RLA_WORKDIR

Syntax

LSB_RLA_WORKDIR=directory

Description

Directory to store the LSF topology adapter (RLA) status file. Allows RLA to recover its original state when it restarts. When RLA first starts, it creates the directory defined by LSB_RLA_WORKDIR if it does not exist, then creates subdirectories for each host.

You should avoid using /tmp or any other directory that is automatically cleaned up by the system. Unless your installation has restrictions on the LSB_SHAREDIR directory, you should use the default for LSB_RLA_WORKDIR.

Default

LSB_SHAREDIR/cluster_name/rla_workdir

LSB SACCT ONE UG

Syntax

 $\textbf{LSB_SACCT_ONE_UG=}y \mid Y \mid n \mid N$

Description

When set to Y, minimizes overall memory usage of mbat chd during fairshare accounting at job submission by limiting the number of share account nodes created on mbat chd startup. Most useful when there are a lot of user groups with all members in the fairshare policy.

When a default user group is defined, inactive user share accounts are still defined for the default user group.

When setting this parameter, you must restart the mbat chd.

Default

N

LSB_SBD_PORT

See LSF LIM PORT, LSF RES PORT, LSB MBD PORT, LSB SBD PORT.

LSB_SET_TMPDIR

Syntax

LSB_SET_TMPDIR=y | n

If y, LSF sets the TMPDIR environment variable, overwriting the current value with $/ tmp / job_I D$. tmpdir.

Default

n

LSB_SHAREDIR

Syntax

LSB_SHAREDIR=directory

Description

Directory in which the job history and accounting logs are kept for each cluster. These files are necessary for correct operation of the system. Like the organization under LSB_CONFDIR, there is one subdirectory for each cluster.

The LSB_SHAREDIR directory must be owned by the LSF administrator. It must be accessible from all hosts that can potentially become the master host, and must allow read and write access from the master host.

The LSB_SHAREDIR directory typically resides on a reliable file server.

Default

LSF_I NDEP/work

See also

LSB_LOCALDIR

LSB_SHORT_HOSTLIST

Syntax

LSB_SHORT_HOSTLIST=1

Description

Displays an abbreviated list of hosts in bj obs and bhi st for a parallel job where multiple processes of a job are running on a host. Multiple processes are displayed in the following format:

processes*hostA

For example, if a parallel job is running 5 processes on host A, the information is displayed in the following manner:

5*hostA

Setting this parameter may improve mbat chd restart performance and accelerate event replay.

Default

Not defined

LSB_SIGSTOP

Syntax

LSB_SIGSTOP=signal_name | signal_value

Description

Specifies the signal sent by the SUSPEND action in LSF. You can specify a signal name or a number.

If this parameter is not defined, by default the SUSPEND action in LSF sends the following signals to a job:

- Parallel or interactive jobs: SIGTSTP is sent to allow user programs to catch the signal and clean up.
 The parallel job launcher also catches the signal and stops the entire job (task by task for parallel jobs).
 Once LSF sends SIGTSTP, LSF assumes the job is stopped.
- Other jobs: SIGSTOP is sent. SIGSTOP cannot be caught by user programs. The same set of signals is not supported on all UNIX systems. To display a list of the symbolic names of the signals (without the SIG prefix) supported on your system, use the kill -l command.

Example

LSB_SI GSTOP=SI GKI LL

In this example, the SUSPEND action sends the three default signals sent by the TERMINATE action (SIGINT, SIGTERM, and SIGKILL) 10 seconds apart.

Default

Not defined. Default SUSPEND action in LSF is sent.

LSB_SSH_XFORWARD_CMD

Syntax

LSB_SSH_XFORWARD_CMD=[/path[/path]]ssh command [ssh options]

Description

Optional when submitting jobs with SSH X11 forwarding. Allows you to specify an SSH command and options when a job is submitted with - XF.

Replace the default value with an SSH command (full PATH and options allowed).

When running a job with the - XF option, runs the SSH command specified here.

Default

ssh - X - n

LSB STDOUT_DIRECT

Syntax

LSB_STDOUT_DIRECT=y | Y

Description

When set, and used with the -o or -e options of bsub, redirects standard output or standard error from the job directly to a file as the job runs.

If LSB_STDOUT_DIRECT is not set and you use the bsub - o option, the standard output of a job is written to a temporary file and copied to the file you specify *after* the job finishes.

LSB_STDOUT_DIRECT is not supported on Windows.

Default

Not defined

LSB_STOP_IGNORE_IT

Usage

LSB_STOP_IGNORE_IT= Y | y

Description

Allows a solitary job to be stopped regardless of the idle time (IT) of the host that the job is running on. By default, if only one job is running on a host, the host idle time must be zero in order to stop the job.

Default

Not defined

LSB_SUB_COMMANDNAME

Syntax

LSB_SUB_COMMANDNAME=y | Y

Description

If set, enables esub to use the variable LSB_SUB_COMMAND_LINE in the esub job parameter file specified by the \$LSB_SUB_PARM_FILE environment variable.

The LSB_SUB_COMMAND_LINE variable carries the value of the bsub command argument, and is used when esub runs.

Example

esub contains:

#!/bin/sh . \$LSB_SUB_PARM_FILE exec 1>&2 if [\$LSB_SUB_COMMAND_LINE="netscape"]; then
echo "netscape is not allowed to run in batch mode" exit \$LSB_SUB_ABORT_VALUE fi

LSB_SUB_COMMAND_LINE is defined in \$LSB_SUB_PARM_FILE as:

LSB_SUB_COMMAND_LINE=netscape

A job submitted with:

bsub netscape ...

Causes esub to echo the message:

netscape is not allowed to run in batch mode

Default

Not defined

See also

LSB SUB COMMAND LINE and LSB SUB PARM FILE environment variables

LSB_SUBK_SHOW_EXEC_HOST

Syntax

 $\textbf{LSB_SUBK_SHOW_EXEC_HOST} = Y \mid N$

Description

When enabled, displays the execution host in the output of the command bsub - K. If the job runs on multiple hosts, only the first execution host is shown.

In a MultiCluster environment, this parameter must be set in both clusters.

Tip:

Restart sbatchd on the execution host to make changes take effect.

Default

Y

LSB_TIME_MBD

Syntax

LSB_TIME_MBD=timing_level

Description

The timing level for checking how long mbat chd routines run.

Time usage is logged in milliseconds; specify a positive integer.

Example: LSB_TIME_MBD=1

Default

Not defined

See also

LSB_TIME_CMD, LSB_TIME_SBD, LSF_TIME_LIM, LSF_TIME_RES

LSB_TIME_SCH

Syntax

LSB_TIME_SCH=timing_level

Description

The timing level for checking how long mbschd routines run.

Time usage is logged in milliseconds; specify a positive integer.

Example: LSB_TIME_SCH=1

Default

Not defined

LSB_TIME_CMD

Syntax

LSB_TIME_CMD=timimg_level

Description

The timing level for checking how long batch commands run.

Time usage is logged in milliseconds; specify a positive integer.

Example: LSB_TI ME_CMD=1

Default

Not defined

See also

LSB_TIME_MBD, LSB_TIME_SBD, LSF_TIME_LIM, LSF_TIME_RES

LSB_TIME_RESERVE_NUMJOBS

Syntax

LSB_TIME_RESERVE_NUMJOBS=maximum_reservation_jobs

Description

Enables time-based slot reservation. The value must be positive integer.

LSB_TIME_RESERVE_NUMJOBS controls maximum number of jobs using time-based slot reservation. For example, if LSB_TIME_RESERVE_NUMJOBS=4, only the top 4 jobs get their future allocation information.

 $Use\ LSB_TIME_RESERVE_NUMJOBS=1\ to\ allow\ only\ the\ highest\ priority\ job\ to\ get\ accurate\ start\ time\ prediction.$

Recommended value

3 or 4 is the recommended setting. Larger values are not as useful because after the first pending job starts, the estimated start time of remaining jobs may be changed.

Default

Not defined

LSB TIME SBD

Syntax

LSB_TIME_SBD=timing_level

Description

The timing level for checking how long sbatchd routines run.

Time usage is logged in milliseconds; specify a positive integer.

Example: LSB_TIME_SBD=1

Default

Not defined

See also

LSB_TIME_CMD, LSB_TIME_MBD, LSF_TIME_LIM, LSF_TIME_RES

LSB UTMP

Syntax

LSB_UTMP=y | Y

Description

If set, enables registration of user and account information for interactive batch jobs submitted with bsub - I p or bsub - I s. To disable ut mp file registration, set LSB_UTMP to any value other than y or Y; for example, LSB_UTMP=N.

LSF registers interactive batch jobs the job by adding a entries to the utmp file on the execution host when the job starts. After the job finishes, LSF removes the entries for the job from the utmp file.

Limitations

Registration of ut mp file entries is supported on the following platforms:

- Solaris (all versions)
- HP-UX (all versions)
- Linux (all versions)

ut mp file registration is not supported in a MultiCluster environment.

Because interactive batch jobs submitted with bsub -I are not associated with a pseudo-terminal, utmp file registration is not supported for these jobs.

Default

Not defined

LSF_AFS_CELLNAME

Syntax

LSF_AFS_CELLNAME=AFS_cell_name

Description

Must be defined to AFS cell name if the AFS file system is in use.

Example:

LSF_AFS_CELLNAME=xxx. ch

Default

Not defined

LSF_AM_OPTIONS

Syntax

LSF_AM_OPTIONS=AMFIRST | AMNEVER

Description

Determines the order of file path resolution when setting the user's home directory.

This variable is rarely used but sometimes LSF does not properly change the directory to the user's home directory when the user's home directory is automounted. Setting LSF_AM_OPTIONS forces LSF to change directory to \$HOME before attempting to automount the user's home.

When this parameter is not defined or set to AMFIRST, LSF, sets the user's \$HOME directory from the automount path. If it cannot do so, LSF sets the user's \$HOME directory from the passwd file.

When this parameter is set to AMNEVER, LSF, never uses automount to set the path to the user's home. LSF sets the user's \$HOME directory directly from the passwd file.

Valid values

The two values are AMFIRST and AMNEVER

Default

Same as AMFIRST

LSF_API_CONNTIMEOUT

Syntax

LSF_API_CONNTIMEOUT=time_seconds

Description

Timeout when connecting to LIM.

EGO parameter

EGO LIM CONNTIMEOUT

Default

5

See also

LSF_API_RECVTIMEOUT

LSF_API_RECVTIMEOUT

Syntax

LSF_API_RECVTIMEOUT=time_seconds

Description

Timeout when receiving a reply from LIM.

EGO parameter

EGO LIM RECVTIMEOUT

Default

20

See also

LSF_API_CONNTIMEOUT

LSF_ASPLUGIN

Syntax

LSF_ASPLUGIN=path

Description

Points to the SGI Array Services library l i barray. so. The parameter only takes effect on 64-bit x-86 Linux 2.6, glibc 2.3.

Default

/usr/lib64/libarray.so

LSF_AUTH

Syntax

LSF_AUTH=eauth | ident

Description

Enables either external authentication or authentication by means of identification daemons. This parameter is required for any cluster that contains Windows hosts, and is optional for UNIX-only clusters. After defining or changing the value of LSF_AUTH, you must shut down and restart the LSF daemons on all server hosts to apply the new authentication method.

eauth

For site-specific customized external authentication. Provides the highest level of security of all LSF authentication methods.

ident

For authentication using the RFC 931/1413/1414 protocol to verify the identity of the remote client. If you want to use i dent authentication, you must download and install the i dent protocol, available from the public domain, and register i dent as required by your operating system.

For UNIX-only clusters, privileged ports authentication (set ui d) can be configured by commenting out or deleting the LSF_AUTH parameter. If you choose privileged ports authentication, LSF commands must be installed as set ui d programs owned by root. If the commands are installed in an NFS-mounted shared file system, the file system must be mounted with set ui d execution allowed, that is, without the nosui d option.

Restriction:

To enable privileged ports authentication, LSF_AUTH must not be defined; setuid is not a valid value for LSF_AUTH.

Default

eauth

During LSF installation, a default eauth executable is installed in the directory specified by the parameter LSF_SERVERDIR in the 1sf. conf file. The default executable provides an example of how the eauth protocol works. You should write your own eauth executable to meet the security requirements of your cluster.

LSF_AUTH_DAEMONS

Syntax

 ${\color{red} \textbf{LSF_AUTH_DAEMONS=y} \mid Y}$

Description

Enables LSF daemon authentication when external authentication is enabled (LSF_AUTH=eauth in the file l sf. conf). Daemons invoke eauth to authenticate each other as specified by the eauth executable.

Default

Not defined.

LSF_BIND_JOB

Syntax

LSF_BIND_JOB=NONE | BALANCE | PACK | ANY | USER | USER_CPU_LIST

Description

Specifies the processor binding policy for sequential and parallel job processes that run on a single host.

On Linux execution hosts that support this feature, job processes are hard bound to selected processors.

If processor binding feature is not configured with the BIND_JOB parameter in an application profile in $l \ sb.$ appl i cat i ons, the $l \ sf.$ conf configuration setting takes effect. The application profile configuration for processor binding overrides the $l \ sf.$ conf configuration.

For backwards compatibility:

- LSF_BIND_JOB=Y is interpreted as LSF_BIND_JOB=BALANCE
- LSF_BIND_JOB=N is interpreted as LSF_BIND_JOB=NONE

Supported platforms

Linux with kernel version 2.6 or higher

Default

Not defined. Processor binding is disabled.

LSF BINDIR

Syntax

LSF_BINDIR=directory

Description

Directory in which all LSF user commands are installed.

Default

LSF_MACHDEP/bi n

LSF_BMPLUGIN

Syntax

LSF_BMPLUGIN=path

Description

Points to the bitmask library l i bbi tmask. so. The parameter only takes effect on 64-bit x-86 Linux 2.6, glibc 2.3.

Default

/usr/lib64/libbitmask.so

LSF CMD LOG MASK

Syntax

LSF_CMD_LOG_MASK=log_level

Description

Specifies the logging level of error messages from LSF commands.

For example:

LSF_CMD_LOG_MASK=LOG_DEBUG

To specify the logging level of error messages, use LSB_CMD_LOG_MASK. To specify the logging level of error messages for LSF daemons, use LSF_LOG_MASK.

LSF commands log error messages in different levels so that you can choose to log all messages, or only log messages that are deemed critical. The level specified by LSF_CMD_LOG_MASK determines which messages are recorded and which are discarded. All messages logged at the specified level or higher are recorded, while lower level messages are discarded.

For debugging purposes, the level LOG_DEBUG contains the fewest number of debugging messages and is used for basic debugging. The level LOG_DEBUG3 records all debugging messages, and can cause log files to grow very large; it is not often used. Most debugging is done at the level LOG_DEBUG2.

The commands log to the sysl og facility unless LSF_CMD_LOGDIR is set.

In addition, LSF_SERVERDIR (1 sf. conf) must be defined for successful error message logging.

Valid values

The log levels from highest to lowest are:

- LOG_EMERG
- LOG_ALERT
- LOG_CRIT
- LOG_ERR
- LOG_WARNING
- LOG_NOTICE
- LOG_INFO
- LOG_DEBUG
- LOG_DEBUG1
- LOG_DEBUG2
- · LOG DEBUG3

Default

LOG WARNING

See also

LSB_CMD_LOG_MASK, LSB_CMD_LOGDIR, LSB_DEBUG, LSB_DEBUG_CMD, LSB_TIME_CMD, LSB_CMD_LOGDIR, LSF_LOG_MASK, LSF_LOGDIR, LSF_TIME_CMD

LSF CMD LOGDIR

Syntax

LSF_CMD_LOGDIR=path

Description

The path to the log files used for debugging LSF commands.

This parameter can also be set from the command line.

Default

/tmp

See also

LSB_CMD_LOG_MASK, LSB_CMD_LOGDIR, LSB_DEBUG, LSB_DEBUG_CMD, LSB_TIME_CMD, LSF_CMD_LOG_MASK, LSF_LOG_MASK, LSF_LOGDIR, LSF_TIME_CMD

LSF_CONF_RETRY_INT

Syntax

LSF_CONF_RETRY_INT=time_seconds

Description

The number of seconds to wait between unsuccessful attempts at opening a configuration file (only valid for LIM). This allows LIM to tolerate temporary access failures.

EGO parameter

EGO_CONF_RETRY_INT

Default

30

See also

LSF_CONF_RETRY_MAX

LSF_CONF_RETRY_MAX

Syntax

LSF_CONF_RETRY_MAX=integer

Description

The maximum number of retry attempts by LIM to open a configuration file. This allows LIM to tolerate temporary access failures. For example, to allow one more attempt after the first attempt has failed, specify a value of 1.

EGO parameter

EGO_CONF_RETRY_MAX

Default

0

See also

LSF_CONF_RETRY_INT

LSF_CONFDIR

Syntax

LSF_CONFDIR=directory

Description

Directory in which all LSF configuration files are installed. These files are shared throughout the system and should be readable from any host. This directory can contain configuration files for more than one cluster.

The files in the LSF_CONFDIR directory must be owned by the primary LSF administrator, and readable by all LSF server hosts.

If live reconfiguration through the bconf command is enabled by the parameter LSF_LIVE_CONFDIR, configuration files are written to and read from the directory set by LSF_LIVE_CONFDIR.

Default

LSF_I NDEP/conf

See also

LSB_CONFDIR, LSF_LIVE_CONFDIR

LSF CPUSETLIB

Syntax

LSF_CPUSETLIB=path

Description

Points to the SGI cpuset library l i bcpuset. so. The parameter only takes effect on 64-bit x-86 Linux 2.6, glibc 2.3.

Default

/usr/lib64/libcpuset.so

LSF_CRASH_LOG

Syntax

LSF_CRASH_LOG=Y | N

Description

On Linux hosts only, enables logging when or if a daemon crashes. Relies on the Linux debugger (gdb). Two log files are created, one for the root daemons (res, lim, sbd, and mbatchd) in /tmp/lsf_root_daemons_crash.log and one for administrative daemons (mbschd) in /tmp/lsf_admin_daemons_crash.log.

File permissions for both files are 600.

If enabling, you must restart the daemons for the change to take effect.

Default

N (no log files are created for daemon crashes)

LSF_DAEMON_WRAP

Syntax

LSF_DAEMON_WRAP=y | Y

Description

Applies to Kerberos, DCE/DFS and AFS environments; if you are using LSF with DCE, AFS, or Kerberos, set this parameter to y or Y.

When this parameter is set to y or Y, mbatchd, sbatchd, and RES run the executable daemons. wrap located in LSF SERVERDIR.

Default

Not defined. LSF does not run the daemons. wrap executable.

LSF_DAEMONS_CPUS

Syntax

LSF_DAEMONS_CPUS="mbatchd_cpu_list:mbschd_cpu_list"

mbatchd_cpu_list

Defines the list of master host CPUS where the mbatchd daemon processes can run (hard CPU affinity). Format the list as a white-space delimited list of CPU numbers.

mbschd cpu list

Defines the list of master host CPUS where the mbschd daemon processes can run. Format the list as a white-space delimited list of CPU numbers.

Description

By default, mbatchd and mbschd can run on any CPUs. If LSF_DAEMONS_CPUS is set, they only run on a specified list of CPUs. An empty list means LSF daemons can run on any CPUs. Use spaces to separate multiple CPUs.

The operating system can assign other processes to run on the same CPU; however, if utilization of the bound CPU is lower than utilization of the unbound CPUs.

Related parameters

To improve scheduling and dispatch performance of all LSF daemons, you should use LSF_DAEMONS_CPUS together with EGO_DAEMONS_CPUS (in ego. conf or lsf. conf), which controls LIM CPU allocation, and MBD_QUERY_CPUS, which binds mbactchd query processes to specific CPUs so that higher priority daemon processes can run more efficiently. To get best performance,

CPU allocation for all four daemons should be assigned their own CPUs. For example, on a 4 CPU SMP host, the following configuration gives the best performance:

EGO_DAEMONS_CPUS=0 LSF_DAEMONS_CPUS=1: 2 MBD_QUERY_CPUS=3

Examples

If you specify

LSF_DAEMONS_CPUS="1:2"

the mbat chd processes run only on CPU number 1 on the master host, and mbschd run on only on CPU number 2.

If you specify

LSF_DAEMONS_CPUS="1 2:1 2"

both mbatchd and mbschd run CPU 1 and CPU 2.

Important

You can specify CPU affinity only for master hosts that use one of the following operating systems:

- Linux 2.6 or higher
- Solaris 8 or higher

EGO parameter

LSF_DAEMONS_CPUS=*lim_cpu_list*: run the EGO LIM daemon on the specified CPUs.

Default

Not defined

See also

MBD_QUERY_CPUS in 1 sb. params

LSF_DEBUG_CMD

Syntax

LSF_DEBUG_CMD=log_class

Description

Sets the debugging log class for LSF commands and APIs.

Specifies the log class filtering to be applied to LSF commands or the API. Only messages belonging to the specified log class are recorded.

LSF_DEBUG_CMD sets the log class and is used in combination with LSF_CMD_LOG_MASK, which sets the log level. For example:

```
LSF_CMD_LOG_MASK=LOG_DEBUG LSF_DEBUG_CMD="LC_TRACE LC_EXEC"
```

Debugging is turned on when you define both parameters. In addition, LSF_SERVERDIR (l sf. conf) must be defined.

The daemons log to the sysl og facility unless LSF_CMD_LOGDIR is defined.

To specify multiple log classes, use a space-separated list enclosed by quotation marks. For example: LSF_DEBUG_CMD="LC_TRACE_LC_EXEC"

Can also be defined from the command line.

Valid values

Valid log classes are:

- LC_AFS and LC2_AFS: Log AFS messages
- LC_AUTH and LC2_AUTH: Log authentication messages
- LC_CHKPNT and LC2_CHKPNT: Log checkpointing messages
- LC_COMM and LC2_COMM: Log communication messages
- LC_DCE and LC2_DCE: Log messages pertaining to DCE support
- LC_EEVENTD and LC2_EEVENTD: Log eeventd messages
- LC_ELIM and LC2_ELIM: Log ELIM messages
- LC_EXEC and LC2_EXEC: Log significant steps for job execution
- LC_FAIR Log fairshare policy messages
- LC_FILE and LC2_FILE: Log file transfer messages
- LC_HANG and LC2_HANG: Mark where a program might hang
- LC_JARRAY and LC2_JARRAY: Log job array messages
- LC_JLIMIT and LC2_JLIMIT: Log job slot limit messages
- LC_LOADINDX and LC2_LOADINDX: Log load index messages
- LC_M_LOG and LC2_M_LOG: Log multievent logging messages
- LC_MPI and LC2_MPI: Log MPI messages
- LC_MULTI and LC2_MULTI: Log messages pertaining to MultiCluster
- LC_PEND and LC2_PEND: Log messages related to job pending reasons
- LC_PERFM and LC2_PERFM: Log performance messages
- LC_PIM and LC2_PIM: Log PIM messages
- LC_PREEMPT and LC2_PREEMPT: Log preemption policy messages
- LC_RESREQ and LC2_RESREQ: Log resource requirement messages
- LC_SIGNAL and LC2_SIGNAL: Log messages pertaining to signals
- LC_SYS and LC2_SYS: Log system call messages
- LC_TRACE and LC2_TRACE: Log significant program walk steps
- LC_XDR and LC2_XDR: Log everything transferred by XDR

Default

Not defined

See also

LSF_CMD_LOG_MASK, LSF_CMD_LOGDIR, LSF_DEBUG_LIM, LSF_DEBUG_RES, LSF_LIM_PORT, LSF_RES_PORT, LSB_MBD_PORT, LSB_SBD_PORT, LSF_LOGDIR, LSF_LIM_DEBUG, LSF_RES_DEBUG

LSF_DEBUG_LIM

Syntax

LSF_DEBUG_LIM=log_class

Description

Sets the log class for debugging LIM.

Specifies the log class filtering to be applied to LIM. Only messages belonging to the specified log class are recorded.

The LSF_DEBUG_LIM sets the log class and is used in combination with EGO_LOG_MASK in ego, conf, which sets the log level.

For example, in ego. conf:

EGO_LOG_MASK=LOG_DEBUG

and in 1 sf. conf:

LSF_DEBUG_LI M=LC_TRACE

Important:

If EGO is enabled, LSF_LOG_MASK no longer specifies LIM logging level. Use EGO_LOG_MASK in ego.conf to control message logging for LIM. The default value for EGO_LOG_MASK is LOG_WARNING.

You need to restart the daemons after setting LSF_DEBUG_LIM for your changes to take effect.

If you use the command l sadmin l i mdebug to temporarily change this parameter without changing l sf. conf, you do not need to restart the daemons.

To specify multiple log classes, use a space-separated list enclosed in quotation marks. For example: LSF_DEBUG_LI M="LC_TRACE_LC_EXEC"

This parameter can also be defined from the command line.

Valid values

Valid log classes are:

- LC_AFS and LC2_AFS: Log AFS messages
- LC_AUTH and LC2_AUTH: Log authentication messages
- LC_CHKPNT log checkpointing messages
- LC_COMM and LC2_COMM: Log communication messages
- LC_DCE and LC2_DCE: Log messages pertaining to DCE support
- LC_EXEC and LC2_EXEC: Log significant steps for job execution
- LC_FILE and LC2_FILE: Log file transfer messages
- LC_HANG and LC2_HANG: Mark where a program might hang
- LC_JGRP Log job group messages
- LC_MEMORY Log memory limit messages
- LC_MULTI and LC2_MULTI: Log messages pertaining to MultiCluster
- LC_PIM and LC2_PIM: Log PIM messages
- LC_RESOURCE Log resource broker messages
- LC_SIGNAL and LC2_SIGNAL: Log messages pertaining to signals
- LC_TRACE and LC2_TRACE: Log significant program walk steps
- LC_XDR and LC2_XDR: Log everything transferred by XDR

EGO parameter

EGO_DEBUG_LIM

Default

Not defined

See also

LSF_DEBUG_RES, LSF_CMD_LOGDIR, LSF_CMD_LOG_MASK, LSF_LOG_MASK, LSF_LOGDIR

LSF_DEBUG_RES

Syntax

LSF_DEBUG_RES=log_class

Description

Sets the log class for debugging RES.

Specifies the log class filtering to be applied to RES. Only messages belonging to the specified log class are recorded.

LSF_DEBUG_RES sets the log class and is used in combination with LSF_LOG_MASK, which sets the log level. For example:

LSF_LOG_MASK=LOG_DEBUG_LSF_DEBUG_RES=LC_TRACE

To specify multiple log classes, use a space-separated list enclosed in quotation marks. For example: LSF_DEBUG_RES="LC_TRACE_LC_EXEC"

You need to restart the daemons after setting LSF_DEBUG_RES for your changes to take effect.

If you use the command l sadmin resdebug to temporarily change this parameter without changing l sf. conf, you do not need to restart the daemons.

Valid values

For a list of valid log classes see LSF_DEBUG_LIM

Default

Not defined

See also

LSF_DEBUG_LIM, LSF_CMD_LOGDIR, LSF_CMD_LOG_MASK, LSF_LOG_MASK, LSF_LOGDIR

LSF_DHCP_ENV

Syntax

LSF_DHCP_ENV=y

Description

If defined, enables dynamic IP addressing for all LSF client hosts in the cluster.

Dynamic IP addressing is not supported across clusters in a MultiCluster environment.

If you set LSF_DHCP_ENV, you must also specify LSF_DYNAMIC_HOST_WAIT_TIME in order for hosts to rejoin a cluster after their IP address changes.

Tip:

After defining or changing this parameter, you must run l sadmin reconfig and badmin mbdrestart to restart all LSF daemons.

EGO parameter

EGO_DHCP_ENV

Default

Not defined

See also

LSF_DYNAMIC_HOST_WAIT_TIME

LSF_DISABLE_LSRUN

Syntax

LSF_DISABLE_LSRUN=y | Y

Description

When defined, RES refuses remote connections from 1 srun and 1 sgrun unless the user is either an LSF administrator or root. For remote execution by root, LSF_ROOT_REX must be defined.

Other remote execution commands, such as ch and l smake are not affected.

Default

Not defined

LSF_DISPATCHER_LOGDIR

Syntax

LSF_DISPATCHER_LOGDIR=path

Description

Specifies the path to the log files for slot allocation decisions for queue-based fairshare.

If defined, LSF writes the results of its queue-based fairshare slot calculation to the specified directory. Each line in the file consists of a timestamp for the slot allocation and the number of slots allocated to each queue under its control. LSF logs in this file every minute. The format of this file is suitable for plotting with gnupl ot.

Example

# clients	s managed	by LSF	
# Roma #	Verona #	Genova # Pisa # Venezia # Bologna	
15/3	19: 4: 50	0 0 0 0 0 0	
15/3	19: 5: 51	8 5 2 5 2 0	
15/3	19: 6: 51	8 5 2 5 5 1	
15/3	19: 7: 53	8 8 5 2 5 5 5	
15/3	19: 8: 54	8 5 2 5 5 0	
15/3	19: 9: 55	8 5 0 5 4 2	

The queue names are in the header line of the file. The columns correspond to the allocations per each queue.

Default

Not defined

LSF_DUALSTACK_PREFER_IPV6

Syntax

LSF_DUALSTACK_PREFER_IPV6=Y | y

Description

Define this parameter when you want to ensure that clients and servers on dual-stack hosts use IPv6 addresses only. Setting this parameter configures LSF to sort the dynamically created address lookup list in order of AF_INET6 (IPv6) elements first, followed by AF_INET (IPv4) elements, and then others.

Restriction:

IPv4-only and IPv6-only hosts cannot belong to the same cluster. In a MultiCluster environment, you cannot mix IPv4-only and IPv6-only clusters.

Follow these guidelines for using IPv6 addresses within your cluster:

- Define this parameter only if your cluster
 - Includes only dual-stack hosts, or a mix of dual-stack and IPv6-only hosts, and
 - Does not include IPv4-only hosts or IPv4 servers running on dual-stack hosts (servers prior to LSF version 7)

Important:

Do not define this parameter for any other cluster configuration.

- Within a MultiCluster environment, do not define this parameter if any cluster contains IPv4-only hosts or IPv4 servers (prior to LSF version 7) running on dual-stack hosts.
- Applications must be engineered to work with the cluster IP configuration.
- If you use IPv6 addresses within your cluster, ensure that you have configured the dual-stack hosts correctly. For more detailed information, see Administering IBM Platform LSF.
- Define the parameter LSF_ENABLE_SUPPORT_IPV6 in 1 sf. conf.

Default

Not defined. LSF sorts the dynamically created address lookup list in order of AF_INET (IPv4) elements first, followed by AF_INET6 (IPv6) elements, and then others. Clients and servers on dual-stack hosts use the first address lookup structure in the list (IPv4).

See also

LSF ENABLE SUPPORT IPV6

LSF_DYNAMIC_HOST_TIMEOUT

Syntax

LSF_DYNAMIC_HOST_TIMEOUT=time_hours

LSF_DYNAMIC_HOST_TIMEOUT=time_minutesm|M

Description

Enables automatic removal of dynamic hosts from the cluster and specifies the timeout value (minimum 10 minutes). To improve performance in very large clusters, you should disable this feature and remove unwanted hosts from the host cache file manually.

Specifies the length of time a dynamic host is unavailable before the master host removes it from the cluster. Each time LSF removes a dynamic host, mbat chd automatically reconfigures itself.

Valid value

The timeout value must be greater than or equal to 10 minutes.

Values below 10 minutes are set to the minimum allowed value 10 minutes; values above 100 hours are set to the maximum allowed value 100 hours.

Example

LSF_DYNAMI C_HOST_TI MEOUT=60

A dynamic host is removed from the cluster when it is unavailable for 60 hours.

LSF_DYNAMI C_HOST_TI MEOUT=60m

A dynamic host is removed from the cluster when it is unavailable for 60 minutes.

EGO parameter

EGO_DYNAMIC_HOST_TIMEOUT

Default

-1 (Not defined.) Unavailable hosts are never removed from the cluster.

LSF DYNAMIC HOST WAIT TIME

Syntax

LSF_DYNAMIC_HOST_WAIT_TIME=time_seconds

Description

Defines the length of time in seconds that a dynamic host waits communicating with the master LIM to either add the host to the cluster or to shut down any running daemons if the host is not added successfully.

Note:

To enable dynamically added hosts, the following parameters must be defined:

- LSF_DYNAMIC_HOST_WAIT_TIME in 1 sf. conf
- LSF_HOST_ADDR_RANGE in lsf. cluster. cluster_name

Recommended value

An integer greater than zero, up to 60 seconds for every 1000 hosts in the cluster, for a maximum of 15 minutes. Selecting a smaller value results in a quicker response time for hosts at the expense of an increased load on the master LIM.

Example

LSF_DYNAMI C_HOST_WAI T_TI ME=60

A host waits 60 seconds from startup to send a request for the master LIM to add it to the cluster or to shut down any daemons if it is not added to the cluster.

Default

Not defined. Dynamic hosts cannot join the cluster.

LSF_EGO_DAEMON_CONTROL

Syntax

LSF_EGO_DAEMON_CONTROL="Y" | "N"

Description

Enables EGO Service Controller to control LSF res and sbatchd startup. Set the value to "Y" if you want EGO Service Controller to start res and sbatchd, and restart them if they fail.

To configure this parameter at installation, set EGO_DAEMON_CONTROL in i nstall.config so that res and sbatchd start automatically as EGO services.

If LSF ENABLE EGO="N", this parameter is ignored and EGO Service Controller is not started.

If you manually set EGO_DAEMON_CONTROL=Y after installation, you *must* configure LSF res and sbatchd startup to AUTOMATIC in the EGO configuration files res. xml and sbatchd. xml under EGO_ESRVDI R/esc/conf/servi ces.

To avoid conflicts with existing LSF startup scripts, do not set this parameter to "Y" if you use a script (for example in /etc/rc or /etc/i ni ttab) to start LSF daemons. If this parameter is not defined in i nstall.config file, it takes default value of "N".

Important:

After installation, LSF_EGO_DAEMON_CONTROL alone *does not* change the start type for the sbat chd and res EGO services to

AUTOMATIC in res. xml and sbatchd. xml under EGO_ESRVDIR/esc/conf/servi ces. You must edit these files and set the <sc: StartType> parameter to AUTOMATIC.

Example

LSF_EGO_DAEMON_CONTROL="N"

Default

N (res and sbatchd are started manually or through operating system rc facility)

LSF_EGO_ENVDIR

Syntax

LSF_EGO_ENVDIR=directory

Description

Directory where all EGO configuration files are installed. These files are shared throughout the system and should be readable from any host.

If LSF_ENABLE_EGO="N", this parameter is ignored and ego. conf is not loaded.

Default

LSF_CONFDI R/ego/cluster_name/kernel. If not defined, or commented out, /etc is assumed.

LSF_ENABLE_CSA

Syntax

LSF_ENABLE_CSA=y | Y

Description

If set, enables LSF to write records for LSF jobs to SGI IRIX Comprehensive System Accounting facility (CSA).

CSA writes an accounting record for each process in the pacct file, which is usually located in the /var/adm/acct/day directory. IRIX system administrators then use the csabuild command to organize and present the records on a job by job basis.

When LSF_ENABLE_CSA is set, for each job run on the IRIX system, LSF writes an LSF-specific accounting record to CSA when the job starts, and when the job finishes. LSF daemon accounting in CSA starts and stops with the LSF daemon.

To disable IRIX CSA accounting, remove LSF_ENABLE_CSA from l sf. conf.

See the IRIX resource administration documentation for information about CSA.

Set up IRIX CSA

1. Define the LSF_ENABLE_CSA parameter in 1 sf. conf:

```
... LSF_ENABLE_CSA=Y ...
```

- 2. Set the following parameters in /etc/csa. conf to on:
 - CSA START
 - WKMG_START
- 3. Run the csaswitch command to turn on the configuration changes in /etc/csa. conf.

Note:

See the IRIX resource administration documentation for information about the csaswi tch command.

Information written to the pacct file

LSF writes the following records to the pacct file when a job starts and when it exits:

- Job record type (job start or job exit)
- Current system clock time
- Service provider (LSF)
- Submission time of the job (at job start only)
- User ID of the job owner
- Array Session Handle (ASH) of the job
- IRIX job ID
- IRIX project ID
- LSF job name if it exists
- Submission host name
- LSF queue name
- LSF external job ID
- LSF job array index
- LSF job exit code (at job exit only)
- NCPUS: number of CPUs the LSF job has been using

Default

Not defined

LSF_ENABLE_DUALCORE

Syntax

LSF_ENABLE_DUALCORE=y | n

Description

Enables job scheduling based on dual-core information for a host. If yes (Y), LSF scheduling policies use the detected number of cores as the number of physical processors on the host instead of the number of dual-core chips for job scheduling. For a dual-core host, 1 shosts shows the number of cores under ncpus instead of the number of chips.

IF LSF_ENABLE_DUALCORE=n, then I shosts shows the number of processor chips under ncpus.

EGO parameter

EGO_ENABLE_DUALCORE

Default

N

LSF_ENABLE_EGO

Syntax

LSF_ENABLE_EGO="Y" | "N"

Description

Enables EGO functionality in the LSF cluster.

If you set LSF_ENABLE_EGO="Y", you must set or uncomment LSF_EGO_ENVDIR in 1 sf. conf.

If you set LSF_ENABLE_EGO="N" you must remove or comment out LSF_EGO_ENVDIR in l sf. conf.

Set the value to "N" if you do not want to take advantage of the following LSF features that depend on EGO:

- LSF daemon control by EGO Service Controller
- EGO-enabled SLA scheduling

Important:

After changing the value of LSF_ENABLE_EGO, you must shut down and restart the cluster.

Default

Y (EGO is enabled in the LSF cluster)

LSF_ENABLE_EXTSCHEDULER

Syntax

LSF_ENABLE_EXTSCHEDULER=y | Y

Description

If set, enables mbat chd external scheduling for LSF HPC features.

Default

Not defined

LSF_ENABLE_SUPPORT_IPV6

Syntax

LSF_ENABLE_SUPPORT_IPV6=y | Y

Description

If set, enables the use of IPv6 addresses in addition to IPv4.

Default

Not defined

See also

LSF_DUALSTACK_PREFER_IPV6

LSF_ENVDIR

Syntax

LSF_ENVDIR=directory

Description

Directory containing the 1 sf. conf file.

By default, l sf. conf is installed by creating a shared copy in LSF_CONFDIR and adding a symbolic link from /etc/l sf. conf to the shared copy. If LSF_ENVDIR is set, the symbolic link is installed in LSF_ENVDI R/l sf. conf.

The 1 sf. conf file is a global environment configuration file for all LSF services and applications. The LSF default installation places the file in LSF_CONFDIR.

Default

/etc

LSF_EVENT_PROGRAM

Syntax

LSF_EVENT_PROGRAM=event_program_name

Description

Specifies the name of the LSF event program to use.

If a full path name is not provided, the default location of this program is LSF_SERVERDIR.

If a program that does not exist is specified, event generation does not work.

If this parameter is not defined, the default name is genevent on UNIX, and genevent. exe on Windows.

Default

Not defined

LSF_EVENT_RECEIVER

Syntax

LSF_EVENT_RECEIVER=event_receiver_program_name

Description

Specifies the LSF event receiver and enables event generation.

Any string may be used as the LSF event receiver; this information is not used by LSF to enable the feature but is only passed as an argument to the event program.

If LSF_EVENT_PROGRAM specifies a program that does not exist, event generation does not work.

Default

Not defined. Event generation is disabled

LSF_GET_CONF

Syntax

LSF_GET_CONF=lim

Description

Synchronizes a local host's cluster configuration with the master host's cluster configuration. Specifies that a slave host must request cluster configuration details from the LIM of a host on the SERVER_HOST list. Use when a slave host does not share a filesystem with master hosts, and therefore cannot access cluster configuration.

Default

Not defined.

LSF_HOST_CACHE_NTTL

Syntax

LSF_HOST_CACHE_NTTL=time_seconds

Description

Negative-time-to-live value in seconds. Specifies the length of time the system caches a failed DNS lookup result. If you set this value to zero (0), LSF does not cache the result.

Note:

Setting this parameter does not affect the positive-time-to-live value set by the parameter LSF_HOST_CACHE_PTTL.

Valid values

Positive integer. Recommended value less than or equal to 60 seconds (1 minute).

Default

20 seconds

See also

LSF_HOST_CACHE_PTTL

LSF_HOST_CACHE_PTTL

Syntax

LSF_HOST_CACHE_PTTL=time_seconds

Description

Positive-time-to-live value in seconds. Specifies the length of time the system caches a successful DNS lookup result. If you set this value to zero (0), LSF does not cache the result.

Note:

Setting this parameter does not affect the negative-time-to-live value set by the parameter LSF_HOST_CACHE_NTTL.

Valid values

Positive integer. Recommended value equal to or greater than 3600 seconds (1 hour).

Default

86400 seconds (24 hours)

See also

LSF_HOST_CACHE_NTTL

LSF_HPC_EXTENSIONS

Syntax

LSF_HPC_EXTENSIONS="extension_name ..."

Description

Enables LSF HPC extensions.

After adding or changing LSF_HPC_EXTENSI ONS, use badmi n $\,$ mbdrestart and badmi n $\,$ hrestart to reconfigure your cluster.

Valid values

The following extension names are supported:

CUMULATIVE_RUSAGE: When a parallel job script runs multiple commands, resource usage is collected for jobs in the job script, rather than being overwritten when each command is executed.

DISP_RES_USAGE_LIMITS: bj obs displays resource usage limits configured in the queue as well as job-level limits.

HOST_RUSAGE: For parallel jobs, reports the correct rusage based on each host's usage and the total rusage being charged to the execution host. This host rusage breakdown applies to the blaunch framework, the pam framework, and vendor MPI jobs. For a running job, you will see run time, memory, swap, utime, stime, and pids and pgids on all hosts that a parallel job spans. For finished jobs, you will see memory, swap, utime, and stime on all hosts that a parallel job spans. The host-based rusage is reported in the JOB_FINISH record of 1 sb. acct and 1 sb. stream, and the JOB_STATUS record of 1 sb. events if

the job status is done or exit. Also for finished jobs, bjobs -l shows CPU time, bhist -l shows CPU time, and bacct -l shows utime, stime, memory, and swap. In the MultiCluster lease model, the parallel job must run on hosts that are all in the same cluster. If you use the jobFinishLog API, all external tools must use jobFinishLog built with LSF 8.0, or host-based rusage will not work. If you add or remove this extension, you must restart mbatchd, sbatchd, and res on all hosts.

LSB_HCLOSE_BY_RES: If res is down, host is closed with a message

Host is closed because RES is not available.

The status of the closed host is closed_Adm. No new jobs are dispatched to this host, but currently running jobs are not suspended.

RESERVE_BY_STARTTIME: LSF selects the reservation that gives the job the earliest predicted start time.

By default, if multiple host groups are available for reservation, LSF chooses the largest possible reservation based on number of slots.

SHORT_EVENTFILE: Compresses long host name lists when event records are written to 1 sb. events and 1 sb. acct for large parallel jobs. The short host string has the format:

number_of_hosts*real_host_name

Tip:

When SHORT_EVENTFILE is enabled, older daemons and commands (pre-LSF Version 7) cannot recognize the lsb.acct and lsb.events file format.

For example, if the original host list record is

```
6 "hostA" "hostA" "hostA" "hostA" "hostB" "hostC"
```

redundant host names are removed and the short host list record becomes

```
3 "4*hostA" "hostB" "hostC"
```

When LSF_HPC_EXTENSIONS="SHORT_EVENTFILE" is set, and LSF reads the host list from 1 sb. events or 1 sb. acct, the compressed host list is expanded into a normal host list.

SHORT EVENTFILE affects the following events and fields:

- JOB_START in 1 sb. events when a normal job is dispatched
 - numExHosts (%d)
 - execHosts (%s)
- JOB_CHUNK in 1 sb. events when a job is inserted into a job chunk
 - numExHosts (%d)
 - execHosts (%s)
- JOB_FORWARD in 1 sb. events when a job is forwarded to a MultiCluster leased host
 - numReserHosts (%d)
 - reserHosts (%s)
- JOB_FINISH record in 1 sb. acct
 - numExHosts (%d)
 - execHosts (%s)

SHORT_PIDLIST: Shortens the output from bj obs to omit all but the first process ID (PID) for a job. bj obs displays only the first ID and a count of the process group IDs (PGIDs) and process IDs for the job.

Without SHORT_PIDLIST, bj obs -1 displays all the PGIDs and PIDs for the job. With SHORT PIDLIST set, bj obs -1 displays a count of the PGIDS and PIDs.

TASK_MEMLIMIT: Enables enforcement of a memory limit (bsub - M, bmod - M, or MEMLIMIT in 1 sb. queues) for individual tasks in a parallel job. If any parallel task exceeds the memory limit, LSF terminates the entire job.

TASK_SWAPLIMIT: Enables enforcement of a virtual memory (swap) limit (bsub - v, bmod - v, or SWAPLIMIT in 1 sb. queues) for individual tasks in a parallel job. If any parallel task exceeds the swap limit, LSF terminates the entire job.

Example JOB_START events in lsb.events:

For a job submitted with

bsub -n 64 -R "span[ptile=32]" sleep 100

Without SHORT_EVENTFILE, a JOB_START event like the following is logged in 1 sb. events:

```
"JOB_START" "8. 0" 1058989891 710 4 0 0 10. 3 64 "hostA" "hostA" "hostA" "hostA" "hostA" "hostA"

"hostA" "hostA" "hostA" "hostA" "hostA" "hostA" "hostA" "hostA" "hostA" "hostA" "hostA"

"hostA" "hostA" "hostA" "hostA" "hostA" "hostA" "hostB" "ho
```

With SHORT_EVENTFILE, a JOB_START event would be logged in 1 sb. events with the number of execution hosts (numExHosts field) changed from 64 to 2 and the execution host list (execHosts field) shortened to "32*hostA" and "32*hostB":

```
"JOB_START" "8.0" 1058998174 812 4 0 0 10.3 2 "32*hostA" "32*hostB" "" "" 0 ""
```

Example JOB_FINISH records in lsb.acct:

For a job submitted with

bsub -n 64 -R "span[ptile=32]" sleep 100

Without SHORT_EVENTFILE, a JOB_FINISH event like the following is logged in 1 sb. acct:

```
"JOB_FINISH" "8.0" 1058990001 710 33054 33816578 64 1058989880 0 0 1058989891 "user1"

"normal" "span[ptile=32]" "" "" "hostA" "/scratch/user1/work" "" "" "1058989880.710"

0 64 "hostA" "hostB" "hos
```

With SHORT_EVENTFILE, a JOB_FINISH event like the following would be logged in 1 sb. acct with the number of execution hosts (numExHosts field) changed from 64 to 2 and the execution host list (execHosts field) shortened to "32*hostA" and "32*hostB":

Example bjobs -I output without SHORT_PIDLIST:

bj obs -1 displays all the PGIDs and PIDs for the job:

```
bjobs -I
Job <109>, User <user3>, Project <default>, Status <RUN>, Queue <normal>, Inte
                    ractive mode, Command <./mail
Mon Jul 21 20:54:44 2009: Submitted from host <hostA>, CWD <$HOME/LSF/jobs;
RUNLI MI T
10.0 min of hostA
STACKLI MI T CORELI MI T MEMLI MI T
5256 K 10000 K 5000 K
Mon Jul 21 20:54:51 2009: Started on <hostA>;
Mon Jul 21 20:55:03 2009: Resource usage collected.
                     MEM: 2 Mbytes; SWAP: 15 Mbytes
                     PGID: 256871; PIDs: 256871
                     PGID: 257325; PIDs: 257325 257500 257482 257501 257523
                     257525 257531
SCHEDULING PARAMETERS:
l oadSched
loadStop
                                bandwi dth
                    cpuspeed
l oadSched
<< Job <109> is done successfully. >>
```

Example bjobs -I output with SHORT_PIDLIST:

bj obs -1 displays a count of the PGIDS and PIDs:

```
bjobs -I
Job <109>, User <user3>, Project <default>, Status <RUN>, Queue <normal>, Inte
                     ractive mode, Command <./myjob.sh>
Mon Jul 21 20:54:44 2009: Submitted from host <hostA>, CWD <$HOME/LSF/jobs;
RUNLI MI T
10.0 min of hostA
STACKLI MI T CORELI MI T MEMLI MI T
  5256 K 10000 K 5000 K
Mon Jul 21 20:54:51 2009: Started on <hostA>;
Mon Jul 21 20:55:03 2009: Resource usage collected
                     MEM: 2 Mbytes; SWAP: 15 Mbytes
                     PGID(s): 256871: 1 PID, 257325: 7 PIDs
SCHEDULING PARAMETERS:
          r15s r1m r15m
l oadSched
loadStop
loadSched
loadStop
```

Default

Not defined

LSF_HPC_PJL_LOADENV_TIMEOUT

Syntax

LSF_HPC_PJL_LOADENV_TIMEOUT=time_seconds

Description

Timeout value in seconds for PJL to load or unload the environment. For example, set LSF_HPC_PJL_LOADENV_TIMEOUT to the number of seconds needed for IBM POE to load or unload adapter windows.

At job startup, the PJL times out if the first task fails to register with PAM within the specified timeout value. At job shutdown, the PJL times out if it fails to exit after the last Taskstarter termination report within the specified timeout value.

Default

LSF HPC PJL LOADENV_TIMEOUT=300

LSF_ID_PORT

Syntax

LSF_ID_PORT=port_number

Description

The network port number used to communicate with the authentication daemon when LSF_AUTH is set to ident.

Default

Not defined

LSF_INCLUDEDIR

Syntax

LSF_INCLUDEDIR=directory

Description

Directory under which the LSF API header files 1 sf. h and 1 sbat ch. h are installed.

Default

LSF_I NDEP/i ncl ude

See also

LSF_INDEP

LSF_INDEP

Syntax

LSF_INDEP=directory

Description

Specifies the default top-level directory for all machine-independent LSF files.

This includes man pages, configuration files, working directories, and examples. For example, defining LSF_INDEP as /usr/share/lsf/mnt places man pages in /usr/share/lsf/mnt/man, configuration files in /usr/share/lsf/mnt/conf, and so on.

The files in LSF_INDEP can be shared by all machines in the cluster.

As shown in the following list, LSF_INDEP is incorporated into other LSF environment variables.

- LSB SHAREDIR=\$LSF INDEP/work
- LSF_CONFDIR=\$LSF_INDEP/conf
- LSF_INCLUDEDIR=\$LSF_INDEP/include
- LSF_MANDIR=\$LSF_INDEP/man
- XLSF_APPDIR=\$LSF_INDEP/misc

Default

/usr/share/lsf/mnt

See also

LSF_MACHDEP, LSB_SHAREDIR, LSF_CONFDIR, LSF_INCLUDEDIR, LSF_MANDIR, XLSF_APPDIR

LSF_INTERACTIVE_STDERR

Syntax

LSF_INTERACTIVE_STDERR=y | n

Description

Separates stderr from stdout for interactive tasks and interactive batch jobs.

This is useful to redirect output to a file with regular operators instead of the bsub - e *err_file* and -o *out_file* options.

This parameter can also be enabled or disabled as an environment variable.

Caution:

If you enable this parameter globally in lsf.conf, check any custom scripts that manipulate stderr and stdout.

When this parameter is not defined or set to n, the following are written to stdout on the submission host for interactive tasks and interactive batch jobs:

- Job standard output messages
- Job standard error messages

The following are written to stderr on the submission host for interactive tasks and interactive batch jobs:

- LSF messages
- NIOS standard messages
- NIOS debug messages (if LSF_NIOS_DEBUG=1 in l sf. conf)

When this parameter is set to y, the following are written to st dout on the submission host for interactive tasks and interactive batch jobs:

Job standard output messages

The following are written to stderr on the submission host:

- Job standard error messages
- LSF messages
- NIOS standard messages
- NIOS debug messages (if LSF_NIOS_DEBUG=1 in 1 sf. conf)

Default

Not defined

Notes

When this parameter is set, the change affects interactive tasks and interactive batch jobs run with the following commands:

- bsub I
- bsub I p
- bsub -Is
- lsrun
- lsgrun
- lsmake
- bsub pam (HPC features must be enabled)

Limitations

- Pseudo-terminal: Do not use this parameter if your application depends on stderr as a terminal.
 This is because LSF must use a non-pseudo-terminal connection to separate stderr from stdout.
- Synchronization: Do not use this parameter if you depend on messages in stderr and stdout to be
 synchronized and jobs in your environment are continuously submitted. A continuous stream of
 messages causes stderr and stdout to not be synchronized. This can be emphasized with parallel
 jobs. This situation is similar to that of rsh.
- NIOS standard and debug messages: NIOS standard messages, and debug messages (when LSF_NIOS_DEBUG=1 in lsf. conf or as an environment variable) are written to stderr. NIOS standard messages are in the format <<message>>>, which makes it easier to remove them if you wish. To redirect NIOS debug messages to a file, define LSF_CMD_LOGDIR in lsf. conf or as an environment variable.

See also

LSF_NIOS_DEBUG, LSF_CMD_LOGDIR

LSF LD SECURITY

Syntax

LSF_LD_SECURITY=y | n

Description

LSF_LD_SECURITY: When set, jobs submitted using bsub - I s or bsub - I p cause the environment variables LD_PRELOAD and LD_LIBRARY_PATH to be removed from the job environment during job initialization to ensure enhanced security against users obtaining root privileges.

Two new environment variables are created (LSF_LD_LIBRARY_PATH and LSF_LD_PRELOAD) to allow LD_PRELOAD and LD_LIBRARY_PATH to be put back before the job runs.

Default

N

LSF LIBDIR

Syntax

LSF_LIBDIR=directory

Description

Specifies the directory in which the LSF libraries are installed. Library files are shared by all hosts of the same type.

Default

LSF_MACHDEP/lib

LSF_LIC_SCHED_HOSTS

Syntax

LSF_LIC_SCHED_HOSTS="candidate_host_list"

candidate_host_list is a space-separated list of hosts that are candidate License Scheduler hosts.

Description

The candidate License Scheduler host list is read by LIM on each host to check if the host is a candidate License Scheduler master host. If the host is on the list, LIM starts the License Scheduler daemon (bl d) on the host.

LSF_LIC_SCHED_PREEMPT_REQUEUE

Syntax

LSF_LIC_SCHED_PREEMPT_REQUEUE=y | n

Description

Set this parameter to requeue a job whose license is preempted by License Scheduler. The job is killed and requeued instead of suspended.

If you set LSF_LIC_SCHED_PREEMPT_REQUEUE, do not set LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE. If both these parameters are set, LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE is ignored.

Default

N

See also

 $LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE, LSF_LIC_SCHED_PREEMPT_STOP$

LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE

Syntax

LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE=y | n

Description

Set this parameter to release the slot of a job that is suspended when its license is preempted by License Scheduler.

If you set LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE, do not set LSF_LIC_SCHED_PREEMPT_REQUEUE. If both these parameters are set, LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE is ignored.

Default

Y

See also

LSF_LIC_SCHED_PREEMPT_REQUEUE, LSF_LIC_SCHED_PREEMPT_STOP

LSF_LIC_SCHED_PREEMPT_STOP

Syntax

LSF_LIC_SCHED_PREEMPT_STOP=y | n

Description

Set this parameter to use job controls to stop a job that is preempted. When this parameter is set, a UNIX SIGSTOP signal is sent to suspend a job instead of a UNIX SIGTSTP.

To send a SIGSTOP signal instead of SIGTSTP, the following parameter in 1 sb. queues must also be set:

JOB_CONTROLS=SUSPEND[SIGSTOP]

Default

N

See also

LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE, LSF_LIC_SCHED_PREEMPT_REQUEUE

LSF_LIC_SCHED_STRICT_PROJECT_NAME

Syntax

LSF_LIC_SCHED_STRICT_PROJECT_NAME=y | n

Description

Enforces strict checking of the License Scheduler project name upon job submission or job modification (bsub or bmod). If the project named is misspelled (case sensitivity applies), the job is rejected.

If this parameter is not set or it is set to n, and if there is an error in the project name, the default project is used.

Default

N

LSF_LIM_API_NTRIES

Syntax

LSF_LIM_API_NTRIES=integer

Description

Defines the number of times LSF commands will try to communicate with the LIM API when LIM is not available. LSF_LIM_API_NTRIES is ignored by LSF and EGO daemons and EGO commands. The LSF_LIM_API_NTRIES environment variable. overrides the value of LSF_LIM_API_NTRIES in 1 sf. conf.

Valid values

1 to 65535

Default

1. LIM API exits without retrying.

LSF_LIM_DEBUG

Syntax

LSF_LIM_DEBUG=1 | 2

Description

Sets LSF to debug mode.

If LSF_LIM_DEBUG is defined, LIM operates in single user mode. No security checking is performed, so LIM should not run as root.

LIM does not look in the services database for the LIM service port number. Instead, it uses port number 36000 unless LSF_LIM_PORT has been defined.

Specify 1 for this parameter unless you are testing LSF.

Valid values

LSF_LIM_DEBUG=1

LIM runs in the background with no associated control terminal.

LSF_LIM_DEBUG=2

LIM runs in the foreground and prints error messages to tty.

EGO parameter

EGO_LIM_DEBUG

Default

Not defined

See also

LSF_RES_DEBUG, LSF_CMD_LOGDIR, LSF_CMD_LOG_MASK, LSF_LOG_MASK, LSF_LOGDIR

LSF_LIM_IGNORE_CHECKSUM

Syntax

LSF_LIM_IGNORE_CHECKSUM=y | Y

Description

Configure LSF_LIM_IGNORE_CHECKSUM=Y to ignore warning messages logged to 1 i m log files on non-master hosts.

When LSF_MASTER_LIST is set, l sadmin reconfigonly restarts master candidate hosts (for example, after adding or removing hosts from the cluster). This can cause superfluous warning messages like the following to be logged in the limlog files for non-master hosts because limon these hosts are not restarted after configuration change:

Aug 26 13: 47: 35 2006 9746 4 8.0 xdr_loadvector: Sender <10.225.36.46: 9999> has a different configuration

Default

Not defined.

See also

LSF_MASTER_LIST

LSF_LIM_PORT, LSF_RES_PORT, LSB_MBD_PORT, LSB_SBD_PORT

Syntax

LSF_LIM_PORT=port_number

Description

TCP service ports to use for communication with the LSF daemons.

If port parameters are not defined, LSF obtains the port numbers by looking up the LSF service names in the /etc/servi ces file or the NIS (UNIX). If it is not possible to modify the services database, you can define these port parameters to set the port numbers.

EGO parameter

EGO LIM PORT

Default

On UNIX, the default is to get port numbers from the services database.

On Windows, these parameters are mandatory.

Default port number values are:

- LSF_LIM_PORT=7869
- LSF RES PORT=6878
- LSB_MBD_PORT=6881
- LSB SBD PORT=6882

LSF_LIVE_CONFDIR

Syntax

LSF LIVE CONFDIR=directory

Description

Enables and disables live reconfiguration (bconf command) and sets the directory where configuration files changed by live reconfiguration are saved. bconf requests will be rejected if the directory does not exist and cannot be created, or is specified using a relative path.

When LSF_LIVE_CONFDIR is defined and contains configuration files, all LSF restart and reconfiguration reads these configuration files instead of the files in LSF_CONFDIR.

After adding or changing LSF_LIVE_CONFDIR in lsf. conf, use badmin mbdrestart and lsadmin reconfig to reconfigure your cluster.

Important:

Remove LSF_LIVE_CONFDIR configuration files or merge files into LSF_CONFDIR before upgrading LSF or applying patches to LSF.

See boonf in the LSF Command Reference or boonf man page for boonf (live reconfiguration) details.

Default

During installation, LSF_LIVE_CONFDIR is set to LSB_SHAREDIR/cluster_name/live_confdir where *cluster_name* is the name of the LSF cluster, as returned by lsi d.

See also

LSF_CONFDIR, LSB_CONFDIR

LSF_LOAD_USER_PROFILE

Syntax

LSF_LOAD_USER_PROFILE=local | roaming

Description

When running jobs on Windows hosts, you can specify whether a user profile should be loaded. Use this parameter if you have jobs that need to access user-specific resources associated with a user profile.

Local and roaming user profiles are Windows features. For more information about them, check Microsoft documentation.

•	Local: LSF loads the Windows user profile from the local execution machine (the host on which the
	job runs).

Noto:			

If the user has logged onto the machine before, the profile of that user is used. If not, the profile for the default user is used

 Roaming: LSF loads a roaming user profile if it has been set up. If not, the local user profile is loaded instead.

Default

Not defined. No user profiles are loaded when jobs run on Windows hosts.

LSF_LOCAL_RESOURCES

Syntax

LSF_LOCAL_RESOURCES="resource..."

Description

Defines instances of local resources residing on the slave host.

For numeric resources, defined name-value pairs:

"[resourcemap value*resource_name]"

• For Boolean resources, the value is the resource name in the form:

"[resource resource_name]"

When the slave host calls the master host to add itself, it also reports its local resources. The local resources to be added must be defined in lsf. shared.

If the same resource is already defined in 1 sf. shared as defaul t or al 1, it cannot be added as a local resource. The shared resource overrides the local one.

Tip:

Important:

Resources must already be mapped to hosts in the ResourceMap section of lsf.cluster.cluster_name. If the ResourceMap section does not exist, local resources are not added.

Example

LSF_LOCAL_RESOURCES="[resourcemap 1*verilog] [resource linux]"

EGO parameter

EGO LOCAL RESOURCES

Default

Not defined

LSF_LOG_MASK

Syntax

LSF_LOG_MASK=message_log_level

Description

Specifies the logging level of error messages for LSF daemons, except LIM, which is controlled by EGO.

For example:

LSF_LOG_MASK=LOG_DEBUG

If EGO is enabled in the LSF cluster, and EGO_LOG_MASK is not defined, LSF uses the value of LSF_LOG_MASK for LIM, PIM, and MELIM. EGO vemkd and pem components continue to use the EGO default values. If EGO_LOG_MASK is defined, and EGO is enabled, then EGO value is taken.

To specify the logging level of error messages for LSF commands, use LSF_CMD_LOG_MASK. To specify the logging level of error messages for LSF batch commands, use LSB_CMD_LOG_MASK.

On UNIX, this is similar to sysl og. All messages logged at the specified level or higher are recorded; lower level messages are discarded. The LSF_LOG_MASK value can be any log priority symbol that is defined in sysl og. h (see sysl og).

The log levels in order from highest to lowest are:

- LOG EMERG
- LOG_ALERT
- LOG CRIT
- LOG_ERR
- LOG_WARNING
- LOG_NOTICE
- LOG_INFO
- LOG_DEBUG
- LOG_DEBUG1
- LOG DEBUG2
- LOG DEBUG3

The most important LSF log messages are at the LOG_ERR or LOG_WARNING level. Messages at the LOG_INFO and LOG_DEBUG level are only useful for debugging.

Although message log level implements similar functionality to UNIX sysl og, there is no dependency on UNIX sysl og. It works even if messages are being logged to files instead of sysl og.

LSF logs error messages in different levels so that you can choose to log all messages, or only log messages that are deemed critical. The level specified by LSF_LOG_MASK determines which messages are recorded and which are discarded. All messages logged at the specified level or higher are recorded, while lower level messages are discarded.

For debugging purposes, the level LOG_DEBUG contains the fewest number of debugging messages and is used for basic debugging. The level LOG_DEBUG3 records all debugging messages, and can cause log files to grow very large; it is not often used. Most debugging is done at the level LOG_DEBUG2.

In versions earlier than LSF 4.0, you needed to restart the daemons after setting LSF_LOG_MASK in order for your changes to take effect.

LSF 4.0 implements dynamic debugging, which means you do not need to restart the daemons after setting a debugging environment variable.

EGO parameter

EGO_LOG_MASK

Default

LOG_WARNING

See also

LSB_CMD_LOG_MASK, LSB_CMD_LOGDIR, LSB_DEBUG, LSB_DEBUG_CMD, LSB_DEBUG_NQS, LSB_TIME_CMD, LSF_CMD_LOGDIR, LSF_CMD_LOG_MASK, LSF_DEBUG_LIM, LSB_DEBUG_MBD, LSF_DEBUG_RES, LSB_DEBUG_SBD, LSB_DEBUG_SCH, LSF_LOG_MASK, LSF_LOGDIR, LSF_TIME_CMD

LSF_LOG_MASK_WIN

Syntax

LSF_LOG_MASK_WIN=message_log_level

Description

Allows you to reduce the information logged to the LSF Windows event log files. Messages of lower severity than the specified level are discarded.

For all LSF files, the types of messages saved depends on LSF_LOG_MASK, so the threshold for the Windows event logs is either LSF_LOG_MASK or LSF_LOG_MASK_WIN, whichever is higher. LSF_LOG_MASK_WIN is ignored if LSF_LOG_MASK is set to a higher level.

The LSF event log files for Windows are:

- lim.log. host_name
- res. l og. host_name
- sbatchd. l og. host_name
- mbatchd.log. host_name
- pi m. l og. host_name

The log levels you can specify for this parameter, in order from highest to lowest, are:

- LOG_ERR
- LOG_WARNING
- LOG_INFO
- LOG_NONE (LSF does not log Windows events)

Default

LOG_ERR

See also

LSF_LOG_MASK

LSF_LOGDIR

Syntax

LSF_LOGDIR=directory

Description

Defines the LSF system log file directory. Error messages from all servers are logged into files in this directory. To effectively use debugging, set LSF_LOGDIR to a directory such as / tmp. This can be done in your own environment from the shell or in l sf. conf.

Windows

LSF_LOGDIR is required on Windows if you wish to enable logging.

You must also define LSF_LOGDIR_USE_WIN_REG=n.

If you define LSF_LOGDIR without defining LSF_LOGDIR_USE_WIN_REG=n, LSF logs error messages into files in the default local directory specified in one of the following Windows registry keys:

On Windows 2000, Windows XP, and Windows 2003:

 $\label{local_MACHINE} $$HKEY_LOCAL_MACHINE\SOFTWARE\Platform\ Computing\ Corporation\LSF\cluster_name\LSF_LOGDIR$$

On Windows XP x64 and Windows 2003 x64:

 $\label{thm:local_machine} HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Platform\ Computing\ Corporation\LSF\\ \verb|\| cluster_name\LSF_LOGDIR | \\$

If a server is unable to write in the LSF system log file directory, LSF attempts to write to the following directories in the following order:

- LSF TMPDIR if defined
- %TMP% if defined
- %TEMP% if defined
- System directory, for example, c: \wi nnt

UNIX

If a server is unable to write in this directory, the error logs are created in /tmp on UNIX.

If LSF_LOGDIR is not defined, sysl og is used to log everything to the system log using the LOG_DAEMON facility. The syslog facility is available by default on most UNIX systems. The /etc/sysl og. conf file controls the way messages are logged and the files they are logged to. See the man pages for the sysl ogd daemon and the sysl og function for more information.

Default

Not defined. On UNIX, log messages go to sysl og. On Windows, no logging is performed.

See also

LSB_CMD_LOG_MASK, LSB_CMD_LOGDIR, LSB_DEBUG, LSB_DEBUG_CMD, LSB_TIME_CMD, LSF_CMD_LOGDIR, LSF_CMD_LOG_MASK, LSF_LOG_MASK, LSF_LOGDIR_USE_WIN_REG, LSF_TIME_CMD

Files

- lim.log. host_name
- res. l og. host_name
- sbatchd. l og. host name
- sbatchdc. log. host_name (when LSF_DAEMON_WRAP=Y)
- mbat chd. l og. host_name
- eeventd. l og. host_name
- pi m. l og. *host_name*

LSF_LOGDIR_USE_WIN_REG

Syntax

LSF_LOGDIR_USE_WIN_REG=n | N

Description

Windows only.

If set, LSF logs error messages into files in the directory specified by LSF_LOGDIR in 1 sf. conf.

Use this parameter to enable LSF to save log files in a different location from the default local directory specified in the Windows registry.

If not set, or if set to any value other than N or n, LSF logs error messages into files in the default local directory specified in one of the following Windows registry keys:

On Windows 2000, Windows XP, and Windows 2003:

<code>HKEY_LOCAL_MACHINE\SOFTWARE\Pl</code> at form <code>Computing Corporation\LSF\cluster_name \LSF_LOGDIR</code>

On Windows XP x64 and Windows 2003 x64:

 $\label{thm:local_machine} HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Platform\ Computing\ Corporation\LSF\cluster_name\LSF_LOGDIR$

Default

Not set.

LSF uses the default local directory specified in the Windows registry.

See also

LSF LOGDIR

LSF_LOGFILE_OWNER

Syntax

LSF LOGFILE OWNER="user name"

Description

Specifies an owner for the LSF log files other than the default, the owner of 1 sf. conf. To specify a Windows user account, include the domain name in uppercase letters (*DOMAIN_NAME\user_name*).

Default

Not set. The LSF Administrator with root privileges is the owner of LSF log files.

LSF_LSLOGIN_SSH

Syntax

LSF_LSLOGIN_SSH=YES | yes

Description

Enables SSH to secure communication between hosts and during job submission.

SSH is used when running any of the following:

- Remote log on to a lightly loaded host (l sl ogi n)
- An interactive job (bsub IS | ISp | ISs)
- An X-window job (bsub I X)
- An externally submitted job that is interactive or X-window (esub)

Default

Not set. LSF uses rlogin to authenticate users.

LSF_MACHDEP

Syntax

LSF_MACHDEP=directory

Description

Specifies the directory in which machine-dependent files are installed. These files cannot be shared across different types of machines.

In clusters with a single host type, LSF_MACHDEP is usually the same as LSF_INDEP. The machine dependent files are the user commands, daemons, and libraries. You should not need to modify this parameter.

As shown in the following list, LSF_MACHDEP is incorporated into other LSF variables.

- LSF_BINDIR=\$LSF_MACHDEP/bin
- LSF_LIBDIR=\$LSF_MACHDEP/lib
- LSF_SERVERDIR=\$LSF_MACHDEP/etc
- XLSF_UIDDIR=\$LSF_MACHDEP/lib/uid

Default

/usr/share/lsf

See also

LSF_INDEP

LSF_MANDIR

Syntax

LSF_MANDIR=directory

Description

Directory under which all man pages are installed.

The man pages are placed in the man1, man3, man5, and man8 subdirectories of the LSF_MANDIR directory. This is created by the LSF installation process, and you should not need to modify this parameter.

Man pages are installed in a format suitable for BSD-style man commands.

For most versions of UNIX and Linux, you should add the directory LSF_MANDIR to your MANPATH environment variable. If your system has a man command that does not understand MANPATH, you should either install the man pages in the /usr/man directory or get one of the freely available man programs.

Default

LSF_I NDEP/man

LSF_MASTER_LIST

Syntax

LSF_MASTER_LIST="host_name ..."

Description

Required. Defines a list of hosts that are candidates to become the master host for the cluster.

Listed hosts must be defined in 1 sf. cluster. cluster_name.

Host names are separated by spaces.

Tip:

On UNIX and Linux, master host candidates should share LSF configuration and binaries. On Windows, configuration files are shared, but not binaries.

Starting in LSF 7, LSF_MASTER_LIST *must* be defined in 1 sf. conf.

If EGO is enabled, LSF_MASTER_LIST can only be defined 1 sf. conf. EGO_MASTER_LIST can only be defined in ego. conf. EGO_MASTER_LIST cannot be defined in 1 sf. conf. LSF_MASTER_LIST cannot be defined ego. conf.

LIM reads EGO_MASTER_LIST wherever it is defined. If both LSF_MASTER_LIST and EGO_MASTER_LIST are defined, the value of EGO_MASTER_LIST in ego. conf is taken. To avoid errors, you should make sure that the value of LSF_MASTER_LIST matches the value of EGO_MASTER_LIST, or define only EGO_MASTER_LIST.

If EGO is disabled, ego. conf not loaded and the value of LSF_MASTER_LIST defined in 1 sf. conf is taken.

When you run l sadmin reconfig to reconfigure the cluster, only the master LIM candidates read lsf. shared and lsf. cluster. cluster_name to get updated information. The elected master LIM sends configuration information to slave LIMs.

If you have a large number of non-master hosts, you should configure LSF_LIM_IGNORE_CHECKSUM=Y to ignore warning messages like the following logged to lim log files on non-master hosts.

Aug 26 13: 47: 35 2006 9746 4 8.0 xdr_loadvector: Sender <10.225.36.46: 9999> has a different configuration

Interaction with LSF_SERVER_HOSTS

You can use the same list of hosts, or a subset of the master host list defined in LSF_MASTER_LIST, in LSF_SERVER_HOSTS. If you include the primary master host in LSF_SERVER_HOSTS, you should define it as the last host of the list.

If LSF_ADD_CLIENTS is defined in i nstall 1. config at installation, 1 sfi nstall 1 automatically appends the hosts in LSF_MASTER_LIST to the list of hosts in LSF_SERVER_HOSTS so that the primary master host is last. For example:

LSF_MASTER_LIST="lsfmaster hostE"

LSF_SERVER_HOSTS="hostB hostC hostD hostE lsfmaster"

The value of LSF_SERVER_HOSTS is not changed during upgrade.

EGO parameter

EGO_MASTER_LIST

Default

Defined at installation

See also

LSF_LIM_IGNORE_CHECKSUM

LSF_MASTER_NSLOOKUP_TIMEOUT

Syntax

LSF_MASTER_NSLOOKUP_TIMEOUT=time milliseconds

Description

Timeout in milliseconds that the master LIM waits for DNS host name lookup.

If LIM spends a lot of time calling DNS to look up a host name, LIM appears to hang.

This parameter is used by master LIM only. Only the master LIM detects this parameter and enable the DNS lookup timeout.

Default

Not defined. No timeout for DNS lookup

See also

LSF_LIM_IGNORE_CHECKSUM

LSF_MAX_TRY_ADD_HOST

Syntax

LSF_MAX_TRY_ADD_HOST=integer

Description

When a slave LIM on a dynamically added host sends an add host request to the master LIM, but master LIM cannot add the host for some reason. the slave LIM tries again. LSF_MAX_TRY_ADD_HOST specifies how many times the slave LIM retries the add host request before giving up.

Default

20

LSF_MC_NON_PRIVILEGED_PORTS

Syntax

LSF_MC_NON_PRIVILEGED_PORTS=y | Y

Description

MultiCluster only. If this parameter is enabled in one cluster, it must be enabled in all clusters.

Specify Y to make LSF daemons use non-privileged ports for communication across clusters.

Compatibility

This disables privileged port daemon authentication, which is a security feature. If security is a concern, you should use eauth for LSF daemon authentication (see LSF_AUTH_DAEMONS in 1 sf. conf).

Default

Not defined. LSF daemons use privileged port authentication

LSF_MISC

Syntax

LSF_MISC=directory

Description

Directory in which miscellaneous machine independent files, such as example source programs and scripts, are installed.

Default

LSF_CONFDIR/misc

LSF_NIOS_DEBUG

Syntax

LSF_NIOS_DEBUG=1

Description

Enables NIOS debugging for interactive jobs (if LSF_NIOS_DEBUG=1).

NIOS debug messages are written to standard error.

This parameter can also be defined as an environment variable.

When LSF_NIOS_DEBUG and LSF_CMD_LOGDIR are defined, NIOS debug messages are logged in ni os. log. *host_name*. in the location specified by LSF_CMD_LOGDIR.

If LSF_NIOS_DEBUG is defined, and the directory defined by LSF_CMD_LOGDIR is inaccessible, NIOS debug messages are logged to /tmp/ni os. l og. host_name instead of stderr.

On Windows, NIOS debug messages are also logged to the temporary directory.

Default

Not defined

See also

 $LSF_CMD_LOGDIR, LSF_CMD_LOG_MASK, LSF_LOG_MASK, LSF_LOGDIR$

LSF_NIOS_ERR_LOGDIR

Syntax

LSF_NIOS_ERR_LOGDIR=directory

Description

Applies to Windows only.

If LSF_NIOS_ERR_LOGDIR is specified, logs NIOS errors to *di rectory/* ni os. error. l og. hostname. txt.

If the attempt fails, LSF tries to write to another directory instead. The order is:

- 1. the specified log directory
- 2. LSF_TMPDIR
- 3. %TMP%
- 4. %TEMP%
- 5. the system directory, for example, C:\winnt

 $If LSF_NIOS_DEBUG \ is \ also \ specified, NIOS \ debugging \ overrides \ the \ LSF_NIOS_ERR_LOGDIR \ setting.$

LSF_NIOS_ERR_LOGDIR is an alternative to using the NIOS debug functionality.

This parameter can also be defined as an environment variable.

Default

Not defined

See also

LSF_NIOS_DEBUG, LSF_CMD_LOGDIR

LSF_NIOS_JOBSTATUS_INTERVAL

Syntax

LSF_NIOS_JOBSTATUS_INTERVAL=time_minutes

Description

Applies only to interactive batch jobs.

Time interval at which NIOS polls mbat chd to check if a job is still running. Used to retrieve a job's exit status in the case of an abnormal exit of NIOS, due to a network failure for example.

Use this parameter if you run interactive jobs and you have scripts that depend on an exit code being returned.

When this parameter is not defined and a network connection is lost, mbatchd cannot communicate with NIOS and the return code of a job is not retrieved.

When this parameter is defined, before exiting, NIOS polls mbatchd on the interval defined by LSF_NIOS_JOBSTATUS_INTERVAL to check if a job is still running. NIOS continues to poll mbatchd until it receives an exit code or mbatchd responds that the job does not exist (if the job has already been cleaned from memory for example).

If an exit code cannot be retrieved, NIOS generates an error message and the code -11.

Valid values

Any integer greater than zero

Default

Not defined

Notes

Set this parameter to large intervals such as 15 minutes or more so that performance is not negatively affected if interactive jobs are pending for too long. NIOS always calls mbatchd on the defined interval to confirm that a job is still pending and this may add load to mbatchd.

See also

Environment variable LSF_NIOS_PEND_TIMEOUT

LSF NIOS MAX TASKS

Syntax

LSF_NIOS_MAX_TASKS=integer

Description

Specifies the maximum number of NIOS tasks.

Default

Not defined

LSF_NIOS_RES_HEARTBEAT

Syntax

LSF_NIOS_RES_HEARTBEAT=time minutes

Description

Applies only to interactive non-parallel batch jobs.

Defines how long NIOS waits before sending a message to RES to determine if the connection is still open.

Use this parameter to ensure NIOS exits when a network failure occurs instead of waiting indefinitely for notification that a job has been completed. When a network connection is lost, RES cannot communicate with NIOS and as a result, NIOS does not exit.

When this parameter is defined, if there has been no communication between RES and NIOS for the defined period of time, NIOS sends a message to RES to see if the connection is still open. If the connection is no longer available, NIOS exits.

Valid values

Any integer greater than zero

Default

Not defined

Notes

The time you set this parameter to depends how long you want to allow NIOS to wait before exiting. Typically, it can be a number of hours or days. Too low a number may add load to the system.

LSF NON PRIVILEGED PORTS

Syntax

LSF_NON_PRIVILEGED_PORTS=y | Y

Description

Disables privileged ports usage.

By default, LSF daemons and clients running under root account use privileged ports to communicate with each other. Without LSF_NON_PRIVILEGED_PORTS defined, and if LSF_AUTH is not defined in 1 sf. conf, LSF daemons check privileged port of request message to do authentication.

If LSF_NON_PRIVILEGED_PORTS=Y is defined, LSF clients (LSF commands and daemons) do not use privileged ports to communicate with daemons and LSF daemons do not check privileged ports of incoming requests to do authentication.

LSF_PAM_APPL_CHKPNT

Syntax

LSF_PAM_APPL_CHKPNT=Y | N

Description

When set to Y, allows PAM to function together with application checkpointing support.

Default

V

LSF_PAM_CLEAN_JOB_DELAY

Syntax

LSF_PAM_CLEAN_JOB_DELAY=time_seconds

Description

The number of seconds LSF waits before killing a parallel job with failed tasks. Specifying LSF_PAM_CLEAN_JOB_DELAY implies that if any parallel tasks fail, the entire job should exit without running the other tasks in the job. The job is killed if any task exits with a non-zero exit code.

Specify a value greater than or equal to zero (0).

Applies only to PAM jobs.

Default

Undefined: LSF kills the job immediately

LSF_PAM_HOSTLIST_USE

Syntax

LSF_PAM_HOSTLIST_USE=unique

Description

Used to start applications that use both OpenMP and MPI.

Valid values

uni que

Default

Not defined

Notes

At job submission, LSF reserves the correct number of processors and PAM starts only 1 process per host. For example, to reserve 32 processors and run on 4 processes per host, resulting in the use of 8 hosts:

bsub -n 32 -R "span[ptile=4]" pam yourOpenMPJob

Where defined

This parameter can alternatively be set as an environment variable. For example: set env LSF_PAM_HOSTLIST_USE uni que

LSF_PAM_PLUGINDIR

Syntax

LSF_PAM_PLUGINDIR=path

Description

The path to l i bpamvcl . so. Used with LSF HPC features.

Default

Path to LSF_LIBDIR

LSF_PAM_USE_ASH

Syntax

LSF_PAM_USE_ASH=y | Y

Description

Enables LSF to use the SGI IRIX Array Session Handles (ASH) to propagate signals to the parallel jobs.

See the IRIX system documentation and the $array_session(5)$ man page for more information about array sessions.

Default

Not defined

LSF_PASSWD_DIR

Syntax

LSF_PASSWD_DIR=file_path

Description

Defines a location for LSF to load and update the passwd. I sfuser file.

Specify the full path to a shared directory accessible by all master candidate hosts. The LSF 1 i m daemon must have read and write permissions on this directory.

By default, passwd. 1 sfuser is located in \$LSF_CONFDIR. The default location is only used if LSF_PASSWD_DIR is undefined; if you define a new location and lim fails to access passwd. 1 sfuser in LSF_PASSWD_DIR, it will not check \$LSF_CONFDIR.

You must restart 1 i m to make changes take effect.

Default

Not defined (passwd. 1 sf user is located in \$LSF_CONFDIR)

LSF_PIM_INFODIR

Syntax

LSF_PIM_INFODIR=path

Description

The path to where PIM writes the pi m. i nfo. host_name file.

Specifies the path to where the process information is stored. The process information resides in the file pi m. i nf o. host_name. The PIM also reads this file when it starts so that it can accumulate the resource usage of dead processes for existing process groups.

EGO parameter

EGO_PIM_INFODIR

Default

Not defined. The system uses /tmp.

LSF_PIM_LINUX_ENHANCE

Syntax

LSF_PIM_LINUX_ENHANCE=Y | N

Description

When enabled, the PIM daemon reports proportional memory utilization for each process attached to a shared memory segment. The sum total of memory utilization of all processes on the host is now accurately reflected in the total memory used. (The Linux kernel must be version 2.6.14 or newer.)

When EGO_PIM_SWAP_REPORT is set, the swap amount is correctly reported. The swap amount is the virtual memory minus the value of the rss value in the static Linux file.

Applies only to Linux operating systems and Red Hat Enterprise Linux 4.7.5.0.

Default

Y

LSF_PIM_SLEEPTIME

Syntax

LSF_PIM_SLEEPTIME=time_seconds

Description

The reporting period for PIM.

PIM updates the process information every 15 seconds unless an application queries this information. If an application requests the information, PIM updates the process information every LSF_PIM_SLEEPTIME seconds. If the information is not queried by any application for more than 5 minutes, the PIM reverts back to the 15 second update period.

EGO parameter

EGO_PIM_SLEEPTIME

Default

30 seconds

LSF_PIM_SLEEPTIME_UPDATE

Syntax

LSF_PIM_SLEEPTIME_UPDATE=y | n

Description

UNIX only.

Use this parameter to improve job throughput and reduce a job's start time if there are many jobs running simultaneously on a host. This parameter reduces communication traffic between sbatchd and PIM on the same host.

When this parameter is not defined or set to n, sbatchd queries PIM as needed for job process information.

When this parameter is defined, sbatchd does not query PIM immediately as it needs information; sbatchd only queries PIM every LSF_PIM_SLEEPTIME seconds.

Limitations

When this parameter is defined:

- sbat chd may be intermittently unable to retrieve process information for jobs whose run time is smaller than LSF_PIM_SLEEPTIME.
- It may take longer to view resource usage with bj obs -1.

EGO parameter

EGO_PIM_SLEEPTIME_UPDATE

Default

Not defined

LSF_POE_TIMEOUT_BIND

Syntax

LSF_POE_TIMEOUT_BIND=time_seconds

Description

Specifies the time in seconds for the poe_w wrapper to keep trying to set up a server socket to listen on. poe_w is the wrapper for the IBM poe driver program.

LSF_POE_TIMEOUT_BIND can also be set as an environment variable for poe_w to read.

Default

120 seconds

LSF_POE_TIMEOUT_SELECT

Syntax

LSF_POE_TIMEOUT_SELECT=time_seconds

Description

Specifies the time in seconds for the poe_w wrapper to wait for connections from the pmd_w wrapper. pmd_w is the wrapper for pmd (IBM PE Partition Manager Daemon).

LSF_POE_TIMEOUT_SELECT can also be set as an environment variable for poe_w to read.

Default

160 seconds

LSF_REMOTE_COPY_CMD

Syntax

LSF_REMOTE_COPY_CMD="copy_command"

Description

UNIX only. Specifies the shell command or script to use with the following LSF commands if RES fails to copy the file between hosts.

- lsrcp
- bsub -i, -f, -is, -Zs "Ci(s)
- bmod -Zs

By default, rcp is used for these commands.

There is no need to restart any daemons when this parameter changes.

For example, to use scp instead of rcp for remote file copying, specify:

LSF_REMOTE_COPY_CMD="scp -B -o 'StrictHostKeyChecking no'"

You can also configure ssh options such as BatchMode, StrictHostKeyChecking in the global SSH_ETC/ssh_config file or \$HOME/. ssh/config.

When remote copy of a file via RES fails, the environment variable "LSF_LSRCP_ERRNO" is set to the system defined errno. You can use this variable in a self-defined shell script executed by 1 srcp. The script can do the appropriate cleanup, recopy, or retry, or it can just exit without invoking any other copy command.

LSF automatically appends two parameters before executing the command:

- The first parameter is the source file path.
- The second parameter is the destination file path.

Valid values

Values are passed directly through. Any valid scp, rcp, or custom copy commands and options are supported except for compound multi-commands. For example, set LSF_REMOTE_COPY_CMD="scp -B -o 'StrictHostKeyChecking no'".

To avoid a recursive loop, the value of LSF_REMOTE_COPY_CMD must not be 1 srcp or a shell script executing 1 srcp.

Default

Not defined.

LSF_RES_ACCT

Syntax

LSF_RES_ACCT=time_milliseconds | 0

Description

If this parameter is defined, RES logs information for completed and failed tasks by default (see lsf. acct).

The value for LSF_RES_ACCT is specified in terms of consumed CPU time (milliseconds). Only tasks that have consumed more than the specified CPU time are logged.

If this parameter is defined as LSF_RES_ACCT=0, then all tasks are logged.

For those tasks that consume the specified amount of CPU time, RES generates a record and appends the record to the task log file $l\ sf.\ acct.\ host_name.$ This file is located in the LSF_RES_ACCTDIR directory.

If this parameter is not defined, the LSF administrator must use the l sadmin command (see l sadmin) to turn task logging on after RES has started.

Default

Not defined

See also

LSF_RES_ACCTDIR

LSF_RES_ACCTDIR

Syntax

LSF_RES_ACCTDIR=directory

Description

The directory in which the RES task log file 1 sf. acct. *host_name* is stored. If LSF_RES_ACCTDIR is not defined, the log file is stored in the /tmp directory.

Default

(UNIX)/tmp

(Windows) C: \temp

See also

LSF_RES_ACCT

LSF_RES_ACTIVE_TIME

Syntax

LSF_RES_ACTIVE_TIME=time_seconds

Description

Time in seconds before LIM reports that RES is down.

Minimum value

10 seconds

Default

90 seconds

LSF_RES_CLIENT_TIMEOUT

Syntax

LSF_RES_CLIENT_TIMEOUT=time_minutes

Description

Specifies in minutes how long an application RES waits for a new task before exiting.

Caution:

If you use the LSF API to run remote tasks and you define this parameter with timeout. the remote execution of the new task fails (for example, ls_rtask()).

Default

The parameter is not set; the application RES waits indefinitely for new task to come until client tells it to quit.

LSF_RES_CONNECT_RETRY

Syntax

LSF_RES_CONNECT_RETRY=integer / 0

Description

The number of attempts by RES to reconnect to NIOS.

If LSF_RES_CONNECT_RETRY is not defined, the default value is used.

Default

0

See also

LSF NIOS RES HEARTBEAT

LSF_RES_DEBUG

Syntax

LSF_RES_DEBUG=1 /2

Description

Sets RES to debug mode.

If LSF_RES_DEBUG is defined, the Remote Execution Server (RES) operates in single user mode. No security checking is performed, so RES should not run as root. RES does not look in the services database for the RES service port number. Instead, it uses port number 36002 unless LSF_RES_PORT has been defined.

Specify 1 for this parameter unless you are testing RES.

Valid values

LSF_RES_DEBUG=1

RES runs in the background with no associated control terminal.

LSF_RES_DEBUG=2

RES runs in the foreground and prints error messages to tty.

Default

Not defined

See also

LSF_LIM_DEBUG, LSF_CMD_LOGDIR, LSF_CMD_LOG_MASK, LSF_LOG_MASK, LSF_LOGDIR

LSF RES PORT

See LSF_LIM_PORT, LSF_RES_PORT, LSB_MBD_PORT, LSB_SBD_PORT.

LSF_RES_RLIMIT_UNLIM

Syntax

LSF_RES_RLIMIT_UNLIM=cpu | fsize | data | stack | core | vmem

Description

By default, RES sets the hard limits for a remote task to be the same as the hard limits of the local process. This parameter specifies those hard limits which are to be set to unlimited, instead of inheriting those of the local process.

Valid values are cpu, fsi ze, data, stack, core, and vmem, for CPU, file size, data size, stack, core size, and virtual memory limits, respectively.

Example

The following example sets the CPU, core size, and stack hard limits to be unlimited for all remote tasks: LSF_RES_RLIMIT_UNLIM="cpu core stack"

Default

Not defined

LSF_RES_TIMEOUT

Syntax

LSF_RES_TIMEOUT=time_seconds

Description

Timeout when communicating with RES.

Default

15

LSF_ROOT_REX

Syntax

LSF_ROOT_REX=local

Description

UNIX only.

Allows root remote execution privileges (subject to identification checking) on remote hosts, for both interactive and batch jobs. Causes RES to accept requests from the superuser (root) on remote hosts, subject to identification checking.

If LSF_ROOT_REX is not defined, remote execution requests from user root are refused.

Theory

Sites that have separate root accounts on different hosts within the cluster should not define LSF_ROOT_REX. Otherwise, this setting should be based on local security policies.

The lsf. conf file is host-type specific and not shared across different platforms. You must make sure that lsf. conf for all your host types are changed consistently.

Default

Not defined. Root execution is not allowed.

See also

LSF_TIME_CMD, LSF_AUTH

LSF_RSH

Syntax

LSF_RSH=command [command_options]

Description

Specifies shell commands to use when the following LSF commands require remote execution:

- badmin hstartup
- bpeek
- lsadmin limstartup
- Isadmin resstartup
- lsfrestart
- lsfshutdown
- lsfstartup
- lsrcp

By default, rsh is used for these commands. Use LSF_RSH to enable support for ssh.

EGO parameter

EGO_RSH

Default

Not defined

Example

To use an ssh command before trying rsh for LSF commands, specify:

LSF_RSH="ssh -o 'PasswordAuthentication no' -o 'StrictHostKeyChecking no'

ssh options such as PasswordAuthenti cati on and Stri ctHostKeyChecki ng can also be configured in the global SSH_ETC/ssh_confi g file or \$HOME/. ssh/confi g.

See also

ssh, ssh_config

LSF_SECUREDIR

Syntax

LSF_SECUREDIR=path

Description

Windows only; mandatory if using lsf. sudoers.

Path to the directory that contains the file 1 sf. sudoers (shared on an NTFS file system).

LSF_SERVER_HOSTS

Syntax

LSF_SERVER_HOSTS="host_name ..."

Description

Defines one or more server hosts that the client should contact to find a Load Information Manager (LIM). LSF server hosts are hosts that run LSF daemons and provide loading-sharing services. Client hosts are hosts that only run LSF commands or applications but do not provide services to any hosts.

Important:

LSF_SERVER_HOSTS is required for non-shared slave hosts.

Use this parameter to ensure that commands execute successfully when no LIM is running on the local host, or when the local LIM has just started. The client contacts the LIM on one of the LSF_SERVER_HOSTS and execute the command, provided that at least one of the hosts defined in the list has a LIM that is up and running.

If LSF_SERVER_HOSTS is not defined, the client tries to contact the LIM on the local host.

The host names in LSF_SERVER_HOSTS must be enclosed in quotes and separated by white space. For example:

LSF_SERVER_HOSTS="hostA hostD hostB"

The parameter string can include up to 4094 characters for UNIX or 255 characters for Windows.

Interaction with LSF MASTER LIST

Starting in LSF 7, LSF_MASTER_LIST must be defined in 1 sf. conf. You can use the same list of hosts, or a subset of the master host list, in LSF_SERVER_HOSTS. If you include the primary master host in LSF_SERVER_HOSTS, you should define it as the last host of the list.

If LSF_ADD_CLIENTS is defined in install.config at installation, lsfinstall automatically appends the hosts in LSF_MASTER_LIST to the list of hosts in LSF_SERVER_HOSTS so that the primary master host is last. For example:

LSF_MASTER_LIST="lsfmaster hostE"

LSF_SERVER_HOSTS="hostB hostC hostD hostE lsfmaster"

LSF_ADD_CLI ENTS="clientHostA"

The value of LSF_SERVER_HOSTS is not changed during upgrade.

Default

Not defined

See also

LSF MASTER LIST

LSF_SERVERDIR

Syntax

LSF_SERVERDIR=directory

Description

Directory in which all server binaries and shell scripts are installed.

These include lim, res, nios, sbatchd, mbatchd, and mbschd. If you use elim, eauth, eexec, esub, etc, they are also installed in this directory.

Default

LSF_MACHDEP/etc

See also

LSB_ECHKPNT_METHOD_DIR

LSF SHELL AT USERS

Syntax

LSF SHELL AT USERS="user name user name ..."

Description

Applies to 1 stcsh only. Specifies users who are allowed to use @ for host redirection. Users not specified with this parameter cannot use host redirection in 1 stcsh. To specify a Windows user account, include the domain name in uppercase letters (*DOMAIN_NAME\user_name*).

If this parameter is not defined, all users are allowed to use @ for host redirection in 1 st csh.

Default

Not defined

LSF_SHIFT_JIS_INPUT

Syntax

LSF_SHIFT_JIS_INPUT=y | n

Description

Enables LSF to accept Shift-JIS character encoding for job information (for example, user names, queue names, job names, job group names, project names, commands and arguments, esub parameters, external messages, etc.)

Default

n

LSF_STRICT_CHECKING

Syntax

LSF_STRICT_CHECKING=Y

Description

If set, enables more strict checking of communications between LSF daemons and between LSF commands and daemons when LSF is used in an untrusted environment, such as a public network like the Internet.

If you enable this parameter, you must enable it in the entire cluster, as it affects all communications within LSF. If it is used in a MultiCluster environment, it must be enabled in all clusters, or none. Ensure that all binaries and libraries are upgraded to LSF Version 7, including LSF_BINDIR, LSF_SERVERDIR and LSF_LIBDIR directories, if you enable this parameter.

If your site uses any programs that use the LSF base and batch APIs, or LSF MPI (Message Passing Interface), they need to be recompiled using the LSF Version 7 APIs before they can work properly with this option enabled.

Important:

You must shut down the entire cluster before enabling or disabling this parameter.

If LSF_STRICT_CHECKING is defined, and your cluster has slave hosts that are dynamically added, LSF_STRICT_CHECKING must be configured in the local lsf.conf on all slave hosts.

Valid value

Set to Y to enable this feature.

Default

Not defined. LSF is secure in trusted environments.

LSF_STRICT_RESREQ

Syntax

LSF_STRICT_RESREQ=Y | N

Description

When LSF_STRICT_RESREQ=Y, the resource requirement selection string must conform to the stricter resource requirement syntax described in *Administering IBM Platform LSF*. The strict resource requirement syntax only applies to the sel ect section. It does not apply to the other resource requirement sections (order, rusage, same, span, or cu).

When LSF_STRICT_RESREQ=Y in 1 sf. conf, LSF rejects resource requirement strings where an rusage section contains a non-consumable resource.

When LSF_STRICT_RESREQ=N, the default resource requirement selection string evaluation is performed.

Default

Υ

LSF_STRIP_DOMAIN

Syntax

LSF_STRIP_DOMAIN=domain_suffix[:domain_suffix ...]

Description

(Optional) If all of the hosts in your cluster can be reached using short host names, you can configure LSF to use the short host names by specifying the portion of the domain name to remove. If your hosts are in more than one domain or have more than one domain name, you can specify more than one domain suffix to remove, separated by a colon (:).

For example, given this definition of LSF_STRIP_DOMAIN,

LSF_STRIP_DOMAIN=. foo. com: .bar. com

LSF accepts host A, host A. foo. com, and host A. bar. com as names for host host A, and uses the name host A in all output. The leading period '.' is required.

Example:

LSF_STRIP_DOMAIN=. generic1.com:.generic2.com

In the above example, LSF accepts host A, host A. geberi c1. com, and host A. generi c. com as names for host A, and uses the name host A in all output.

Setting this parameter only affects host names displayed through LSF, it does not affect DNS host lookup.

After adding or changing LSF_STRIP_DOMAIN, use Isadmin reconfig and badmin mbdrestart to reconfigure your cluster.

EGO parameter

EGO_STRIP_DOMAIN

Default

Not defined

LSF_TIME_CMD

Syntax

LSF_TIME_CMD=timimg_level

Description

The timing level for checking how long LSF commands run. Time usage is logged in milliseconds. Specify a positive integer.

Default

Not defined

See also

LSB_TIME_MBD, LSB_TIME_SBD, LSB_TIME_CMD, LSF_TIME_LIM, LSF_TIME_RES

LSF_TIME_LIM

Syntax

LSF_TIME_LIM=timing_level

Description

The timing level for checking how long LIM routines run.

Time usage is logged in milliseconds. Specify a positive integer.

EGO parameter

EGO_TIME_LIM

Default

Not defined

See also

LSB_TIME_CMD, LSB_TIME_MBD, LSB_TIME_SBD, LSF_TIME_RES

LSF_TIME_RES

Syntax

LSF_TIME_RES=timing_level

Description

The timing level for checking how long RES routines run.

Time usage is logged in milliseconds. Specify a positive integer.

LSF_TIME_RES is not supported on Windows.

Default

Not defined

See also

LSB_TIME_CMD, LSB_TIME_MBD, LSB_TIME_SBD, LSF_TIME_LIM

LSF TMPDIR

Syntax

LSF_TMPDIR=directory

Description

Specifies the path and directory for temporary job output.

When LSF_TMPDIR is defined in 1 sf. conf, LSF creates a temporary directory under the directory specified by LSF_TMPDIR on the execution host when a job is started and sets the temporary directory environment variable (TMPDIR) for the job.

The name of the temporary directory has the following format:

 LSF_TMPDIR/job_ID . tmpdir

On UNIX, the directory has the permission 0700 and is owned by the execution user.

After adding LSF_TMPDIR to lsf. conf, use badmin hrestart all to reconfigure your cluster.

If LSB_SET_TMPDIR= Y, the environment variable TMPDIR will be set equal to the path specified by LSF_TMPDIR.

If the path specified by LSF_TMPDIR does not exist, the value of TMPDIR is set to the default path / tmp/j ob_ID. tmpdi r.

Valid values

Specify any valid path up to a maximum length of 256 characters. The 256 character maximum path length includes the temporary directories and files that the system creates as jobs run. The path that you specify for LSF_TMPDIR should be as short as possible to avoid exceeding this limit.

UNIX

Specify an absolute path. For example:

LSF_TMPDIR=/usr/share/lsf_tmp

Windows

Specify a UNC path or a path with a drive letter. For example:

 $LSF_TMPDIR=\HostA emp\lsf_tmp$

LSF_TMPDIR=D: \temp\lsf_tmp

Temporary directory for tasks launched by blaunch

By default, LSF creates a temporary directory for a job only on the first execution host. If LSF_TMPDIR is set in $l \ sf. \ conf$, the path of the job temporary directory on the first execution host is set to LSF_TMPDIR/ $j \ ob_ID$. tmpdir.

If LSB_SET_TMPDIR= Y, the environment variable TMPDIR will be set equal to the path specified by LSF_TMPDIR.

Tasks launched through the bl aunch distributed application framework make use of the LSF temporary directory specified by LSF_TMPDIR:

- When the environment variable TMPDIR is set on the first execution host, the bl aunch framework propagates this environment variable to all execution hosts when launching remote tasks
- The job RES or the task RES creates the directory specified by TMPDIR if it does not already exist before starting the job
- The directory created by the job RES or task RES has permission 0700 and is owned by the execution
 user
- If the TMPDIR directory was created by the task RES, LSF deletes the temporary directory and its
 contents when the task is complete
- If the TMPDIR directory was created by the job RES, LSF will delete the temporary directory and its
 contents when the job is done
- If the TMPDIR directory is on a shared file system, it is assumed to be shared by all the hosts allocated to the bl aunch job, so LSF *does not* remove TMPDIR directories created by the job RES or task RES

Default

By default, LSF_TMPDIR is not enabled. If LSF_TMPDIR is not specified in 1 sf. conf, this parameter is defined as follows:

- On UNIX: \$TMPDIR/job_ID. tmpdir or /tmp/job_ID. tmpdir
- On Windows: %TMP%, %TEMP, or %SystemRoot%

LSF_ULDB_DOMAIN

Syntax

LSF_ULDB_DOMAIN="domain_name ..."

Description

LSF_ULDB_DOMAIN specifies the name of the LSF domain in the ULDB domain directive. A domain definition of name *domain_name* must be configured in the SGI IRIX j l i mi t. i n input file.

Used with IRIX User Limits Database (ULDB). Configures LSF so that jobs submitted to a host with the IRIX job limits option installed are subject to the job limits configured in the IRIX User Limits Database (ULDB).

The ULDB contains job limit information that system administrators use to control access to a host on a per user basis. The job limits in the ULDB override the system default values for both job limits and process limits. When a ULDB domain is configured, the limits are enforced as IRIX job limits.

If the ULDB domain specified in LSF_ULDB_DOMAIN is not valid or does not exist, LSF uses the limits defined in the domain named batch. If the batch domain does not exist, then the system default limits are set.

When an LSF job is submitted, an IRIX job is created, and the job limits in the ULDB are applied.

Next, LSF resource usage limits are enforced for the IRIX job under which the LSF job is running. LSF limits override the corresponding IRIX job limits. The ULDB limits are used for any LSF limits that are not defined. If the job reaches the IRIX job limits, the action defined in the IRIX system is used.

IRIX job limits in the ULDB apply only to batch jobs.

See the IRIX resource administration documentation for information about configuring ULDB domains in the j l i mi t. i n file.

LSF resource usage limits controlled by ULDB

- PROCESSLIMIT: Corresponds to IRIX JLIMIT_NUMPROC; f or k() fails, but the existing processes continue to run
- MEMLIMIT: Corresponds to JLIMIT_RSS; Resident pages above the limit become prime swap candidates
- DATALIMIT : Corresponds to LIMIT_DATA; mal $1\,\mathrm{oc}()$ calls in the job fail with errno set to ENOMEM
- CPULIMIT: Corresponds to JLIMIT_CPU; IRIX sends SIGXCPU signal to job, then after the grace period expires, sends SIGINT, SIGTERM, and SIGKILL
- FILELIMIT: No corresponding IRIX limit; use process limit RLIMIT_FSIZE
- STACKLIMIT: No corresponding IRIX limit; use process limit RLIMIT_STACK
- CORELIMIT: No corresponding IRIX limit; use process limit RLIMIT_CORE
- SWAPLIMIT: Corresponds to JLIMIT_VMEM; use process limit RLIMIT_VMEM

Increase the default MEMLIMIT for ULDB

In some pre-defined LSF queues, such as normal , the default MEMLIMIT is set to 5000~(5~MB). However, if ULDB is enabled (LSF_ULDB_DOMAIN is defined) the MEMLIMIT should be set greater than 8000~in~l~sb. queues.

Default

Not defined

LSF_UNIT_FOR_LIMITS

Syntax

LSF_UNIT_FOR_LIMITS=unit

Description

Enables scaling of large units in the resource usage limits:

core

- memory
- stack
- swap

When set, LSF_UNIT_FOR_LIMITS applies cluster-wide to these limits at the job-level (bsub), queue-level (l sb. queues), and application level (l sb. appl i cat i ons).

The limit unit specified by LSF_UNIT_FOR_LIMITS also applies to these limits when modified with bmod, and the display of these resource usage limits in query commands (bacct, bapp, bhi st, bhosts, bj obs, bqueues, l sl oad, and l shosts).

Important:

Before changing the units of your resource usage limits, you should completely drain the cluster of all workload. There should be no running, pending, or finished jobs in the system.

In a MultiCluster environment, you should configure the same unit for all clusters.

Note:

Other limits (such as the file limit) are not affected by setting the parameter $LSF_UNIT_FOR_LIMITS$.

Example

A job is submitted with bsub $\,$ - M $\,$ 100 and LSF_UNIT_FOR_LIMITS=MB; the memory limit for the job is 100 MB rather than the default 100 KB.

Valid values

unit indicates the unit for the resource usage limit, one of:

- KB (kilobytes)
- MB (megabytes)
- GB (gigabytes)
- TB (terabytes)
- PB (petabytes)
- EB (exabytes)

Default

MB

LSF_USE_HOSTEQUIV

Syntax

LSF_USE_HOSTEQUIV=y | Y

Description

(UNIX only; optional)

If LSF_USE_HOSTEQUIV is defined, RES and mbatchd call the ruserok() function to decide if a user is allowed to run remote jobs.

The ruserok() function checks in the /etc/hosts. equi v file and the user's \$HOME/. rhosts file to decide if the user has permission to execute remote jobs.

If LSF_USE_HOSTEQUIV is not defined, all normal users in the cluster can execute remote jobs on any host.

If LSF_ROOT_REX is set, root can also execute remote jobs with the same permission test as for normal users

Default

Not defined

See also

LSF_ROOT_REX

LSF USER DOMAIN

Syntax

LSF_USER_DOMAIN=domain_name:domain_name:domain_name....

Description

Enables the UNIX/Windows user account mapping feature, which allows cross-platform job submission and execution in a mixed UNIX/Windows environment. LSF_USER_DOMAIN specifies one or more Windows domains that LSF either strips from the user account name when a job runs on a UNIX host, or adds to the user account name when a job runs on a Windows host.

Important:

Configure LSF_USER_DOMAIN immediately after you install LSF; changing this parameter in an existing cluster requires that you verify and possibly reconfigure service accounts, user group memberships, and user passwords.

Specify one or more Windows domains, separated by a colon (:). You can enter an unlimited number of Windows domains. A period (.) specifies a local account, not a domain.

Examples

LSF USER DOMAIN=BUSINESS

LSF_USER_DOMAIN=BUSINESS:ENGINEERING:SUPPORT

Default

The default depends on your LSF installation:

 If you upgrade a cluster to LSF version 7, the default is the existing value of LSF_USER_DOMAIN, if defined For a new cluster, this parameter is not defined, and UNIX/Windows user account mapping is not enabled

LSF_VPLUGIN

Syntax

LSF_VPLUGIN=path

Description

The full path to the vendor MPI library l i bxmpi . so. Used with LSF HPC features.

Examples

- MPI: LSF_VPLUGI N=/opt/mpi/lib/pa1. 1/libmpirm. sl
- Linux (64-bit x-86 Linux 2.6, glibc 2.3.): LSF_VPLUGI N=/usr/l i b32/l i bxmpi . so: /usr/lib/libxmpi.so: /usr/lib64/libxmpi.so

Default

Not defined

MC_PLUGIN_REMOTE_RESOURCE

Syntax

MC_PLUGIN_REMOTE_RESOURCE=y

Description

MultiCluster job forwarding model only. By default, the submission cluster does not consider remote resources. Define MC_PLUGIN_REMOTE_RESOURCE=y in the submission cluster to allow consideration of remote resources.

Note:

When MC_PLUGIN_REMOTE_RESOURCE is defined, only the following resource requirements (boolean only) are supported: -R "type==type_name", -R "same[type]" and -R "defined(resource_name)"

Note:

When MC_PLUGIN_SCHEDULE_ENHANCE in lsb.params is defined, remote resources are considered as if

MC_PLUGIN_REMOTE_RESOURCE=Y regardless of the actual value. In addition, details of the remote cluster workload are considered by the submission cluster scheduler.

Default

Not defined. The submission cluster does not consider remote resources.

See also

MC_PLUGIN_SCHEDULE_ENHANCE in 1 sb. params

XLSF_APPDIR

Syntax

XLSF_APPDIR=directory

Description

(UNIX only; optional) Directory in which X application default files for LSF products are installed.

The LSF commands that use X look in this directory to find the application defaults. Users do not need to set environment variables to use the LSF X applications. The application default files are platform-independent.

Default

LSF_I NDEP/mi sc

XLSF_UIDDIR

Syntax

XLSF_UIDDIR=directory

Description

(UNIX only) Directory in which Motif User Interface Definition files are stored.

These files are platform-specific.

Default

LSF_LI BDI R/ui d

lsf.licensescheduler

The 1 sf. 1 i censeschedul er file contains License Scheduler configuration information. All sections except Proj ect Group are required. In cluster mode, the Proj ect section is also not required.

Changing Isf.licensescheduler configuration

After making any changes to 1 sf. 1 i censeschedul er, run the following commands:

- · bladmin reconfig to reconfigure bld
- If you made the following changes to this file, you may need to restart mbat chd:
 - Added or deleted any feature.
 - Added or deleted projects in the DI STRI BUTI ON parameter of the Feature section.
 - Changed the Project Group section.
 - Changed the feature mode (for example, changed from cluster mode to project mode, or vice versa).

In these cases a message is written to the log file prompting the restart.

If you have added, changed, or deleted any Feature or Projects sections, you may need to restart mbatchd. In this case a message is written to the log file prompting the restart.

If required, run badmin mbdrestart to restart each LSF cluster.

Parameters section

Description

Required. Defines License Scheduler configuration parameters.

Parameters section structure

The Parameters section begins and ends with the lines Begin Parameters and End Parameters. Each subsequent line describes one configuration parameter. Mandatory parameters are as follows:

Begin Parameters

ADMI N=l sadmi n

HOSTS=hostA hostB hostC

LMSTAT PATH=/etc/flexlm/bin

LM_STAT_I NTERVAL=30

PORT=9581

End Parameters

Parameters

- ADMIN
- AUTH
- CLUSTER MODE
- DISTRIBUTION_POLICY_VIOLATION_ACTION
- ENABLE_INTERACTIVE
- HEARTBEAT INTERVAL

- HEARTBEAT_TIMEOUT
- HIST_HOURS
- HOSTS
- INUSE_FROM_RUSAGE
- LIB_RECVTIMEOUT
- LIB CONNTIMEOUT
- LM_REMOVE_INTERVAL
- LM_STAT_INTERVAL
- LM_STAT_TIMEOUT
- LMSTAT_PATH
- LOG_EVENT
- LOG_INTERVAL
- LS_DEBUG_BLC
- LS_DEBUG_BLD
- LS ENABLE MAX PREEMPT
- LS LOG MASK
- LS_MAX_STREAM_FILE_NUMBER
- LS_MAX_STREAM_SIZE
- LS MAX TASKMAN PREEMPT
- LS_MAX_TASKMAN_SESSIONS
- LS_STREAM_FILE
- LS_PREEMPT_PEER
- MBD_HEARTBEAT_INTERVAL
- MBD REFRESH INTERVAL
- MERGE_BY_SERVICE_DOMAIN
- PEAK INUSE PERIOD
- PORT
- PREEMPT_ACTION
- STANDBY_CONNTIMEOUT
- BLC_HEARTBEAT_FACTOR

ADMIN

Syntax

ADMIN=user name ...

Description

Defines the License Scheduler administrator using a valid UNIX user account. You can specify multiple accounts.

Used for both project mode and cluster mode.

AUTH

Syntax

AUTH=Y

Description

Enables License Scheduler user authentication for projects for taskman jobs.

Used for both project mode and cluster mode.

CLUSTER_MODE

Syntax

CLUSTER MODE=Y

Description

Enables cluster mode (instead of project mode) in License Scheduler. Setting in individual Feature sections overrides the global setting in the Parameters section.

Cluster mode emphasizes high utilization of license tokens above other considerations such as ownership. License ownership and sharing can still be configured, but within each cluster instead of across multiple clusters. Preemption of jobs (and licenses) also occurs within each cluster instead of across clusters.

Cluster mode was introduced in License Scheduler 8.0. Before cluster mode was introduced, project mode was the only choice available.

Default

Undefined (N). License Scheduler runs in project mode.

DISTRIBUTION_POLICY_VIOLATION_ACTION

Syntax

DISTRIBUTION_POLICY_VIOLATION_ACTION=(PERIOD reporting_period CMD reporting_command)

reporting_period

Specify the keyword PERI OD with a positive integer representing the interval (a multiple of LM_STAT_INTERVAL periods) at which License Scheduler checks for distribution policy violations.

reporting_command

Specify the keyword CMD with the directory path and command that License Scheduler runs when reporting a violation.

Description

Optional. Defines how License Scheduler handles distribution policy violations. Distribution policy violations are caused by non-LSF workloads; License Scheduler explicitly follows its distribution policies.

License Scheduler reports a distribution policy violation when the total number of licenses given to the LSF workload, both free and in use, is less than the LSF workload distribution specified in WORKLOAD_DISTRIBUTION. If License Scheduler finds a distribution policy violation, it creates or overwrites the LSF_LOGDI R/bl d. vi ol at i on. <code>service_domain_name</code>. l og file and runs the user command specified by the CMD keyword.

Used for project mode only.

Example

The Li censeServer1 service domain has a total of 80 licenses, and its workload distribution and enforcement is configured as follows:

Begin Parameter

. . .

DI STRI BUTI ON_POLI CY_VI OLATI ON_ACTI ON=(PERI OD 5 CMD /bi n/mycmd)

. .

End Parameter

Begin Feature

NAME=ApplicationX

DI STRI BUTI ON=Li censeServer1(Lp1 1 Lp2 2)

WORKLOAD_DISTRIBUTION=LicenseServer1(LSF 8 NON_LSF 2)

End Feature

According to this configuration, 80% of the available licenses, or 64 licenses, are available to the LSF workload. License Scheduler checks the service domain for a violation every five scheduling cycles, and runs the /bi n/mycmd command if it finds a violation.

If the current LSF workload license usage is 50 and the number of free licenses is 10, the total number of licenses assigned to the LSF workload is 60. This is a violation of the workload distribution policy because this is less than the specified LSF workload distribution of 64 licenses.

ENABLE_INTERACTIVE

Syntax

ENABLE_INTERACTIVE=Y

Description

Optional. Globally enables one share of the licenses for interactive tasks.

Tip:

By default, ENABLE_I NTERACTI VE is not set. License Scheduler allocates licenses equally to each cluster and does not distribute licenses for interactive tasks.

Used for project mode only.

HEARTBEAT_INTERVAL

Syntax

HEARTBEAT INTERVAL=seconds

Description

The time interval between bl d heartbeats indicating the bl d is still running.

Default

60 seconds

HEARTBEAT_TIMEOUT

Syntax

HEARTBEAT_TIMEOUT=seconds

Description

The time a slave bld waits to hear from the master bl d before assuming it has died.

Default

120 seconds

HIST_HOURS

Syntax

HIST_HOURS=hours

Description

Determines the rate of decay the accumulated use value used in fairshare and preemption decisions. When **HIST_HOURS=0**, accumulated use is not decayed.

Accumulated use is displayed by the bl stat command under the heading ACUM_USE.

Used for project mode only.

Default

5 hours. Accumulated use decays to 1/10 of the original value over 5 hours.

HOSTS

Syntax

HOSTS=host_name.domain_name...

Description

Defines License Scheduler hosts, including License Scheduler candidate hosts.

Specify a fully qualified host name such as host X. mycompany. com. You can omit the domain name if all your License Scheduler clients run in the same DNS domain.

Used for both project mode and cluster mode.

INUSE FROM RUSAGE

Syntax

INUSE_FROM_RUSAGE=Y|N

Description

When not defined or set to N, the INUSE value uses rusage from bsub job submissions merged with license checkout data reported by bl col l ect (as reported by bl stat).

When INUSE_FROM_RUSAGE=Y, the INUSE value uses the rusage from bsub job submissions instead of waiting for the blcollect update. This can result in faster reallocation of tokens when using dynamic allocation (when ALLOC BUFFER is set).

When for individual license features, the Feature section setting overrides the global Parameters section setting.

Used for cluster mode only.

Default

N

LIB_CONNTIMEOUT

Syntax

LIB_CONNTIMEOUT=seconds

Description

Specifies a timeout value in seconds for communication between License Scheduler and LSF APIs. LIB_CONNTIMEOUT=0 indicates no timeout.

Used for both project mode and cluster mode.

Default

5 seconds

LIB RECVTIMEOUT

Syntax

LIB_RECVTIMEOUT=seconds

Description

Specifies a timeout value in seconds for communication between License Scheduler and LSF.

Used for both project mode and cluster mode.

Default

5 seconds

LM REMOVE INTERVAL

Syntax

LM_REMOVE_INTERVAL=seconds

Description

Specifies the minimum time a job must have a license checked out before 1 mremove can remove the license (using preemption). 1 mremove causes 1 mgrd and vendor daemons to close the TCP connection with the application, then retries the license checkout.

License Scheduler only considers preepting a job after this interval has elapsed. LM_REMOVE_INTERVAL overrides the LS_WAIT_TO_PREEMPT value if LM_REMOVE_INTERVAL is larger.

Used for project mode only.

Default

180 seconds

LM STAT INTERVAL

Syntax

LM_STAT_INTERVAL=seconds

Description

Defines a time interval between calls that License Scheduler makes to collect license usage information from FlexNet license management.

Used for both project mode and cluster mode.

Default

60 seconds

LM_STAT_TIMEOUT

Syntax

LM_STAT_TIMEOUT=seconds

Description

Sets the timout value passed to the l mstat command. The Parameters section setting is overwritten by the Servi ceDomai n setting, which is overwritten by the command line setting (bl col l ect $\,$ -t ti meout).

Used for both project mode and cluster mode.

Default

180 seconds

LMSTAT PATH

Syntax

LMSTAT_PATH=path

Description

Defines the full path to the location of the FlexNet command l mst at.

Used for both project mode and cluster mode.

LOG_EVENT

Syntax

LOG_EVENT=Y

Description

Enables logging of License Scheduler events in the bld. stream file.

Default

Not defined. Information is not logged.

LOG_INTERVAL

Syntax

LOG_INTERVAL=seconds

Description

The interval between token allocation data logs in the data directory

Default

60 seconds

LS_DEBUG_BLC

Syntax

LS_DEBUG_BLC=log_class

Description

Sets the debugging log class for the License Scheduler bl collect daemon.

Used for both project mode and cluster mode.

Specifies the log class filtering to be applied to bl collect. Only messages belonging to the specified log class are recorded.

LS_DEBUG_BLC sets the log class and is used in combination with LS_LOG_MASK, which sets the log level. For example:

LS_LOG_MASK=LOG_DEBUG LS_DEBUG_BLC="LC_TRACE"

To specify multiple log classes, use a space-separated list enclosed in quotation marks. For example: LS_DEBUG_BLC="LC_TRACE"

You need to restart the bl collect daemons after setting LS_DEBUG_BLC for your changes to take effect.

Valid values

Valid log classes are:

LC_AUTH and LC2_AUTH: Log authentication messages

- LC_COMM and LC2_COMM: Log communication messages
- LC_FLEX Log everything related to FLEX_STAT or FLEX_EXEC Flexera APIs
- LC_LICENSE and LC2_LICENSE: Log license management messages (LC_LICENCE is also supported for backward compatibility)
- LC PERFM and LC2 PERFM: Log performance messages
- LC_PREEMPT Log license preemption policy messages
- LC_RESREQ and LC2_RESREQ: Log resource requirement messages
- LC_SYS and LC2_SYS: Log system call messages
- LC_TRACE and LC2_TRACE: Log significant program walk steps
- LC_XDR and LC2_XDR: Log everything transferred by XDR

Default

Not defined.

LS_DEBUG_BLD

Syntax

LS_DEBUG_BLD=log_class

Description

Sets the debugging log class for the License Scheduler b1 d daemon.

Used for both project mode and cluster mode.

Specifies the log class filtering to be applied to bl d. Messages belonging to the specified log class are recorded. Not all debug message are controlled by log class.

LS_DEBUG_BLD sets the log class and is used in combination with MASK, which sets the log level. For example:

LS_LOG_MASK=LOG_DEBUG LS_DEBUG_BLD="LC_TRACE"

To specify multiple log classes, use a space-separated list enclosed in quotation marks. For example: $LS_DEBUG_BLD="LC_TRACE"$

You need to restart the bl d daemon after setting LS_DEBUG_BLD for your changes to take effect.

If you use the command bl admin bl ddebug to temporarily change this parameter without changing l sf. l i censeschedul er, you do not need to restart the daemons.

Valid values

Valid log classes are:

- LC_AUTH and LC2_AUTH: Log authentication messages
- LC_COMM and LC2_COMM: Log communication messages
- LC_FLEX Log everything related to FLEX_STAT or FLEX_EXEC Flexera APIs
- LC_LICENSE and LC2_LICENSE: Log license management messages (LC_LICENCE is also supported for backward compatibility)
- LC_MEMORY Log memory use messages
- LC PREEMPT Log license preemption policy messages
- LC_RESREQ and LC2_RESREQ: Log resource requirement messages
- LC_TRACE and LC2_TRACE: Log significant program walk steps

LC_XDR and LC2_XDR: Log everything transferred by XDR

Valid values

Valid log classes are the same as for LS_DEBUG_CMD.

Default

Not defined.

LS ENABLE MAX PREEMPT

Syntax

LS_ENABLE_MAX_PREEMPT=Y

Description

Enables maximum preemption time checking for taskman jobs.

When LS_ENABLE_MAX_PREEMPT is disabled, preemption times for taskman job are not checked regardless of the value of parameters LS_MAX_TASKMAN_PREEMPT in 1 sf. 1 i censeschedul er and MAX_JOB_PREEMPT in 1 sb. queues, 1 sb. appl i cati ons, or 1 sb. params.

Used for both project mode and cluster mode.

Default

N

LS LOG MASK

Syntax

LS_LOG_MASK=message_log_level

Description

Specifies the logging level of error messages for License Scheduler daemons. If LS_LOG_MASK is not defined in 1 sf. 1 i censeschedul er, the value of LSF_LOG_MASK in 1 sf. conf is used. If neither LS_LOG_MASK nor LSF_LOG_MASK is defined, the default is LOG_WARNING.

Used for both project mode and cluster mode.

For example:

LS_LOG_MASK=LOG_DEBUG

The log levels in order from highest to lowest are:

- LOG ERR
- LOG_WARNING
- LOG_INFO
- LOG_DEBUG
- LOG DEBUG1
- LOG DEBUG2
- LOG_DEBUG3

The most important License Scheduler log messages are at the LOG_WARNING level. Messages at the LOG_DEBUG level are only useful for debugging.

Although message log level implements similar functionality to UNIX sysl og, there is no dependency on UNIX sysl og. It works even if messages are being logged to files instead of sysl og.

License Scheduler logs error messages in different levels so that you can choose to log all messages, or only log messages that are deemed critical. The level specified by LS_LOG_MASK determines which messages are recorded and which are discarded. All messages logged at the specified level or higher are recorded, while lower level messages are discarded.

For debugging purposes, the level LOG_DEBUG contains the fewest number of debugging messages and is used for basic debugging. The level LOG_DEBUG3 records all debugging messages, and can cause log files to grow very large; it is not often used. Most debugging is done at the level LOG_DEBUG2.

Default

LOG_WARNING

LS_MAX_STREAM_FILE_NUMBER

Syntax

LS_MAX_STREAM_FILE_NUMBER=integer

Description

Sets the number of saved bld.stream.timestamp log files. When **LS_MAX_STREAM_FILE_NUMBER=2**, for example, the two most recent files are kept along with the current bld.stream file.

Used for both project mode and cluster mode.

Default

0 (old bl d. stream file is not saved)

LS_MAX_STREAM_SIZE

Syntax

LS_MAX_STREAM_SIZE=integer

Description

Defines the maximum size of the bld.stream file in MB. once this size is reached an EVENT_END_OF_STREAM is logged, a new bld. stream file is created, and the old bld. stream file is renamed bld. stream. *ti mest amp*.

Used for both project mode and cluster mode.

Default

1024

LS MAX TASKMAN PREEMPT

Syntax

LS_MAX_TASKMAN_PREEMPT=integer

Description

Defines the maximum number of times taskman jobs can be preempted.

Maximum preemption time checking for all jobs is enabled by LS_ENABLE_MAX_PREEMPT.

Used for both project mode and cluster mode.

Default

unlimited

LS_MAX_TASKMAN_SESSIONS

Syntax

LS_MAX_TASKMAN_SESSIONS=integer

Description

Defines the maximum number of taskman jobs that run simultaneously. This prevents system-wide performance issues that occur if there are a large number of taskman jobs running in License Scheduler.

The number taskman sessions must be a positive integer.

The actual maximum number of taskman jobs is affected by the operating system file descriptor limit. Make sure the operating system file descriptor limit and the maximum concurrent connections are large enough to support all taskman tasks, License Scheduler (b1 *) commands, and connections between License Scheduler and LSF.

Used for both project mode and cluster mode.

LS STREAM FILE

Syntax

LS_STREAM_FILE=path

Used for both project mode and cluster mode.

Description

Defines the full path and filename of the bld event log file, bld. stream by default.

Note:

In License Scheduler 8.0 the $bl\ d.$ events log file was replaced by the $bl\ d.$ stream log file.

Default

LSF_TOP/work/db/bld.stream

LS_PREEMPT_PEER

Syntax

LS PREEMPT PEER=Y

Description

Enables bottom-up license token preemption in hierarchical project group configuration. License Scheduler attempts to preempt tokens from the closest projects in the hierarchy first. This balances token ownership from the bottom up.

Used for project mode only.

Default

Not defined. Token preemption in hierarchical project groups is top down.

MBD_HEARTBEAT_INTERVAL

Syntax

MBD_HEARTBEAT_INTERVAL=seconds

Description

Sets the length of time the cluster license allocation remains unchanged after a cluster has disconnected from bl d. After MBD_HEARTBEAT_INTERVAL has passed, the allocation is set to zero and licenses are redistributed to other clusters.

Used for cluster mode only.

Default

900 seconds

MBD REFRESH INTERVAL

Syntax

MBD_REFRESH_INTERVAL=seconds

Description

MBD_REFRESH_INTERVAL: Cluster mode and project mode. This parameter allows the administrator to independently control the minimum interval between load updates from bl d, and the minimum interval between load updates from LIM. The parameter controls the frequency of scheduling interactive (taskman) jobs. The parameter is read by mbatchd on startup. When MBD_REFRESH_INTERVAL is set or changed, you must restart bl d, and restart mbatchd in each cluster.

Used for both project mode and cluster mode.

Default

15 seconds

AUTH

Syntax

MERGE BY SERVICE DOMAIN=Y

Description

Correlates job license checkout with the 1 mst at output across all service domains first before reserving licenses.

This parameter supports the case where application's checkout license number is less than or equal to the job's rusage. If the checked out licenses are greater than the job's rusage, the ENABLE_DYNAMIC_RUSAGE parameter is still required.

Default

Not defined.

PEAK_INUSE_PERIOD

Syntax

PEAK_INUSE_PERIOD=seconds

Description

Defines the interval over which a peak INUSE value is determined for dynamic license allocation in cluster mode for all license features over all service domains.

Used for cluster mode only.

When defined in both the Parameters section and the Features section, the Features section definition is used for that license feature.

Default

300 seconds

PORT

Syntax

PORT=integer

Description

Defines the TCP listening port used by License Scheduler hosts, including candidate License Scheduler hosts. Specify any non-privileged port number.

Used for both project mode and cluster mode.

PREEMPT_ACTION

Syntax

PREEMPT_ACTION=action

Description

Specifies the action used for taskman job preemption.

By default, if PREEMPT_ACTION is not configured, bl d sends a TSTP signal to preempt taskman jobs.

You can specify a script using this parameter. For example, PREEMPT_ACTION = /home/user1/ preempt.s issues preempt.s when preempting a taskman job.

Used for project mode only.

Default

Not defined. A TSTP signal is used to preempt taskman jobs.

STANDBY_CONNTIMEOUT

Syntax

STANDBY_CONNTIMEOUT=seconds

Description

Sets the connection timeout the standby bl d waits when trying to contact each host before assuming the host is unavailable.

Used for both project mode and cluster mode.

Default

5 seconds

BLC_HEARTBEAT_FACTOR

Syntax

BLC_HEARTBEAT_FACTOR=*integer*

Description

Enables bl d to detect bl col l ect failure. Defines the number of times that bl d receives no response from a license collector daemon (bl col l ect) before bl d resets the values for that collector to zero. Each license usage reported to bl d by the collector is treated as a heartbeat.

Used for both project mode and cluster mode.

Default

3

Clusters section

Description

Required. Lists the clusters that can use License Scheduler.

When configuring clusters for a WAN, the Clusters section of the master cluster must define its slave clusters.

The Clusters section is the same for both project mode and cluster mode.

Clusters section structure

The Clusters section begins and ends with the lines Begin Clusters and End Clusters. The second line is the column heading, CLUSTERS. Subsequent lines list participating clusters, one name per line:

Begin Clusters
CLUSTERS
cluster1
cluster2
End Clusters

CLUSTERS

Defines the name of each participating LSF cluster. Specify using one name per line.

ServiceDomain section

Description

Required. Defines License Scheduler service domains as groups of physical license server hosts that serve a specific network.

The ServiceDomain section is the same for both project mode and cluster mode.

ServiceDomain section structure

Define a section for each License Scheduler service domain.

This example shows the structure of the section:

Begin ServiceDomain

NAME=DesignCenterB

LIC_SERVERS=((1888@hostD) (1888@hostE))

LIC_COLLECTOR=CenterB

End ServiceDomain

Parameters

- NAME
- LIC SERVERS
- LIC_COLLECTOR
- LM_STAT_INTERVAL
- LM_STAT_TIMEOUT

NAME

Defines the name of the service domain.

Used for both project mode and cluster mode.

LIC SERVERS

Syntax

LIC_SERVERS=([(host_name | port_number@host_name | (port_number@host_name port_number@host_name))] ...)

Description

Defines the FlexNet license server hosts that make up the License Scheduler service domain. For each FlexNet license server host, specify the number of the port that FlexNet uses, then the at symbol (@), then the name of the host. If FlexNet uses the default port on a host, you can specify the host name without the port number. Put one set of parentheses around the list, and one more set of parentheses around each host, unless you have redundant servers (three hosts sharing one license file). If you have redundant servers, the parentheses enclose all three hosts.

Used for both project mode and cluster mode.

Examples

One FlexNet license server host:

LIC_SERVERS=((1700@hostA))

Multiple FlexNet license server hosts with unique 1 i cense. dat files:

LIC_SERVERS=((1700@hostA)(1700@hostB)(1700@hostC))

Redundant FlexNet license server hosts sharing the same l i cense. dat file:

LIC_SERVERS=((1700@hostD 1700@hostE 1700@hostF))

LIC_COLLECTOR

Syntax

LIC_COLLECTOR=license_collector_name

Description

Optional. Defines a name for the license collector daemon (bl col l ect) to use in each service domain. bl col l ect collects license usage information from FlexNet and passes it to the License Scheduler daemon (bl d). It improves performance by allowing you to distribute license information queries on multiple hosts.

You can only specify one collector per service domain, but you can specify one collector to serve multiple service domains. Each time you run bl collect, you must specify the name of the collector for the service domain. You can use any name you want.

Used for both project mode and cluster mode.

Default

Undefined. The License Scheduler daemon uses one license collector daemon for the entire cluster.

LM_STAT_INTERVAL

Syntax

LM_STAT_INTERVAL=seconds

Description

Defines a time interval between calls that License Scheduler makes to collect license usage information from FlexNet license management.

The value specified for a service domain overrides the global value defined in the Parameters section. Each service domain definition can specify a different value for this parameter.

Used for both project mode and cluster mode.

Default

License Scheduler applies the global value defined in the Parameters section.

LM_STAT_TIMEOUT

Syntax

LM_STAT_TIMEOUT=seconds

Description

Sets the timout value passed to the l mstat command. The Parameters section setting is overwritten by the Servi ceDomai n setting, which is overwritten by the command line setting (bl col l ect -t ti meout).

Used for both project mode and cluster mode.

Default

180 seconds

Feature section

Description

Required. Defines license distribution policies.

Feature section structure

Define a section for each feature managed by License Scheduler.

Begin Feature NAME=vcs FLEX_NAME=vcs

. . .

Distribution policy Parameters

. . .

End Feature

Parameters

- NAME
- CLUSTER MODE
- FLEX NAME
- DISTRIBUTION

- ALLOCATION
- GROUP
- GROUP_DISTRIBUTION
- CLUSTER DISTRIBUTION
- INUSE FROM RUSAGE
- ALLOC BUFFER
- LOCAL TO
- LS ACTIVE PERCENTAGE
- LS FEATURE PERCENTAGE
- NON_SHARED_DISTRIBUTION
- PEAK INUSE PERIOD
- PREEMPT_ORDER
- PREEMPT_RESERVE
- RETENTION FACTOR
- SERVICE_DOMAINS
- WORKLOAD DISTRIBUTION
- ENABLE DYNAMIC RUSAGE
- DYNAMIC
- LM REMOVE INTERVAL
- ENABLE_MINJOB_PREEMPTION
- ACCINUSE_INCLUDES_OWNERSHIP
- LS_WAIT_TO_PREEMPT

NAME

Required. Defines the token name—the name used by License Scheduler and LSF to identify the license feature.

Used for both project mode and cluster mode.

Normally, license token names should be the same as the FlexNet Licensing feature names, as they represent the same license. However, LSF does not support names that start with a number, or names containing a dash or hyphen character (-), which may be used in the FlexNet Licensing feature name.

CLUSTER_MODE

Syntax

CLUSTER_MODE=Y

Description

Enables cluster mode (instead of project mode) for the license feature. Setting in the Feature section overrides the global setting in the Parameters section.

Cluster mode emphasizes high utilization of license tokens above other considerations such as ownership. License ownership and sharing can still be configured, but within each cluster instead of across multiple clusters. Preemption of jobs (and licenses) also occurs within each cluster instead of across clusters.

Cluster mode was introduced in License Scheduler 8.0. Before cluster mode was introduced, project mode was the only choice available.

Default

Undefined (N). License Scheduler runs in project mode.

FLEX NAME

Optional. Defines the feature name—the name used by FlexNet to identify the type of license. You only need to specify this parameter if the License Scheduler token name is not identical to the FlexNet feature name

Used for both project mode and cluster mode.

FLEX_NAME allows the NAME parameter to be an alias of the FlexNet feature name. For feature names that start with a number or contain a dash (-), you must set both NAME and FLEX_NAME, where FLEX_NAME is the actual FlexNet Licensing feature name, and NAME is an arbitrary license token name you choose.

For example

Begin Feature

FLEX_NAME=201-AppZ

NAME=AppZ201

DISTRIBUTION=LanServer1(Lp1 1 Lp2 1)

End Feature

DISTRIBUTION

Syntax

DISTRIBUTION=[service_domain_name([project_name number_shares[/number_licenses_owned]] ... [default])] ...

service_domain_name

Specify a License Scheduler service domain (described in the ServiceDomain section) that distributes the licenses.

project_name

Specify a License Scheduler project (described in the Projects section) that is allowed to use the licenses.

number_shares

Specify a positive integer representing the number of shares assigned to the project.

The number of shares assigned to a project is only meaningful when you compare it to the number assigned to other projects, or to the total number assigned by the service domain. The total number of shares is the sum of the shares assigned to each project.

number_licenses_owned

Optional. Specify a slash (/) and a positive integer representing the number of licenses that the project owns. When configured, preemption is enabled and owned licenses are reclaimed using preemption when there is unmet demand.

defaul t

A reserved keyword that represents the default project if the job submission does not specify a project (bsub -Lp), or the specified project is not configured in the Projects section of lsf. licensescheduler. Jobs that belong to projects do not get a share of the tokens when the project is not explicitly defined in DI STRI BUTI ON.

Description

Used for project mode only.

One of DISTRIBUTION or GROUP_DISTRIBUTION must be defined when using project mode. GROUP_DISTRIBUTION and DISTRIBUTION are mutually exclusive. If defined in the same feature, the License Scheduler daemon returns an error and ignores this feature.

Defines the distribution policies for the license. The name of each service domain is followed by its distribution policy, in parentheses. The distribution policy determines how the licenses available in each service domain are distributed among the clients.

The distribution policy is a space-separated list with each project name followed by its share assignment. The share assignment determines what fraction of available licenses is assigned to each project, in the event of competition between projects. Optionally, the share assignment is followed by a slash and the number of licenses owned by that project. License ownership enables a preemption policy. (In the event of competition between projects, projects that own licenses preempt jobs. Licenses are returned to the owner immediately.)

Examples

```
DISTRIBUTION=wanserver (Lp1 1 Lp2 1 Lp3 1 Lp4 1)
```

In this example, the service domain named wanserver shares licenses equally among four projects. If all projects are competing for a total of eight licenses, each project is entitled to two licenses at all times. If all projects are competing for only two licenses in total, each project is entitled to a license half the time. DI STRI BUTI ON=1 anserver1 (Lp1 1 Lp2 2/6)

In this example, the service domain named lanserver 1 allows Lp1 to use one third of the available licenses and Lp2 can use two thirds of the licenses. However, Lp2 is always entitled to six licenses, and can preempt another project to get the licenses immediately if they are needed. If the projects are competing for a total of 12 licenses, Lp2 is entitled to eight licenses (six on demand, and two more as soon as they are free). If the projects are competing for only six licenses in total, Lp2 is entitled to all of them, and Lp1 can only use licenses when Lp2 does not need them.

ALLOCATION

Syntax

ALLOCATION=project_name (cluster_name [number_shares] ...) ...

cluster name

Specify LSF cluster names or interactive tasks that licenses are to be allocated to.

project_name

Specify a License Scheduler project (described in the Projects section or as default) that is allowed to use the licenses.

number_shares

Specify a positive integer representing the number of shares assigned to the cluster.

The number of shares assigned to a cluster is only meaningful when you compare it to the number assigned to other clusters. The total number of shares is the sum of the shares assigned to each cluster.

Description

Defines the allocation of license features across clusters and interactive tasks.

Used for project mode only.

ALLOCATION ignores the global setting of the ENABLE_INTERACTIVE parameter because ALLOCATION is configured for the license feature.

You can configure the allocation of license shares to:

- Change the share number between clusters for a feature
- Limit the scope of license usage and change the share number between LSF jobs and interactive tasks for a feature

Tip:

To manage interactive tasks in License Scheduler projects, use the LSF Task Manager, taskman. The Task Manager utility is supported by License Scheduler.

Default

If ENABLE_INTERACTIVE is not set, each cluster receives equal share, and interactive tasks receive no shares.

Examples

Each example contains two clusters and 12 licenses of a specific feature.

Example 1

ALLOCATION is not configured. The ENABLE_INTERACTIVE parameter is not set.

Begin Parameters
...

ENABLE_INTERACTIVE=n
...

End Parameters

Begin Feature

NAME=ApplicationX

DISTRIBUTION=LicenseServer1 (Lp1 1)

End Feature

Six licenses are allocated to each cluster. No licenses are allocated to interactive tasks.

Example 2

ALLOCATION is not configured. The ENABLE_INTERACTIVE parameter is set.

Begin Parameters

. . .

ENABLE_INTERACTIVE=y

. . .

End Parameters

Begin Feature

NAME=ApplicationX

DI STRI BUTI ON=Li censeServer1 (Lp1 1)

End Feature

Four licenses are allocated to each cluster. Four licenses are allocated to interactive tasks.

Example 3

In the following example, the ENABLE_INTERACTIVE parameter does not affect the ALLOCATION configuration of the feature.

ALLOCATION is configured. The ENABLE_INTERACTIVE parameter is set.

Begin Parameters

. . .

ENABLE_INTERACTIVE=y

. . .

End Parameters

Begin Feature

NAME=ApplicationY

DI STRI BUTI ON=Li censeServer1 (Lp2 1)

ALLOCATION=Lp2(cluster1 1 cluster2 0 interactive 1)

End Feature

The ENABLE_INTERACTIVE setting is ignored. Licenses are shared equally between cluster1 and interactive tasks. Six licenses of Appl i cationY are allocated to cluster1. Six licenses are allocated to interactive tasks.

Example 4

In the following example, the ENABLE_INTERACTIVE parameter does not affect the ALLOCATION configuration of the feature.

ALLOCATION is configured. The ENABLE_INTERACTIVE parameter is not set.

```
Begin Parameters
...

ENABLE_INTERACTIVE=n
...

End Parameters

Begin Feature

NAME=ApplicationZ

DISTRIBUTION=LicenseServer1 (Lp1 1)

ALLOCATION=Lp1(cluster1 0 cluster2 1 interactive 2)

End Feature
```

The ENABLE_INTERACTIVE setting is ignored. Four licenses of Appl i cati onZ are allocated to cluster 2. Eight licenses are allocated to interactive tasks.

GROUP

Syntax

```
GROUP=[group_name(project_name...)] ...
```

group_name

Specify a name for a group of projects. This is different from a Proj ectGroup section; groups of projects are not hierarchical.

project_name

Specify a License Scheduler project (described in the Projects section) that is allowed to use the licenses. The project must appear in the DISTRIBUTION and only belong to one group.

Description

Optional. Defines groups of projects and specifies the name of each group. The groups defined here are used for group preemption. The number of licenses owned by the group is the total number of licenses owned by member projects.

Used for project mode only.

This parameter is ignored if GROUP_DISTRIBUTION is also defined.

Example

For example, without the GROUP configuration shown, proj 1 owns 4 license tokens and can reclaim them using preemption. After adding the GROUP configuration, proj 1 and proj 2 together own 8 license tokens. If proj 2 is idle, proj 1 is able to reclaim all 8 license tokens using preemption.

```
Begin Feature
NAME = AppY
DISTRIBUTION = LanServer1(proj 1 1/4 proj 2 1/4 proj 3 2)
GROUP = GroupA(proj 1 proj 2)
End Feature
```

GROUP DISTRIBUTION

Syntax

GROUP_DISTRIBUTION=top_level_hierarchy_name

top_level_hierarchy_name

Specify the name of the top level hierarchical group.

Description

Defines the name of the hierarchical group containing the distribution policy attached to this feature, where the hierarchical distribution policy is defined in a Project Group section.

One of DISTRIBUTION or GROUP_DISTRIBUTION must be defined when using project mode. GROUP_DISTRIBUTION and DISTRIBUTION are mutually exclusive. If defined in the same feature, the License Scheduler daemon returns an error and ignores this feature.

If GROUP is also defined, it is ignored in favor of GROUP_DISTRIBUTION.

Example

The following example shows the GROUP_DISTRIBUTION parameter hierarchical scheduling for the top-level hierarchical group named groups. The SERVICE_DOMAINS parameter defines a list of service domains that provide tokens for the group.

```
Begin Feature

NAME = myj ob2

GROUP_DI STRI BUTI ON = groups

SERVI CE_DOMAI NS = LanServer wanServer

End Feature
```

CLUSTER_DISTRIBUTION

Syntax

CLUSTER_DISTRIBUTION=service domain(cluster shares/min/max ...)...

service_domain

Specify a License Scheduler WAN service domain (described in the ServiceDomain section) that distributes licenses to multiple clusters, and the share for each cluster.

Specify a License Scheduler LAN service domain for a single cluster.

cluster

Specify each LSF cluster that accesses licenses from this service domain.

shares

For each cluster specified for a WAN service domain, specify a positive integer representing the number of shares assigned to the cluster. (Not required for a LAN service domain.)

The number of shares assigned to a cluster is only meaningful when you compare it to the number assigned to other clusters, or to the total number assigned by the service domain. The total number of shares is the sum of the shares assigned to each cluster.

min

Optionally, specify a positive integer representing the minimum number of license tokens allocated to the cluster when dynamic allocation is enabled for a WAN service domain (when ALLOC_BUFFER is defined for the feature).

The minimum allocation is allocated exclusively to the cluster, and is similar to the non-shared allocation in project mode.

Cluster shares take precedence over minimum allocations configured. If the minimum allocation exceeds the cluster's share of the total tokens, a cluster's allocation as given by bl d may be less than the configured minimum allocation.

max

Optionally, specify a positive integer representing the maximum number of license tokens allocated to the cluster when dynamic allocation is enabled for a WAN service domain (when ALLOC_BUFFER is defined for the feature).

Description

CLUSTER_DISTRIBUTION must be defined when using cluster mode.

Defines the cross-cluster distribution policies for the license. The name of each service domain is followed by its distribution policy, in parentheses. The distribution policy determines how the licenses available in each service domain are distributed among the clients.

The distribution policy is a space-separated list with each cluster name followed by its share assignment. The share assignment determines what fraction of available licenses is assigned to each cluster, in the event of competition between clusters.

Examples

```
CLUSTER_DI STRI BUTI ON=wanserver(Cl 1 1 Cl 2 1 Cl 3 1 Cl 4 1)

CLUSTER_DI STRI BUTI ON = SD(Cl 1 Cl 2 1) SD1(Cl 1 Cl 2 1) SD2(Cl 1) SD2(Cl 1) SD3(Cl 2 1)
```

In these examples, wanserver, SD, and SD1 are WAN service domains, while SD2 and SD3 are LAN service domains serving a single cluster.

INUSE_FROM_RUSAGE

Syntax

INUSE_FROM_RUSAGE=Y|N

Description

When not defined or set to **N**, the INUSE value uses rusage from bsub job submissions merged with license checkout data reported by bl col l ect (as reported by bl stat).

When INUSE_FROM_RUSAGE=Y, the INUSE value uses the rusage from bsub job submissions instead of waiting for the blcollect update. This can result in faster reallocation of tokens when using dynamic allocation (when ALLOC_BUFFER is set).

When for individual license features, the Feature section setting overrides the global Parameters section setting.

Used for cluster mode only.

Default

Ν

ALLOC_BUFFER

Syntax

ALLOC_BUFFER = buffer | cluster_name buffer ... default buffer

Description

Enables dynamic distribution of licenses across clusters in cluster mode.

Cluster names must be the names of clusters defined in the Clusters section of l sf. l i censeschedul er.

Used for cluster mode only.

ALLOC_BUFFER=*buffer* sets one buffer size for all clusters, while **ALLOC_BUFFER**=*cluster_name buffer* ... sets a different buffer size for each cluster.

The buffer size is used during dynamic redistribution of licenses. Increases in allocation are determined by the PEAK value, and increased by DEMAND for license tokens to a maximum increase of BUFFER, the buffer size configured by ALLOC_BUFFER. The licenses allocation can increase in steps as large as the buffer size, but no larger.

Allocation buffers help determine the maximum rate at which tokens can be transferred to a cluster as demand increases in the cluster. The maximum rate of transfer to a cluster is given by the allocation buffer divided by MBD REFRESH INTERVAL. Be careful not to set the allocation buffer too large so that licenses are not wasted because they are be allocated to a cluster that cannot use them.

Decreases in license allocation can be larger than the buffer size, but the allocation must remain at PEAK +BUFFER licenses. The license allocation includes up to the buffer size of extra licenses, in case demand increases.

Increasing the buffer size allows the license allocation to grow faster, but also increases the number of licenses that may go unused at any given time. The buffer value must be tuned for each license feature and cluster to balance these two objectives.

Detailed license distribution information is shown in the bl stat output.

Use the keyword default to apply a buffer size to all remaining clusters. For example:

```
Begin Feature

NAME = f1

CLUSTER_DISTRIBUTION = WanServers(banff 1 berlin 1 boston 1)

ALLOC_BUFFER = banff 10 default 5

End Feature
```

In this example, dynamic distribution is enabled. The cluster banff has a buffer size of 10, and all remaining clusters have a buffer size of 5.

To allow a cluster to be able to use licenses only when another cluster does not need them, you can set the cluster distribution for the cluster to 0, and specify an allocation buffer for the number of tokens that the cluster can request.

For example:

```
Begin Feature
CLUSTER_DI STRI BUTI ON=Wan(CL1 0 CL2 1)
ALLOC_BUFFER=5
End Feature
```

When no jobs are running, the token allocation for CL1 is 5. CL1 can get more than 5 tokens if CL2 does not require them.

Default

Not defined. Static distribution of licenses is used in cluster mode.

LOCAL_TO

Syntax

LOCAL_TO=cluster_name | location_name(cluster_name [cluster_name ...])

Description

Used for project mode only.

Configures token locality for the license feature. You must configure different feature sections for same feature based on their locality. By default, If LOCAL_TO is not defined, the feature is available to all clients and is not restricted by geographical location. When LOCAL_TO is configured, for a feature, License Scheduler treats license features served to different locations as different token names, and distributes the tokens to projects according the distribution and allocation policies for the feature.

LOCAL_TO allows you to limit features from different service domains to specific clusters, so License Scheduler only grants tokens of a feature to jobs from clusters that are entitled to them.

For example, if your license servers restrict the serving of license tokens to specific geographical locations, use LOCAL_TO to specify the locality of a license token if any feature cannot be shared across all the locations. This avoids having to define different distribution and allocation policies for different service domains, and allows hierarchical group configurations.

License Scheduler manages features with different localities as different resources. Use bl i nf o and bl stat to see the different resource information for the features depending on their cluster locality.

License features with different localities must be defined in different feature sections. The same Service Domain can appear only once in the configuration for a given license feature.

A configuration like LOCAL_TO=Site1(clusterA clusterB) configures the feature for more than one cluster when using project mode.

A configuration like LOCAL_T0=cl usterA configures locality for only one cluster. This is the same as LOCAL_T0=cl usterA(cl usterA).

Cluster names must be the names of clusters defined in the Clusters section of $l\,sf.\,l\,i$ censeschedul er.

Examples

```
Begin Feature
NAME = hspice
DI STRI BUTI ON = SD1 (Lp1 1 Lp2 1)
LOCAL_TO = siteUS(clusterA clusterB)
End Feature
Begin Feature
NAME = hspice
DI STRI BUTI ON = SD2 (Lp1 1 Lp2 1)
LOCAL_TO = clusterA
End Feature
Begin Feature
NAME = hspice
DI STRI BUTI 0N = SD3 (Lp1 \ 1 \ Lp2 \ 1) SD4 (Lp1 \ 1 \ Lp2 \ 1)
End Feature
Or use the hierarchical group configuration (GROUP_DISTRIBUTION):
Begin Feature
NAME = hspice
GROUP_DI STRI BUTI ON = group1
SERVI CE_DOMAI NS = SD1
LOCAL_TO = clusterA
End Feature
Begin Feature
NAME = hspice
GROUP_DI STRI BUTI ON = group1
SERVI CE_DOMAI NS = SD2
LOCAL_TO = clusterB
End Feature
Begin Feature
NAME = hspice
GROUP_DI STRI BUTI ON = group1
SERVI CE_DOMAI NS = SD3 SD4
End Feature
```

Default

Not defined. The feature is available to all clusters and taskman jobs, and is not restricted by cluster.

LS ACTIVE PERCENTAGE

Syntax

LS_ACTIVE_PERCENTAGE=Y | N

Description

Configures license ownership in percentages instead of absolute numbers and adjusts ownership for inactive projects. Sets LS_FEATURE_PERCENTAGE=Y automatically.

Settings LS_ACTIVE_PERCENTAGE=Y dynamically adjusts ownership based on project activity, setting ownership to zero for inactive projects and restoring the configured ownership setting when projects become active. If the total ownership for the license feature is greater than 100%, each ownership value is scaled appropriately for a total ownership of 100%.

Used for project mode only.

Default

N (Ownership values are not changed based on project activity.)

LS FEATURE PERCENTAGE

Syntax

LS_FEATURE_PERCENTAGE=Y | N

Description

Configures license ownership in percentages instead of absolute numbers. When not combined with hierarchical projects, affects the owned values in DI STRI BUTI ON and the NON_SHARED_DI STRI BUTI ON values only.

When using hierarchical projects, percentage is applied to OWNERSHI P, LI MI TS, and NON_SHARED values.

Used for project mode only.

For example:

```
Begin Feature

LS_FEATURE_PERCENTAGE = Y

DISTRIBUTION = LanServer (p1 1 p2 1 p3 1/20)
...

End Feature
```

The service domain LanServer shares licenses equally among three License Scheduler projects. P3 is always entitled to 20% of the total licenses, and can preempt another project to get the licenses immediately if they are needed.

Example 1

```
Begin Feature
LS_FEATURE_PERCENTAGE = Y
DISTRIBUTION = LanServer (p1 1 p2 1 p3 1/20)
...
End Feature
```

The service domain LanServer shares licenses equally among three License Scheduler projects. P3 is always entitled to 20% of the total licenses, and can preempt another project to get the licenses immediately if they are needed.

Example 2

With LS_FEATURE_PERCENTAGE=Y in feature section and using hierarchical project groups:

Begin Proj	${\tt ectGroup}$							
GROUP	SHARES	OWNERSHI P	LI MI TS	NON_SHARED				
(R (A p4))	(1 1)	()	()	()				
(A (B p3))	(1 1)	(- 10)	(- 20)	()				
(B (p1 p2)) (1 1)	(30 -)	()	(- 5)				
End ProjectGroup								

Project p1 owns 30% of the total licenses, and project p3 owns 10% of total licenses. P3's LI MI TS is 20% of total licenses, and p2's NON_SHARED is 5%.

Default

N (Ownership is not configured with percentages, but with absolute numbers.)

NON_SHARED_DISTRIBUTION

Syntax

```
NON_SHARED_DISTRIBUTION=service_domain_name ([project_name number_non_shared_licenses] ... ) ...
```

service_domain_name

Specify a License Scheduler service domain (described in the ServiceDomain section) that distributes the licenses.

project name

Specify a License Scheduler project (described in the section) that is allowed to use the licenses.

number_non_shared_licenses

Specify a positive integer representing the number of non-shared licenses that the project owns.

Description

Optional. Defines non-shared licenses. Non-shared licenses are privately owned, and are not shared with other license projects. They are available only to one project.

Used for project mode only.

Use bl i nfo - a to display NON_SHARED_DISTRIBUTION information.

For projects defined with NON_SHARED_DISTRIBUTION, you must assign the project OWNERSHI P an equal or greater number of tokens than the number of non-shared licenses. If the number of owned licenses is less than the number of non-shared licenses, OWNERSHI P is set to the number of non-shared licenses.

Example

Begin Feature

NAME=f1 # total 15 on LanServer and 15 on WanServer

FLEX NAME=VCS-RUNTI ME

DISTRIBUTION=LanServer(Lp1 4 Lp2 1) WanServer (Lp1 1 Lp2 1/3)

NON_SHARED_DISTRIBUTION=LanServer(Lp1 10) WanServer (Lp1 5 Lp2 3)

PREEMPT_RESERVE=Y

End Feature

In this example:

- 10 non-shared licenses are defined for the Lp1 project on LanServer
- 5 non-shared licenses are defined for the Lp1 project on WanServer
- 3 non-shared licenses are defined for the Lp2 project on WanServer

The remaining licenses are distributed as follows:

- LanServer: The remaining 5 (15-10=5) licenses on LanServer is distributed to the Lp1 and Lp2 projects with a 4:1 ratio.
- WanServer: The remaining 7 (15-5-3=7) licenses on WanServer is distributed to the Lp1 and Lp2 projects with a 1:1 ratio. If Lp2 uses fewer than 6 (3 privately owned+ 3 owned) licenses, then a job in the Lp2 can preempt Lp1 jobs.

PEAK_INUSE_PERIOD

Syntax

PEAK_INUSE_PERIOD=seconds | cluster seconds ...

Description

Defines the interval over which a peak INUSE value is determined for dynamic license allocation in cluster mode for this license features and service domain.

Use keyword default to set for all clusters not specified, and the keyword interactive (in place of cluster name) to set for taskman jobs. For example:

PEAK_INUSE_PERIOD = cluster1 1000 cluster2 700 default 300

Used for cluster mode only.

When defined in both the Parameters section and the Features section, the Features section definition is used for that license feature.

Default

300 seconds

PREEMPT_ORDER

Syntax

PREEMPT ORDER=BY OWNERSHIP

Description

Optional. Sets the preemption order based on configured OWNERSHIP.

Used for project mode only.

Default

Not defined.

PREEMPT RESERVE

Syntax

PREEMPT_RESERVE=Y

Description

Optional. Enables License Scheduler to preempt either licenses that are reserved or already in use by other projects. The number of jobs must be greater than the number of licenses owned.

Used for project mode only.

Default

Y. Reserved licenses are preemptable.

RETENTION_FACTOR

Syntax

RETENTION_FACTOR=integer%

Description

Ensures that when tokens are reclaimed from an overfed cluster, the overfed cluster still gets to dispatch additional jobs, but at a reduced rate. Specify the retention factor as a percentage of tokens to be retained by the overfed cluster.

For example:

```
Begin Feature
NAME = f1
CLUSTER_MODE = Y
CLUSTER_DISTRIBUTION = LanServer(LAN1 1 LAN2 1)
ALLOC_BUFFER = 20
RETENTION_FACTOR = 25%
End Feature
```

With RETENTION_FACTOR set, as jobs finish in the overfed cluster and free up tokens, at least 25% of the tokens can be reused by the cluster to dispatch additional jobs. Tokens not held by the cluster are redistributed to other clusters. In general, a higher value means that the process of reclaiming tokens from an overfed cluster takes longer, and an overfed cluster gets to dispatch more jobs while tokens are being reclaimed from it.

Used for cluster mode only.

Default

Not defined

SERVICE_DOMAINS

Syntax

SERVICE_DOMAINS=*service_domain_name* ...

service_domain_name

Specify the name of the service domain.

Description

Required if GROUP_DISTRIBUTION is defined. Specifies the service domains that provide tokens for this feature.

Only a single service domain can be specified when using cluster mode.

Used for both project mode and cluster mode.

WORKLOAD DISTRIBUTION

Syntax

WORKLOAD_DISTRIBUTION=[service_domain_name(LSF lsf_distribution NON_LSF non_lsf_distribution)] ...

service_domain_name

Specify a License Scheduler service domain (described in the ServiceDomain section) that distributes the licenses.

Isf distribution

Specify the share of licenses dedicated to LSF workloads. The share of licenses dedicated to LSF workloads is a ratio of *lsf_distribution*.non_lsf_distribution.

non_lsf_distribution

Specify the share of licenses dedicated to non-LSF workloads. The share of licenses dedicated to non-LSF workloads is a ratio of *non_lsf_distribution*.

Description

Optional. Defines the distribution given to each LSF and non-LSF workload within the specified service domain.

Used for both project mode and cluster mode. When running in cluster mode,

WORKLOAD_DISTRIBUTION can only be specified for WAN service domains; if defined for a LAN feature, it is ignored.

Use bl i nfo - a to display WORKLOAD_DISTRIBUTION configuration.

Example

Begin Feature

NAME=ApplicationX

DISTRIBUTION=LicenseServer1(Lp1 1 Lp2 2)

WORKLOAD_DISTRIBUTION=LicenseServer1(LSF 8 NON_LSF 2)

End Feature

On the Li censeServer1 domain, the available licenses are dedicated in a ratio of 8:2 for LSF and non-LSF workloads. This means that 80% of the available licenses are dedicated to the LSF workload, and 20% of the available licenses are dedicated to the non-LSF workload.

If Li censeServer1 has a total of 80 licenses, this configuration indicates that 64 licenses are dedicated to the LSF workload, and 16 licenses are dedicated to the non-LSF workload.

ENABLE DYNAMIC RUSAGE

Syntax

ENABLE_DYNAMIC_RUSAGE=Y

Description

Enforces license distribution policies for class-C license features.

When set, ENABLE_DYNAMIC_RUSAGE enables all class-C license checkouts to be considered managed checkout, instead of unmanaged (or OTHERS).

Used for project mode only.

DYNAMIC

Syntax

DYNAMIC=Y

Description

If you specify DYNAMIC=Y, you must specify a duration in an rusage resource requirement for the feature. This enables License Scheduler to treat the license as a dynamic resource and prevents License Scheduler from scheduling tokens for the feature when they are not available, or reserving license tokens when they should actually be free.

Used for project mode only. Cluster mode does not support rusage duration.

LM REMOVE INTERVAL

Syntax

LM_REMOVE_INTERVAL=seconds

Description

Specifies the minimum time a job must have a license checked out before 1 mremove can remove the license. 1 mremove causes 1 mgrd and vendor daemons to close the TCP connection with the application. They then retry the license checkout.

Used for both project mode and cluster mode.

The value specified for a feature overrides the global value defined in the Parameters section. Each feature definition can specify a different value for this parameter.

Default

Undefined: License Scheduler applies the global value.

ENABLE_MINJOB_PREEMPTION

Syntax

ENABLE_MINJOB_PREEMPTION=Y

Description

Minimizes the overall number of preempted jobs by enabling job list optimization. For example, for a job that requires 10 licenses, License Scheduler preempts one job that uses 10 or more licenses rather than 10 jobs that each use one license.

Used for project mode only

Default

Undefined: License Scheduler does not optimize the job list when selecting jobs to preempt.

ACCINUSE_INCLUDES_OWNERSHIP

Syntax

ACCINUSE INCLUDES OWNERSHIP=Y

Description

When not defined, accumulated use is incremented each scheduling cycle by (tokens in use) + (tokens reserved) if this exceeds the number of tokens owned.

When defined, accumulated use is incremented each scheduling cycle by (tokens in use) + (tokens reserved) regardless of the number of tokens owned.

This is useful for projects that have a very high ownership set when considered against the total number of tokens available for LSF workload. Projects can be starved for tokens when the ownership is set too high and this parameter is not set.

Accumulated use is displayed by the bl stat command under the heading ACUM_USE.

Used for project mode only. Cluster mode does not track accumulated use.

Default

N, not enabled.

LS WAIT TO PREEMPT

Syntax

LS_WAIT_TO_PREEMPT=seconds

Description

Defines the number of seconds that jobs must wait (time since it was dispatched) before it can be preempted. Applies to LSF and taskman jobs.

Used for project mode only.

When LM_REMOVE_INTERVAL is also defined, the LM_REMOVE_INTERVAL value overrides the LS_WAIT_TO_PREEMPT value.

Default

0. The job can be preempted even if it was just dispatched.

FeatureGroup section

Description

Optional. Collects license features into groups. Put FeatureGroup sections after Feature sections in l sf. l i censeschedul er.

The FeatureGroup section is supported in both project mode and cluster mode.

FeatureGroup section structure

The FeatureGroup section begins and ends with the lines Begin FeatureGroup and End FeatureGroup. Feature group definition consists of a unique name and a list of features contained in the feature group.

Example

```
Begin FeatureGroup

NAME = Synposys

FEATURE_LIST = ASTRO VCS_Runtime_Net Hsim Hspice

End FeatureGroup

Begin FeatureGroup

NAME = Cadence

FEATURE_LIST = Encounter NCSim NCVerilog

End FeatureGroup
```

Parameters

- NAME
- FEATURE LIST

NAME

Required. Defines the name of the feature group. The name must be unique.

FEATURE_LIST

Required. Lists the license features contained in the feature group. The feature names in FEATURE_LIST must already be defined in Feature sections. Feature names cannot be repeated in the FEATURE_LIST of one feature group. The FEATURE_LIST cannot be empty. Different feature groups can have the same features in their FEATURE_LIST.

ProjectGroup section

Description

Optional. Defines the hierarchical relationships of projects.

Used for project mode only. When running in cluster mode, any Project Group sections are ignored.

The hierarchical groups can have multiple levels of grouping. You can configure a tree-like scheduling policy, with the leaves being the license projects that jobs can belong to. Each project group in the tree has a set of values, including shares, limits, ownership and non-shared, or exclusive, licenses.

Use bl stat - G to view the hierarchical dynamic license information.

Use blinfo - G to view the hierarchical configuration.

ProjectGroup section structure

Define a section for each hierarchical group managed by License Scheduler.

The keywords GROUP, SHARES, OWNERSHI P, LI MI T, and NON_SHARED are required. The keywords PRI ORI TY and DESCRI PTI ON are optional. Empty brackets are allowed only for OWNERSHI P, LI MI T, and PRI ORI TY. SHARES must be specified.

Begi n	Proj ectGroup				
GROUP	SHARES	OWNERSHI P	LI MI TS	NON_SHARED	PRI ORI TY
(root(A B C))	(1 1 1)	()	()	()	(3 2 -)
(A (P1 D))	(1 1)	()	()	()	(3 5)
(B (P4 P5))	(1 1)	()	()	()	()
(C (P6 P7 P8))	(1 1 1)	()	()	()	(8 3 0)
(D (P2 P3))	(1 1)	()	()	()	(2 1)
End ProjectGro	ир				

If desired, Project Group sections can be completely independent, without any overlapping projects.

```
Begin ProjectGroup

GROUP SHARES OWNERSHIP LIMITS NON_SHARED

(digital_sim (sim sim_reg)) (40 60) (100 0) () ()

End ProjectGroup

Begin ProjectGroup

GROUP SHARES OWNERSHIP LIMITS NON_SHARED

(analog_sim (app1 multitoken app1_reg)) (50 10 40) (65 25 0) (- 50 -) ()

End ProjectGroup
```

Parameters

- GROUP
- SHARES
- OWNERSHIP
- LIMITS
- NON_SHARED

- PRIORITY
- DESCRIPTION

GROUP

Defines the project names in the hierarchical grouping and its relationships. Each entry specifies the name of the hierarchical group and its members.

For better readability, you should specify the projects in the order from the root to the leaves as in the example.

Specify the entry as follows:

(group (member ...))

SHARES

Required. Defines the shares assigned to the hierarchical group member projects. Specify the share for each member, separated by spaces, in the same order as listed in the GROUP column.

OWNERSHIP

Defines the level of ownership of the hierarchical group member projects. Specify the ownership for each member, separated by spaces, in the same order as listed in the GROUP column.

You can only define OWNERSHIP for hierarchical group member projects, not hierarchical groups. Do not define OWNERSHIP for the top level (root) project group. Ownership of a given internal node is the sum of the ownership of all child nodes it directly governs.

A dash (-) is equivalent to a zero, which means there are no owners of the projects. You can leave the parentheses empty () if desired.

Valid values

A positive integer between the NON_SHARED and LIMITS values defined for the specified hierarchical group.

- If defined as less than NON_SHARED, OWNERSHIP is set to NON_SHARED.
- If defined as greater than LIMITS, OWNERSHIP is set to LIMITS.

LIMITS

Defines the maximum number of licenses that can be used at any one time by the hierarchical group member projects. Specify the maximum number of licenses for each member, separated by spaces, in the same order as listed in the GROUP column.

A dash (-) is equivalent to I NFI NI T_I NT, which means there is no maximum limit and the project group can use as many licenses as possible.

You can leave the parentheses empty () if desired.

NON_SHARED

Defines the number of licenses that the hierarchical group member projects use exclusively. Specify the number of licenses for each group or project, separated by spaces, in the same order as listed in the GROUP column.

A dash (-) is equivalent to a zero, which means there are no licenses that the hierarchical group member projects use exclusively.

Normally, the total number of non-shared licenses should be less than the total number of license tokens available. License tokens may not be available to project groups if the total non-shared licenses for all groups is greater than the number of shared tokens available.

For example, feature p4_4 is configured as follows, with a total of 4 tokens:

Begin Feature									
NAME = $p4_4$ # to	NAME =p4_4 # total token value is 4								
GROUP_DI STRI BUT	GROUP_DI STRI BUTI ON=fi nal								
SERVI CE_DOMAI NS	=LanServer								
End Feature	End Feature								
The correct configuration is:									
GROUP	SHARES	OWNERSHI P	LIMITS	NON_SHARED					
(final (G2 G1))	(1 1)	()	()	(2 0)					
(C1 (AP2 AP1))	(1.1)	\cap	()	(1.1)					

Valid values

Any positive integer up to the LIMITS value defined for the specified hierarchical group.

If defined as greater than LIMITS, NON_SHARED is set to LIMITS.

PRIORITY

Optional. Defines the priority assigned to the hierarchical group member projects. Specify the priority for each member, separated by spaces, in the same order as listed in the GROUP column.

"0" is the lowest priority, and a higher number specifies a higher priority. This column overrides the default behavior. Instead of preempting based on the accumulated i nuse usage of each project, the projects are preempted according to the specified priority from lowest to highest.

By default, priorities are evaluated top down in the project group hierarchy. The priority of a given node is first decided by the priority of the parent groups. When two nodes have the same priority, priority is determined by the accumulated i nuse usage of each project at the time the priorities are evaluated. Specify LS_PREEMPT_PEER=Y in the Parameters section to enable bottom-up license token preemption in hierarchical project group configuration.

A dash (-) is equivalent to a zero, which means there is no priority for the project. You can leave the parentheses empty () if desired.

Use bl i nf o -G to view hierarchical project group priority information.

Priority of default project

If not explicitly configured, the default project has the priority of 0. You can override this value by explicitly configuring the default project in Projects section with the chosen priority value.

DESCRIPTION

Optional. Description of the project group.

The text can include any characters, including white space. The text can be extended to multiple lines by ending the preceding line with a backslash (\). The maximum length for the text is 64 characters. When the DESCRI PTI ON column is not empty it should contain one entry for each project group member.

For example:

GROUP	SHARES	OWNERSHI P	LI MI TS	NON_SHARED	DESCRI PTI ON
(R (A B))	(1 1)	()	()	(10 10)	()
(A (p1 p2))	(1 1)	(40 60)	()	()	("p1 desc." "")
(B (p3 p4))	(1 1)	()	()	()	("p3 desc." "p4 desc.")

Use bl i nfo - G to view hierarchical project group descriptions.

Projects section

Description

Required for project mode only. Ignored in cluster mode. Lists the License Scheduler projects.

Projects section structure

The Projects section begins and ends with the lines Begin Projects and End Projects. The second line consists of the required column heading PROJECTS and the optional column heading PRI ORI TY. Subsequent lines list participating projects, one name per line.

Examples

The following example lists the projects without defining the priority:

		1	J	O	1	J
Begin Proj	jects					
PROJECTS						
INOSECIS						
Lp1						
Lp2						
Lp3						
Бро						
Lp4						
End Proj e	cts					

The following example lists the projects and defines the priority of each project:

Begin Projects

8 3	
PROJECTS	PRI ORI TY
In1	3
Lp1	3
Lp2	4
Lp3	2
Lp4	1
defaul t	0
End Projects	

Parameters

- PROJECTS
- PRIORITY
- DESCRIPTION

PROJECTS

Defines the name of each participating project. Specify using one name per line.

PRIORITY

Optional. Defines the priority for each project where "0" is the lowest priority, and the higher number specifies a higher priority. This column overrides the default behavior. Instead of preempting in order the projects are listed under PROJECTS based on the accumulated i nuse usage of each project, the projects are preempted according to the specified priority from lowest to highest.

Used for project mode only.

When 2 projects have the same priority number configured, the first project listed has higher priority, like LSF queues.

Use bl i nfo - Lp to view project priority information.

Priority of default project

If not explicitly configured, the default project has the priority of 0. You can override this value by explicitly configuring the default project in Projects section with the chosen priority value.

DESCRIPTION

Optional. Description of the project.

The text can include any characters, including white space. The text can be extended to multiple lines by ending the preceding line with a backslash (\). The maximum length for the text is 64 characters.

Use bl i nfo - Lp to view the project description.

Automatic time-based configuration

Variable configuration is used to automatically change License Scheduler license token distribution policy configuration based on time windows. You define automatic configuration changes in 1 sf. 1 i censeschedul er by using if-else constructs and time expressions in the Feature section. After you change the file, check the configuration with the bl admin ckconfig command, and restart License Scheduler in the cluster with the bl admin reconfig command.

Used for both project mode and cluster mode.

The expressions are evaluated by License Scheduler every 10 minutes based on the bl d start time. When an expression evaluates true, License Scheduler dynamically changes the configuration based on the associated configuration statements, restarting bl d automatically.

When LSF determines a feature has been added, removed, or changed, mbatchd no longer restarts automatically. Instead a message indicates that a change has been detected, prompting the user to restart manually with badmin mbdrestart.

This affects automatic time-based configuration in the Feature section of $l \ sf. \ li$ censeschedul er. When mbatchd detects a change in the Feature configuration, you must restart mbatchd for the change to take effect.

Example

```
Begin Feature

NAME = f1

#if time(5: 16: 30-1: 8: 30 20: 00-8: 30)

DI STRI BUTI ON=Lan(P1 2/5 P2 1)

#elif time(3: 8: 30-3: 18: 30)

DI STRI BUTI ON=Lan(P3 1)

#el se

DI STRI BUTI ON=Lan(P1 1 P2 2/5)

#endi f

End Feature
```

Isf.shared

The 1 sf. shared file contains common definitions that are shared by all load sharing clusters defined by 1 sf. cluster. *cluster_name* files. This includes lists of cluster names, host types, host models, the special resources available, and external load indices, including indices required to submit jobs using JSDL files.

This file is installed by default in the directory defined by LSF_CONFDIR.

Changing Isf.shared configuration

After making any changes to 1 sf. shared, run the following commands:

- · l sadmin reconfig to reconfigure LIM
- badmin mbdrestart to restart mbatchd

Cluster section

(Required) Lists the cluster names recognized by the LSF system

Cluster section structure

The first line must contain the mandatory keyword ClusterName. The other keyword is optional.

The first line must contain the mandatory keyword ClusterName and the keyword Servers in a MultiCluster environment.

Each subsequent line defines one cluster.

Example Cluster section

Begin Cluster						
ClusterName	Servers					
cluster1	hostA					
cluster2	hostB					
End Cluster						

ClusterName

Defines all cluster names recognized by the LSF system.

All cluster names referenced anywhere in the LSF system must be defined here. The file names of cluster-specific configuration files must end with the associated cluster name.

By default, if MultiCluster is installed, all clusters listed in this section participate in the same MultiCluster environment. However, individual clusters can restrict their MultiCluster participation by specifying a subset of clusters at the cluster level (1 sf. cluster. *cluster_name* RemoteClusters section).

Servers

MultiCluster only. List of hosts in this cluster that LIMs in remote clusters can connect to and obtain information from.

For other clusters to work with this cluster, one of these hosts must be running mbat chd.

HostType section

(Required) Lists the valid host types in the cluster. All hosts that can run the same binary executable are in the same host type.

Caution:

If you remove NTX86, NTX64, or NTIA64 from the HostType section, the functionality of l spasswd. exe is affected. The l spasswd command registers a password for a Windows user account.

HostType section structure

The first line consists of the mandatory keyword TYPENAME.

Subsequent lines name valid host types.

Example HostType section

Begin HostType
TYPENAME
SOL64
SOLSPARC
LI NUX86LI NUXPPC
LI NUX64
NTX86
NTX64
NTI A64
End HostType

TYPENAME

Host type names are usually based on a combination of the hardware name and operating system. If your site already has a system for naming host types, you can use the same names for LSF.

HostModel section

(Required) Lists models of machines and gives the relative CPU scaling factor for each model. All hosts of the same relative speed are assigned the same host model.

LSF uses the relative CPU scaling factor to normalize the CPU load indices so that jobs are more likely to be sent to faster hosts. The CPU factor affects the calculation of job execution time limits and accounting. Using large or inaccurate values for the CPU factor can cause confusing results when CPU time limits or accounting are used.

HostModel section structure

The first line consists of the mandatory keywords MODELNAME, CPUFACTOR, and ARCHITECTURE.

Subsequent lines define a model and its CPU factor.

Example HostModel section

Begin HostMo	del MODELNAM	C CPUFACTOR ARCHI TECTU	RE
PC400	13. 0	(i86pc_400 i686_400)	
PC450	13. 2	(i86pc_450 i686_450)	
Sparc5F	3. 0	(SUNWSPARCstation5_170_spa	rc)
Sparc20	4. 7	(SUNWSPARCstation20_151_sp	arc)
Ultra5S	10. 3	(SUNWUltra5_270_sparcv9 SU	NWUltra510_270_sparcv9)
End HostMode			

ARCHITECTURE

(Reserved for system use only) Indicates automatically detected host models that correspond to the model names.

CPUFACTOR

Though it is not required, you would typically assign a CPU factor of 1.0 to the slowest machine model in your system and higher numbers for the others. For example, for a machine model that executes at twice the speed of your slowest model, a factor of 2.0 should be assigned.

MODELNAME

Generally, you need to identify the distinct host types in your system, such as MIPS and SPARC first, and then the machine models within each, such as SparcIPC, Sparc1, Sparc2, and Sparc10.

About automatically detected host models and types

When you first install LSF, you do not necessarily need to assign models and types to hosts in lsf. cluster. *cluster_name*. If you do not assign models and types to hosts in lsf. cluster. *cluster_name*, LIM automatically detects the model and type for the host.

If you have versions earlier than LSF 4.0, you may have host models and types already assigned to hosts. You can take advantage of automatic detection of host model and type also.

Automatic detection of host model and type is useful because you no longer need to make changes in the configuration files when you upgrade the operating system or hardware of a host and reconfigure the cluster. LSF will automatically detect the change.

Mapping to CPU factors

Automatically detected models are mapped to the short model names in 1 sf. shared in the ARCHITECTURE column. Model strings in the ARCHITECTURE column are only used for mapping to the short model names.

Example 1 sf. shared file:

•							
Begin HostModel							
MODELNAME	CPUFACTOR	ARCHI TECTURE					
SparcU5	5. 0	(SUNWUltra510_270_sparcv9)					
•		· •					
PC486	2. 0	(i 486_33 i 486_66)					
PowerPC	3. 0	(PowerPC12 PowerPC16 PowerPC31)					
End HostModel							

If an automatically detected host model cannot be matched with the short model name, it is matched to the best partial match and a warning message is generated.

If a host model cannot be detected or is not supported, it is assigned the DEFAULT model name and an error message is generated.

Naming convention

Models that are automatically detected are named according to the following convention:

hardware_platform [_processor_speed[_processor_type]]

where:

- hardware_platform is the only mandatory component
- processor_speed is the optional clock speed and is used to differentiate computers within a single platform
- processor_type is the optional processor manufacturer used to differentiate processors with the same speed
- Underscores (_) between hardware_platform, processor_speed, processor_type are mandatory.

Resource section

Optional. Defines resources (must be done by the LSF administrator).

Resource section structure

The first line consists of the keywords. RESOURCENAME and DESCRIPTION are mandatory. The other keywords are optional. Subsequent lines define resources.

Example Resource section

Begin Resourc	e				
RESOURCENAME	TYPE	I NTERVAL	I NCREASI NG	CONSUMABLE	DESCRIPTION # Keywords
patchrev	Numeri c	()	Y	()	(Patch revision)
specman	Numeri c	()	N	()	(Specman)
switch	Numeri c	()	Y	N	(Network Switch)
rack	String	()	()	()	(Server room rack)
owner	String	()	()	()	(Owner of the host)
elimres	Numeri c	10	Y	()	(elim generated index)
ostype	String	()	()	()	(Operating system and version)
limversion	String	()	()	()	(Version of LIM binary)
End Resource					

RESOURCENAME

The name you assign to the new resource. An arbitrary character string.

- A resource name cannot begin with a number.
- A resource name cannot contain any of the following characters:

: . () [+ - * / ! & | < > @ =

• A resource name cannot be any of the following reserved names:

cpu cpuf io logins ls idle maxmem maxswp maxtmp type model status it

mem ncpus define_ncpus_cores define_ncpus_procs

define_ncpus_threads ndisks pg r15m r15s r1m swap swp tmp ut

- To avoid conflict with i nf and nan keywords in 3rd-party libraries, resource names should not begin with i nf or nan (upper case or lower case). Resource requirement strings, such as -R "i nfra" or -R "nano" will cause an error. Use -R "defi ned(i nfxx)" or -R "defi ned(nanxx)", to specify these resource names.
- Resource names are case sensitive
- Resource names can be up to 39 characters in length
- For Solaris machines, the keyword i nt is reserved and cannot be used.

TYPE

The type of resource:

- Boolean—Resources that have a value of 1 on hosts that have the resource and 0 otherwise.
- Numeric—Resources that take numerical values, such as all the load indices, number of processors on a host, or host CPU factor.
- String—Resources that take string values, such as host type, host model, host status.

Default

If TYPE is not given, the default type is Boolean.

INTERVAL

Optional. Applies to dynamic resources only.

Defines the time interval (in seconds) at which the resource is sampled by the ELIM.

If INTERVAL is defined for a numeric resource, it becomes an external load index.

Default

If INTERVAL is not given, the resource is considered static.

INCREASING

Applies to numeric resources only.

If a larger value means greater load, INCREASING should be defined as Y. If a smaller value means greater load, INCREASING should be defined as N.

CONSUMABLE

Explicitly control if a resource is consumable. Applies to static or dynamic numeric resources.

Static and dynamic numeric resources can be specified as consumable. CONSUMABLE is optional. The defaults for the consumable attribute are:

- · Built-in indicies:
 - The following are consumable: r15s, r1m, r15m, ut, pg, i o, ls, it, tmp, swp, mem.
 - All other built-in static resources are not consumable. (e.g., ncpus, ndi sks, maxmem, maxswp, maxtmp, cpuf, type, model, status, rexpri, server, hname).

- External shared resources:
 - All numeric resources are consumable.
 - String and boolean resources are not consumable.

You should only specify consumable resources in the rusage section of a resource requirement string. Non-consumable resources are ignored in rusage sections.

A non-consumable resource should not be releasable. Non-consumable numeric resource should be able to used in order, select and same sections of a resource requirement string.

When LSF_STRICT_RESREQ=Y in 1 sf. conf, LSF rejects resource requirement strings where an rusage section contains a non-consumable resource.

DESCRIPTION

Brief description of the resource.

The information defined here will be returned by the ls_i nfo() API call or printed out by the lsi nfo command as an explanation of the meaning of the resource.

RELEASE

Applies to numeric shared resources only.

Controls whether LSF releases the resource when a job using the resource is suspended. When a job using a shared resource is suspended, the resource is held or released by the job depending on the configuration of this parameter.

Specify N to hold the resource, or specify Y to release the resource.

Default

Y

Isf.sudoers

About Isf.sudoers

The 1sf. sudoers file is an optional file to configure security mechanisms. It is not installed by default.

You use 1 sf. sudoers to set the parameter LSF_EAUTH_KEY to configure a key for eauth to encrypt and decrypt user authentication data.

On UNIX, you also use 1 sf. sudoers to grant permission to users other than root to perform certain operations as root in LSF, or as a specified user.

These operations include:

- LSF daemon startup/shutdown
- User ID for LSF authentication
- User ID for LSF pre- and post-execution commands.
- User ID for external LSF executables

If 1 sf. sudoers does not exist, only root can perform these operations in LSF on UNIX.

On UNIX, this file is located in /etc.

There is one l sf. sudoers file per host.

On Windows, this file is located in the directory specified by the parameter LSF_SECUREDIR in l sf. conf.

Changing Isf.sudoers configuration

After making any changes to 1 sf. sudoers, run badmin reconfig to reload the configuration files.

Isf.sudoers on UNIX

In LSF, certain operations such as daemon startup can only be performed by root. The lsf. sudoers file grants root privileges to specific users or user groups to perform these operations.

Location

1 sf. sudoers must be located in /etc on each host.

Permissions

1 sf. sudoers must have permission 600 and be readable and writable only by root.

Isf.sudoers on Windows

The lsf. sudoers file is shared over an NTFS network, not duplicated on every Windows host.

By default, LSF installs l sf. sudoers in the %SYSTEMROOT% directory.

The location of l sf. sudoers on Windows must be specified by LSF_SECUREDIR in l sf. conf. You must configure the LSF_SECUREDIR parameter in l sf. conf if using l sf. sudoers on Windows.

Windows permissions

Restriction:

The owner of $1\,\mathrm{sf.}$ sudoers on Windows be **Administrators**. If not, eauth may not work.

The permissions on lsf. sudoers for Windows are:

Workgroup Environment

- Local Admins (W)
- Everyone (R)

Domain Environment

- Domain Admins (W)
- Everyone (R)

File format

The format of l sf. sudoers is very similar to that of l sf. conf.

Each entry can have one of the following forms:

- NAME=VALUE
- NAME=
- NAME= "STRING1 STRING2 . . . "

The equal sign = must follow each NAME even if no value follows and there should be no space beside the equal sign.

NAME describes an authorized operation.

VALUE is a single string or multiple strings separated by spaces and enclosed in quotation marks.

Lines starting with a pound sign (#) are comments and are ignored. Do not use #i f as this is reserved syntax for time-based configuration.

Example Isf.sudoers File

LSB_PRE_POST_EXEC_USER=user100

LSF_STARTUP_PATH=/usr/share/lsf/etc

LSF_STARTUP_USERS="user1 user10 user55"

Creating and modifying Isf.sudoers

You can create and modify lsf. sudoers with a text editor.

After you modify $l \ sf.$ sudoers, you must run badmin hrestart all to restart all sbatchds in the cluster with the updated configuration.

Parameters

- LSB_PRE_POST_EXEC_USER
- LSF_EAUTH_KEY
- LSF_EAUTH_USER
- LSF_EEXEC_USER
- LSF_EGO_ADMIN_PASSWD
- LSF_EGO_ADMIN_USER
- LSF_LOAD_PLUGINS

- LSF_STARTUP_PATH
- LSF STARTUP USERS

LSB_PRE_POST_EXEC_USER

Syntax

LSB PRE POST EXEC USER=user name

Description

Specifies the UNIX user account under which pre- and post-execution commands run. This parameter applies only to pre- and post-execution commands configured at the queue level; by default, pre-execution and post-execution commands defined at the application or job level run under the account of the user who submits the job.

You can specify only one user account. If the pre-execution or post-execution commands perform privileged operations that require root permissions on UNIX hosts, specify a value of root.

If you configure this parameter as root, the LD_PRELOAD and LD_LIBRARY_PATH variables are removed from the pre-execution, post-execution, and eexec environments for security purposes.

Default

Not defined. Pre-execution and post-execution commands run under the user account of the user who submits the job.

LSF EAUTH KEY

Syntax

LSF EAUTH KEY=key

Description

Applies to UNIX, Windows, and mixed UNIX/Windows clusters.

Specifies the key that eauth uses to encrypt and decrypt user authentication data. Defining this parameter enables increased security at your site. The key must contain at least six characters and must use only printable characters.

For UNIX, you must edit the lsf. sudoers file on all hosts within the cluster and specify the same encryption key. For Windows, you must edit the shared lsf. sudoers file.

Default

Not defined. The eauth executable encrypts and decrypts authentication data using an internal key.

LSF_EAUTH_USER

Syntax

LSF_EAUTH_USER=user_name

Description

UNIX only.

Specifies the UNIX user account under which the external authentication executable eauth runs.

Default

Not defined. The eauth executable runs under the account of the primary LSF administrator.

LSF_EEXEC_USER

Syntax

LSF_EEXEC_USER=user_name

Description

UNIX only.

Specifies the UNIX user account under which the external executable eexec runs.

Default

Not defined. The eexec executable runs under root or the account of the user who submitted the job.

LSF_EGO_ADMIN_PASSWD

Syntax

LSF_EGO_ADMIN_PASSWD=password

Description

When the EGO Service Controller (EGOSC) is configured to control LSF daemons, enables UNIX and Windows users to bypass the additional login required to start res and sbatchd. Bypassing the EGO administrator login enables the use of scripts to automate system startup.

Specify the Admi n EGO cluster administrator password as clear text. You must also define the LSF EGO ADMIN USER parameter.

Default

Not defined. With EGOSC daemon control enabled, the l sadmi n and badmi n startup subcommands invoke the egosh *user logon* command to prompt for the Admi n EGO cluster administrator credentials.

LSF_EGO_ADMIN_USER

Syntax

LSF_EGO_ADMIN_USER=Admin

Description

When the EGO Service Controller (EGOSC) is configured to control LSF daemons, enables UNIX and Windows users to bypass the additional login required to start res and sbatchd. Bypassing the EGO administrator login enables the use of scripts to automate system startup.

Specify the Admi n EGO cluster administrator account. You must also define the LSF_EGO_ADMIN_PASSWD parameter.

Default

Not defined. With EGOSC daemon control enabled, the l sadmi n and badmi n startup subcommands invoke the egosh *user logon* command to prompt for the Admi n EGO cluster administrator credentials.

LSF_LOAD_PLUGINS

Syntax

LSF_LOAD_PLUGINS=y | Y

Description

If defined, LSF loads plugins from LSB_LSBDIR. Used for Kerberos authentication.

Default

Not defined. LSF does not load plugins.

LSF_STARTUP_PATH

Syntax

LSF_STARTUP_PATH=path

Description

UNIX only. Enables the LSF daemon startup control feature when LSF_STARTUP_USERS is also defined. Define both parameters when you want to allow users other than root to start LSF daemons.

Specifies the absolute path name of the directory in which the LSF daemon binary files (lim, res, sbatchd, and mbatchd) are installed. LSF daemons are usually installed in the path specified by LSF_SERVERDIR defined in the cshrc. lsf, profile. lsf or lsf. conf files.

Important:

For security reasons, you should move the LSF daemon binary files to a directory other than LSF_SERVERDIR or LSF_BINDIR. The user accounts specified by LSF_STARTUP_USERS can start any binary in the LSF_STARTUP_PATH.

Default

Not defined. Only the root user account can start LSF daemons.

LSF_STARTUP_USERS

Syntax

LSF_STARTUP_USERS=all_admins | "user_name..."

Description

UNIX only. Enables the LSF daemon startup control feature when LSF_STARTUP_PATH is also defined. Define both parameters when you want to allow users other than root to start LSF daemons.

On UNIX hosts, by default only root can start LSF daemons. To manually start LSF daemons, a user runs the commands I sadmi n and badmi n, which have been installed as setuid root.

LSF_STARTUP_USERS specifies a list of user accounts that can successfully run the commands l sadmi n and badmi n to start LSF daemons.

all_admins

- Allows all UNIX users defined as LSF administrators in the file 1 sf. cluster. cluster_name to start LSF daemons as root by running the 1 sadmi n and badmi n commands.
- Not recommended due to the security risk of a non-root LSF administrator adding to the list of administrators in the lsf. cluster. cluster_name file.
- Not required for Windows hosts because all users with membership in the services admin group can start LSF daemons.

"user_name..."

- Allows the specified user accounts to start LSF daemons by running the l sadmin and badmin commands.
- Separate multiple user names with a space.
- For a single user, do not use quotation marks.

Default

Not defined. Only the root user account can start LSF daemons.

See also

LSF_STARTUP_PATH

lsf.task

Users should not have to specify a resource requirement each time they submit a job. LSF supports the concept of a task list. This chapter describes the files used to configure task lists: l sf. task, l sf. task, cl uster_name, and . l sftask.

Changing task list configuration

After making any changes to the task list files, run the following commands:

- I sadmin reconfig to reconfigure LIM
- badmin reconfig to reload the configuration files

About task lists

A task list is a list in LSF that keeps track of the default resource requirements for different applications and task eligibility for remote execution.

The term task refers to an application name. With a task list defined, LSF automatically supplies the resource requirement of the job whenever users submit a job unless one is explicitly specified at job submission.

LSF takes the job's command name as the task name and uses that name to find the matching resource requirement for the job from the task list. If a task does not have an entry in the task list, LSF assumes the default resource requirement; that is, a host that has the same host type as the submission host will be chosen to run the job.

An application listed in a task file is considered for load sharing by its placement in either the local tasks or remote tasks list.

- A local task is typically an application or command that it does not make sense to run remotely such as 1 s.
- A remote task is an application or command that can be run on another machine in the LSF cluster.
 The compress command is an example of a remote task.

Some applications require resources other than the default. LSF can store resource requirements for specific applications in remote task list files, so that LSF automatically chooses candidate hosts that have the correct resources available.

For frequently used commands and software packages, the LSF administrator can set up cluster—wide resource requirements that apply to all users in the cluster.

Users can modify and add to these requirements by setting up additional resource requirements that apply only to their own jobs.

Cluster-wide resource requirements

The resource requirements of applications are stored in the remote task list file.

LSF automatically picks up a job's default resource requirement string from the remote task list files, unless you explicitly override the default by specifying the resource requirement string on the command line.

User-level resource requirements

You may have applications that you need to control yourself. Perhaps your administrator did not set them up for load sharing for all users, or you need a non-standard setup. You can use LSF commands to find

out resource names available in your system, and tell LSF about the needs of your applications. LSF stores the resource requirements for you from then on.

You can specify resource requirements when tasks are added to the user's remote task list. If the task to be added is already in the list, its resource requirements are replaced.

Isrtasks + myjob/swap>=100 && cpu

This adds myj ob to the remote tasks list with its resource requirements.

Task files

There are 3 task list files that can affect a job:

- 1 sf. task system-wide defaults apply to all LSF users, even across multiple clusters if MultiCluster is installed
- 1 sf. task. cluster_name cluster-wide defaults apply to all users in the cluster
- SHOME/. 1 sftask user-level defaults apply to a single user. This file lists applications to be added
 to or removed from the default system lists for your jobs. Resource requirements specified in this file
 override those in the system lists.

The clusterwide task file is used to augment the systemwide file. The user's task file is used to augment the systemwide and clusterwide task files.

LSF combines the systemwide, clusterwide, and user-specific task lists for each user's view of the task list. In cases of conflicts, such as different resource requirements specified for the same task in different lists, the clusterwide list overrides the systemwide list, and the user-specific list overrides both.

LSF_CONFDIR/lsf.task

Systemwide task list applies to all clusters and all users.

This file is used in a MultiCluster environment.

LSF_CONFDIR/lsf.task.cluster_name

Clusterwide task list applies to all users in the same cluster.

\$HOME/.lsftask

User task list, one per user, applies only to the specific user. This file is automatically created in the user's home directory whenever a user first updates his task lists using the l srtasks or l sl tasks commands. For details about task eligibility lists, see the l s_task(3) API reference man page.

Permissions

Only the LSF administrator can modify the systemwide task list (1 sf. task) and the clusterwide task list (1 sf. task. c*luster_name*).

A user can modify his own task list(. 1 sftask) with the l srtasks and l sl tasks commands.

Format of task files

Each file consists of two sections, Local Tasks and RemoteTasks. For example:

Begin LocalTasks

ps
hostname
uname
crontab
End LocalTasks
Begin RemoteTasks
+ "newjob/mem>25"
+ "verilog/select[type==any && swp>100]"
make/cpu
nroff/-

Tasks are listed one per line. Each line in a section consists of a task name, and, for the RemoteTasks section, an optional resource requirement string separated by a slash (/).

A plus sign (+) or a minus sign (-) can optionally precede each entry. If no + or - is specified, + is assumed.

A + before a task name means adding a new entry (if non-existent) or replacing an entry (if already existent) in the task list. A - before a task name means removing an entry from the application's task lists if it was already created by reading higher level task files.

LocalTasks section

End RemoteTasks

The section starts with Begin Local Tasks and ends with End Local Tasks.

This section lists tasks that are not eligible for remote execution, either because they are trivial tasks or because they need resources on the local host.

RemoteTasks section

The section starts with Begin RemoteTasks and ends with End RemoteTasks.

This section lists tasks that are eligible for remote execution. You can associate resource requirements with each task name.

See *Administering IBM Platform LSF* for information about resource requirement strings. If the resource requirement string is not specified for a remote task, the default is "select[type==local] order [r15s: pg]".

setup.config

About setup.config

The setup. config file contains options for License Scheduler installation and configuration for systems without LSF. You only need to edit this file if you are installing License Scheduler as a standalone product without LSF.

Template location

A template setup. config is included in the License Scheduler installation script tar file and is located in the directory created when you uncompress and extract the installation script tar file. Edit the file and uncomment the options you want in the template file. Replace the example values with your own settings to specify the options for your new License Scheduler installation.

Important:

The sample values in the setup.config template file are examples only. They are not default installation values.

After the License Scheduler installation, the setup. config containing the options you specified is located in LS_TOP/8. 3/i nstall/.

Format

Each entry in set up. config has the form:

NAME="STRI NG1 STRI NG2 . . . "

The equal sign = must follow each NAME even if no value follows and there should be no spaces around the equal sign.

A value that contains multiple strings separated by spaces must be enclosed in quotation marks.

Blank lines and lines starting with a pound sign (#) are ignored.

Parameters

- LS ADMIN
- LS_HOSTS
- LS_LMSTAT_PATH
- LS_TOP

LS_ADMIN

Syntax

LS_ADMIN="user_name [user_name ...]"

Description

Lists the s Scheduler administrators. The first user account name in the list is the primary License Scheduler administrator.

The primary License Scheduler administrator account is typically named Isadmin.

Caution:

You should *not* configure the root account as the primary License Scheduler administrator.

Valid Values

User accounts for License Scheduler administrators must exist on all hosts using License Scheduler prior to installation.

Example

LS ADMINS="lsadmin user1 user2"

Default

The user running the License Scheduler installation script.

LS_HOSTS

Syntax

LS_HOSTS="host_name [host_name ...]"

Description

Defines a list of hosts that are candidates to become License Scheduler master hosts. Provide at least one host from which the License Scheduler daemon will run.

Valid Values

Any valid License Scheduler host name.

Example

LS_HOSTS="host_name1 host_name2"

Default

The local host in which the License Scheduler installation script is running.

LS_LMSTAT_PATH

Syntax

LS_LMSTAT_PATH="/path"

Description

Defines the full path to the lmstat program. License Scheduler uses 1 mst at to gather the FlexNet license information for scheduling. This path does not include the name of the 1 mst at program itself.

Example

LS_LMSTAT_PATH="/usr/bin"

Default

The installation script attempts to find a working copy of 1 mst at on the current system. If it is unsuccessful, the path is set as blank ("").

LS_TOP

Syntax

LS_TOP="/path"

Description

Defines the full path to the top level License Shceduler installation directory.

Valid Values

Must be an absolute path to a shared directory that is accessible to all hosts using License Scheduler. Cannot be the root directory (/).

Recommended Value

The file system containing LS_TOP must have enough disk space for all host types (approximately 300 MB per host type).

Example

LS_TOP="/usr/share/ls"

Default

None — required variable

slave.config

About slave.config

Dynamically added LSF hosts that will not be master candidates are *slave hosts*. Each dynamic slave host has its own LSF binaries and local lsf. conf and shell environment scripts (cshrc. lsf and profile.lsf). You must install LSF on each slave host.

The sl ave. config file contains options for installing and configuring a slave host that can be dynamically added or removed.

Use $l \ sfi \ nstall \ -s \ -f \ sl \ ave.$ config to install LSF using the options specified in sl ave. config.

Template location

A template slave. config is located in the installation script directory created when you extract the LSF installation script tar file. Edit the file and uncomment the options you want in the template file. Replace the example values with your own settings to specify the options for your new LSF installation.

Important:

The sample values in the slave.config template file are examples only. They are not default installation values.

Format

Each entry in sl ave. config has the form:

NAME="STRI NG1 STRI NG2 ..."

The equal sign = must follow each NAME even if no value follows and there should be no spaces around the equal sign.

A value that contains multiple strings separated by spaces must be enclosed in quotation marks.

Blank lines and lines starting with a pound sign (#) are ignored.

Parameters

- EGO_DAEMON_CONTROL
- ENABLE EGO
- EP_BACKUP
- LSF ADMINS
- LSF_LIM_PORT
- LSF_SERVER_HOSTS
- LSF_TARDIR
- LSF_LOCAL_RESOURCES
- LSF_TOP

EGO_DAEMON_CONTROL

Syntax

EGO_DAEMON_CONTROL="Y" | "N"

Description

Enables EGO to control LSF res and sbatchd. Set the value to "Y" if you want EGO Service Controller to start res and sbatchd, and restart if they fail.

All hosts in the cluster must use the same value for this parameter (this means the value of EGO_DAEMON_CONTROL in this file must be the same as the specification for EGO_DAEMON_CONTROL in i nstall.config).

To avoid conflicts, leave this parameter undefined if you use a script to start up LSF daemons.

Note:

If you specify EGO_ENABLE="N", this parameter is ignored.

Example

EGO_DAEMON_CONTROL="N"

Default

N (res and sbatchd are started manually)

ENABLE_EGO

Syntax

ENABLE_EGO="Y" | "N"

Description

Enables EGO functionality in the LSF cluster.

 $ENABLE_EGO="Y" \ causes \ l \ sfi \ nst \ al \ l \ uncomment \ LSF_EGO_ENVDIR \ and \ sets \ LSF_ENABLE_EGO="Y" \ in \ l \ sf. \ conf.$

 $ENABLE_EGO="N" \ causes \ l \ sfi \ nst \ al \ l \ to \ comment \ out \ LSF_EGO_ENVDIR \ and \ sets \ LSF \ ENABLE \ EGO="N" \ in \ l \ sf. \ conf.$

Set the value to "Y" if you want to take advantage of the following LSF features that depend on EGO:

- LSF daemon control by EGO Service Controller
- EGO-enabled SLA scheduling

Default

N (EGO is disabled in the LSF cluster)

EP_BACKUP

Syntax

EP_BACKUP="Y" | "N"

Description

Enables backup and rollback for enhancement packs. Set the value to "N" to disable backups when installing enhancement packs (you will not be able to roll back to the previous patch level after installing an EP, but you will still be able to roll back any fixes installed on the new EP).

You may disable backups to speed up install time, to save disk space, or because you have your own methods to back up the cluster.

Default

Y (backup and rollback are fully enabled)

LSF_ADMINS

Syntax

LSF_ADMINS="user_name [user_name ...]"

Description

Required. List of LSF administrators.

The first user account name in the list is the primary LSF administrator. It cannot be the root user account.

Typically this account is named 1 sf admi n. It owns the LSF configuration files and log files for job events. It also has permission to reconfigure LSF and to control batch jobs submitted by other users. It typically does not have authority to start LSF daemons. Usually, only root has permission to start LSF daemons.

All the LSF administrator accounts must exist on all hosts in the cluster before you install LSF. Secondary LSF administrators are optional.

Valid Values

Existing user accounts

Example

LSF_ADMINS="lsfadmin user1 user2"

Default

None—required variable

LSF_LIM_PORT

Syntax

LSF_LIM_PORT="port_number"

Description

TCP service port for slave host.

Use the same port number as LSF_LIM_PORT in 1 sf. conf on the master host.

Default

7869

LSF_SERVER_HOSTS

Syntax

LSF_SERVER_HOSTS="host_name [host_name ...]"

Description

Required for non-shared slave host installation. This parameter defines a list of hosts that can provide host and load information to client hosts. If you do not define this parameter, clients will contact the master LIM for host and load information. List of LSF server hosts in the cluster to be contacted.

Recommended for large clusters to decrease the load on the master LIM. Do not specify the master host in the list. Client commands will query the LIMs on the LSF_SERVER_HOSTS, which off-loads traffic from the master LIM.

Define this parameter to ensure that commands execute successfully when no LIM is running on the local host, or when the local LIM has just started.

You should include the list of hosts defined in LSF_MASTER_LIST in 1 sf. conf; specify the primary master host last. For example:

LSF_MASTER_LIST="lsfmaster hostE"

LSF_SERVER_HOSTS="hostB hostC hostD hostE lsfmaster"

Specify a list of host names two ways:

- Host names separated by spaces
- Name of a file containing a list of host names, one host per line.

Valid Values

Any valid LSF host name

Examples

List of host names:

LSF_SERVER_HOSTS="hosta hostb hostc hostd"

Host list file:

LSF_SERVER_HOSTS=:lsf_server_hosts

The file l sf_server_hosts contains a list of hosts:

hosta hostb hostc hostd

Default

None

LSF_TARDIR

Syntax

LSF_TARDIR="/path"

Description

Full path to the directory containing the LSF distribution tar files.

Example

LSF_TARDIR="/usr/local/lsf_distrib"

Default

The parent directory of the current working directory. For example, if $l sfi nstall is running under usr/share/l sf_di stri b/l sf_l sfi nstall the LSF_TARDIR default value is usr/share/lsf_di stri b.$

LSF LOCAL RESOURCES

Syntax

LSF_LOCAL_RESOURCES="resource..."

Description

Defines instances of local resources residing on the slave host.

- For numeric resources, define name-value pairs:
 - "[resourcemap value*resource_name]"
- For Boolean resources, define the resource name in the form:

```
"[resource_name]"
```

When the slave host calls the master host to add itself, it also reports its local resources. The local resources to be added must be defined in lsf. shared.

If the same resource is already defined in l sf. shared as default or all, it cannot be added as a local resource. The shared resource overrides the local one.

Tip:

LSF_LOCAL_RESOURCES is usually set in the sl ave. config file during installation. If LSF_LOCAL_RESOURCES are already defined in a local l sf. conf on the slave host, l sfi n st al l does not add resources you define in LSF_LOCAL_RESOURCES in sl ave. config. You should not have duplicate LSF_LOCAL_RESOURCES entries in lsf.conf. If local resources are defined more than once, only the last definition is valid.

Important:

Resources must already be mapped to hosts in the ResourceMap section of lsf.cluster.cluster_name. If the ResourceMap section does not exist, local resources are not added.

Example

LSF_LOCAL_RESOURCES="[resourcemap 1*verilog] [resource linux]"

Default

None

LSF_TOP

Syntax

LSF_TOP="Ipath"

Description

Required. Full path to the top-level LSF installation directory.

Important:

You must use the same path for every slave host you install.

Valid value

The path to LSF_TOP cannot be the root directory (/).

Example

LSF_TOP="/usr/local/lsf"

Default

None—required variable

Ш

Environment Variables

Environment Variables

Environment variables set for job execution

LSF transfers most environment variables between submission and execution hosts.

Environment variables related to file names and job spooling directories support paths that contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows.

Environment variables related to command names and job names can contain up to 4094 characters for UNIX and Linux, or up to 255 characters for Windows.

In addition to environment variables inherited from the user environment, LSF also sets several other environment variables for batch jobs:

- LSB_ERRORFILE: Name of the error file specified with a bsub -e.
- LSB_JOBID: Job ID assigned by LSF.
- LSB_JOBINDEX: Index of the job that belongs to a job array.
- LSB_CHKPNT_DIR: This variable is set each time a checkpointed job is submitted. The value of the
 variable is *chkpnt_dir/job_Id*, a subdirectory of the checkpoint directory that is specified when the job
 is submitted. The subdirectory is identified by the job ID of the submitted job.
- LSB_HOSTS: The list of hosts that are used to run the batch job. For sequential jobs, this is only one host name. For parallel jobs, this includes multiple host names.
- LSB_RESIZABLE: Indicates that a job is resizable or auto-resizable.
- LSB_QUEUE: The name of the queue the job is dispatched from.
- LSB_JOBNAME: Name of the job.
- LSB_RESTART: Set to 'Y' if the job is a restarted job or if the job has been migrated. Otherwise this variable is not defined.
- LSB_EXIT_PRE_ABORT: Set to an integer value representing an exit status. A pre-execution command should exit with this value if it wants the job to be aborted instead of requeued or executed.
- LSB_EXIT_REQUEUE: Set to the REQUEUE_EXIT_VALUES parameter of the queue. This variable is not defined if REQUEUE_EXIT_VALUES is not configured for the queue.
- LSB_INTERACTIVE: Set to 'Y' if the job is submitted with the -I option. Otherwise, it is not defined.
- LS_JOBPID: Set to the process ID of the job.
- LS_SUBCWD: This is the directory on the submission when the job was submitted. This is different
 from PWD only if the directory is not shared across machines or when the execution account is
 different from the submission account as a result of account mapping.
- LSB_BIND_JOB: Set to the value of binding option. But when the binding option is USER,
 LSB_BIND_JOB is set to the real binding decision of end user.

Note:

If the binding option is Y, LSB_BIND_JOB is set to BALANCE. If the binding option is N, LSB_BIND_JOB is set to NONE.

 LSB_BIND_CPU_LIST: Set to the actual CPU list used when the job is sequential job and single host parallel job.

If the job is a multi-host parallel job, LSB_BIND_CPU_LIST is set to the value in submission environment variable \$LSB_USER_BI ND_CPU_LI ST. If there is no such submission environment variable in user's environment, LSB_BIND_CPU_LIST is set to an empty string.

Environment variables for resize notification command

All environment variables that are set for a job are also set when a job is resized.

The following (additional) environment variables apply only to the resize notification command environment (when using resizable jobs):

- LSB_RESIZE_NOTIFY_OK: A notification command should exit with this variable if the allocation resize notification command succeeds.
 - LSF updates the job allocation to reflect the new allocation.
- LSB_RESIZE_NOTIFY_FAIL: A notification command should exit with this variable if the allocation resize notification command fails.

For an allocation grow event, LSF schedules the pending allocation request.

- For an allocation shrink event, LSF fails the release request.
- LSB_RESIZE_EVENT = grow | shrink: Indicates why the notification command was called. Grow means add more resources to an existing allocation. Shrink means remove some resources from existing allocation.
- LSB_RESIZE_HOSTS = hostA numA hostB numB ... hostZ numZ: Lists the additional slots for a grow event, or the released slots for a shrink event.

Environment variable reference

BSUB_BLOCK	BSUB_CHK_RESREQ	
BSUB_QUIET	BSUB_QUIET2	
BSUB_STDERR	CLEARCASE_DRIVE	CLEARCASE_MOUNTDIR
LS_SUBCWD		LSB_CHKPNT_DIR
LSB_DEBUG	LSB_DEBUG_CMD	
LSB_DEBUG_MBD	LSB_DEBUG_NQS	LSB_DEBUG_SBD
LSB_DEBUG_SCH	LSB_DEFAULT_JOBGROUP	LSB_DEFAULTPROJECT
LSB_DEFAULTQUEUE	LSB_DJOB_COMMFAIL_ACTION	LSB_DJOB_ENV_SCRIPT
LSB_DJOB_NUMPROC	LSB_ECHKPNT_METHOD	LSB_ECHKPNT_METHOD_DIR
LSB_ECHKPNT_KEEP_OUTPUT	LSB_ERESTART_USRCMD	LSB_EXEC_RUSAGE
LSB_EXECHOSTS	LSB_EXIT_IF_CWD_NOTEXIST	LSB_EXIT_PRE_ABORT
LSB_EXIT_REQUEUE	LSB_FRAMES	LSB_HOSTS
LSB_INTERACTIVE	LSB_JOB_INCLUDE_POSTPROC	LSB_JOBEXIT_INFO
LSB_JOBEXIT_STAT	LSB_JOBFILENAME	LSB_JOBGROUP
LSB_JOBID	LSB_JOBINDEX	LSB_JOBINDEX_STEP
LSB_JOBNAME	LSB_JOBPEND	LSB_JOBPGIDS
LSB_JOBPIDS	LSB_MAILSIZE	LSB_MCPU_HOSTS
LSB_NQS_PORT	LSB_NTRIES	LSB_OLD_JOBID
LSB_OUTPUT_TARGETFAILED	LSB_QUEUE	LSB_REMOTEINDEX
LSB_REMOTEJID	LSB_RESIZABLE	LSB_RESIZE_NOTIFY_OK
LSB_RESIZE_NOTIFY_FAIL	LSB_RESTART_PGID	LSB_RESTART
LSB_RESTART_PID	LSB_RTASK_GONE_ACTION	
LSB_SUB_CLUSTER	LSB_SUB_COMMAND_LINE	LSB_SUB_EXTSCHED_PARAM
LSB_SUB_JOB_ACTION_WARNING_TI ME	LSB_SUB_JOB_WARNING_ACTI ON	
LSB_SUB_PARM_FILE	LSB_SUCCESS_EXIT_VALUES	LSB_SUSP_REASONS
LSB_SUSP_SUBREASONS	LSB_UNIXGROUP	LSB_USER_BIND_CPU_LIST
LSB_USER_BIND_JOB	LSF_CMD_LOGDIR	LSF_DEBUG_CMD
LSF_DEBUG_LIM	LSF_DEBUG_RES	LSF_EAUTH_AUX_DATA

LSF_USE_HOSTEQUIV	LSF_USER_DOMAIN	
LSF_NIOS_PORT_RANGE	LSF_RESOURCES	LSF_TS_LOGON_TIME
LSF_NIOS_DIE_CMD	LSF_NIOS_IGNORE_SIGWINDO W	LSF_NIOS_PEND_TIMEOUT
LSF_NIOS_ERR_LOGDIR		
LSF_LOGDIR	LSF_MASTER	LSF_NIOS_DEBUG
LSF_LD_LIBRARY_PATH	LSF_LIM_API_NTRIES	LSF_LIM_DEBUG
LSF_INVOKE_CMD	LSF_JOB_STARTER	LSF_LD_PRELOAD
LSF_EAUTH_UID	LSF_EXECUTE_DOMAIN	LSF_INTERACTIVE_STDERR
LSF_EAUTH_AUX_PASS	LSF_EAUTH_CLIENT	LSF_EAUTH_SERVER

BSUB_BLOCK

Description

If set, tells NIOS that it is running in batch mode.

Default

Not defined

Notes

If you submit a job with the -K option of bsub, which is synchronous execution, then BSUB_BLOCK is set. Synchronous execution means you have to wait for the job to finish before you can continue.

Where defined

Set internally

See also

The -K option of bsub

BSUB_CHK_RESREQ

Syntax

BSUB_CHK_RESREQ=any_value

Description

When BSUB_CHK_RESREQ is set, bsub checks the syntax of the resource requirement selection string without actually submitting the job for scheduling and dispatch. Use BSUB_CHK_RESREQ to check the compatibility of your existing resource requirement select strings against the stricter syntax enabled by LSF_STRICT_RESREQ=y in 1 sf. conf. LSF_STRICT_RESREQ does not need to be set to check the resource requirement selection string syntax.

bsub only checks the select section of the resource requirement. Other sections in the resource requirement string are not checked.

Default

Not defined

Where defined

From the command line

Example

BSUB_CHK_RESREQ=1

BSUB_QUIET

Syntax

BSUB_QUIET=any_value

Description

Controls the printing of information about job submissions. If set, bsub will not print any information about job submission. For example, it will not print <Job is submitted to default queue <normal >, nor <Waiting for dispatch>.

Default

Not defined

Where defined

From the command line

Example

BSUB_QUI ET=1

BSUB_QUIET2

Syntax

BSUB_QUIET2=any_value

Description

Suppresses the printing of information about job completion when a job is submitted with the bsub -K option.

If set, bsub will not print information about job completion to stdout. For example, when this variable is set, the message << Job is finished>> will not be written to stdout.

If BSUB_QUIET and BSUB_QUIET2 are both set, no job messages will be printed to st dout.

Default

Not defined

Where defined

From the command line

Example

BSUB_QUI ET2=1

BSUB_STDERR

Syntax

BSUB_STDERR=y

Description

Redirects LSF messages for bsub to stderr.

By default, when this parameter is not set, LSF messages for bsub are printed to st dout.

When this parameter is set, LSF messages for bsub are redirected to stderr.

Default

Not defined

Where defined

From the command line on UNIX. For example, in csh:

setenv BSUB_STDERR Y

From the Control Panel on Windows, as an environment variable

CLEARCASE_DRIVE

Syntax

CLEARCASE_DRIVE=drive_letter.

Description

Optional, Windows only.

Defines the virtual drive letter for a Rational ClearCase view to the drive. This is useful if you wish to map a Rational ClearCase view to a virtual drive as an alias.

If this letter is unavailable, Windows attempts to map to another drive. Therefore, CLEARCASE_DRIVE only defines the default drive letter to which the Rational ClearCase view is mapped, not the final selected drive letter. However, the PATH value is automatically updated to the final drive letter if it is different from CLEARCASE_DRIVE.

Notes:

CLEARCASE_DRIVE is case insensitive.

Where defined

From the command line

Example

CLEARCASE_DRI VE=F: CLEARCASE_DRI VE=f:

See also

CLEARCASE_MOUNTDIR, CLEARCASE_ROOT

CLEARCASE_MOUNTDIR

Syntax

CLEARCASE_MOUNTDIR=path

Description

Optional.

Defines the Rational ClearCase mounting directory.

Default

/vobs

Notes:

CLEARCASE_MOUNTDIR is used if any of the following conditions apply:

- A job is submitted from a UNIX environment but run in a Windows host.
- The Rational ClearCase mounting directory is not the default /vobs

Where defined

From the command line

Example

CLEARCASE_MOUNTDIR=/myvobs

See also

CLEARCASE_DRIVE, CLEARCASE_ROOT

CLEARCASE_ROOT

Syntax

CLEARCASE_ROOT=path

Description

The path to the Rational ClearCase view.

In Windows, this path must define an absolute path starting with the default ClearCase drive and ending with the view name without an ending backslash (\).

Notes

CLEARCASE_ROOT must be defined if you want to submit a batch job from a ClearCase view.

For interactive jobs, use bsub -I to submit the job.

Where defined

In the job starter, or from the command line

Example

In UNIX:

CLEARCASE_ROOT=/vi ew/myvi ew

In Windows:

CLEARCASE_ROOT=F: \myvi ew

See also

CLEARCASE_DRIVE, CLEARCASE_MOUNTDIR, LSF_JOB_STARTER

ELIM_ABORT_VALUE

Syntax

ELIM_ABORT_VALUE

Description

Used when writing an elim executable to test whether the elim should run on a particular host. If the host does not have or share any of the resources listed in the environment variable LSF_RESOURCES, your elim should exit with \$ELIM_ABORT_VALUE.

When the MELIM finds an el i m that exited with ELIM_ABORT_VALUE, the MELIM marks the el i m and does not restart it on that host.

Where defined

Set by the master ${\rm el}\ i\ m$ (MELIM) on the host when the MELIM invokes the ${\rm el}\ i\ m$ executable

LS_EXEC_T

Syntax

LS_EXEC_T=START | END | CHKPNT | JOB_CONTROLS

Description

Indicates execution type for a job. LS_EXEC_T is set to:

- START or END for a job when the job begins executing or when it completes execution
- CHKPNT when the job is checkpointed
- JOB_CONTROLS when a control action is initiated

Where defined

Set by sbatchd during job execution

LS_JOBPID

Description

The process ID of the job.

Where defined

 $During job\ execution, \ sbat\ chd\ sets\ LS_JOBPID\ to\ be\ the\ same\ as\ the\ process\ ID\ assigned\ by\ the\ operating\ system.$

LS_SUBCWD

Description

The current working directory (cwd) of the submission host where the remote task command was executed.

The current working directory can be up to 4094 characters long for UNIX and Linux or up to 255 characters for Windows.

How set

- 1. LSF looks for the PWD environment variable. If it finds it, sets LS_SUBCWD to PWD.
- 2. If the PWD environment variable does not exist, LSF looks for the CWD environment variable. If it finds CWD, sets LS_SUBCWD to CWD.
- 3. If the CWD environment variable does not exist, LSF calls the getwd() system function to retrieve the current working directory path name. LSF sets LS_SUBCWD to the value that is returned.

Where defined

Set by sbatchd

LSB_CHKPNT_DIR

Syntax

LSB_CHKPNT_DIR=checkpoint_dir/job_ID

Description

The directory containing files related to the submitted checkpointable job.

Valid values

The value of checkpoi nt_dir is the directory you specified through the -k option of bsub when submitting the checkpointable job.

The value of j ob_I D is the job ID of the checkpointable job.

Where defined

Set by LSF, based on the directory you specified when submitting a checkpointable job with the -k option of bsub.

LSB DEBUG

This parameter can be set from the command line or from 1 sf. conf. See LSB_DEBUG in 1 sf. conf.

LSB DEBUG CMD

This parameter can be set from the command line or from $l \ sf. \ conf.$ See LSB_DEBUG_CMD in $l \ sf. \ conf.$

LSB_DEBUG_MBD

This parameter can be set from the command line with badmi n $\mbox{mbddebug}$ or from $\mbox{l sf.}$ conf.

See LSB_DEBUG_MBD in 1 sf. conf.

LSB_DEBUG_NQS

This parameter can be set from the command line or from $l\ sf.\ conf.\ See\ LSB_DEBUG_NQS$ in $l\ sf.\ conf.$

LSB_DEBUG_SBD

This parameter can be set from the command line with badmin sbddebug or from 1 sf. conf.

See LSB_DEBUG_SBD in 1 sf. conf.

LSB DEBUG SCH

This parameter can be set from the command line or from $l \ sf. \ conf.$ See LSB_DEBUG_SCH in $l \ sf. \ conf.$

LSB_DEFAULT_JOBGROUP

Syntax

LSB_DEFAULT_JOBGROUP=job_group_name

Description

The name of the default job group.

When you submit a job to LSF without explicitly specifying a job group, LSF associates the job with the specified job group. LSB_DEFAULT_JOBGROUP overrrides the setting of DEFAULT_JOBGROUP in 1 sb. params. The bsub - g job_group_name option overrides both LSB_DEFAULT_JOBGROUP and DEFAULT_JOBGROUP.

If you submit a job without the -g option of bsub, but you defined LSB_DEFAULT_JOBGROUP, then the job belongs to the job group specified in LSB_DEFAULT_JOBGROUP.

Job group names must follow this format:

- Job group names must start with a slash character (/). For example, LSB_DEFAULT_JOBGROUP=/A/B/C is correct, but LSB_DEFAULT_JOBGROUP=A/B/C is not correct.
- Job group names cannot end with a slash character (/). For example, LSB_DEFAULT_JOBGROUP=/ A/ is not correct.
- Job group names cannot contain more than one slash character (/) in a row. For example, job group names like LSB_DEFAULT_JOBGROUP=/A//B or LSB_DEFAULT_JOBGROUP=A///B are not correct.
- Job group names cannot contain spaces. For example, LSB_DEFAULT_JOBGROUP=/A/B C/D is not correct.
- Project names and user names used for macro substitution with %p and %u cannot start or end with slash character (/).
- Project names and user names used for macro substitution with %p and %u cannot contain spaces or more than one slash character (/) in a row.
- Project names or user names containing slash character (/) will create separate job groups. For
 example, if the project name is canada/proj ects, LSB_DEFAULT_JOBGROUP=/%p results in a job
 group hierarchy /canada/proj ects.

Where defined

From the command line

Example

LSB_DEFAULT_JOBGROUP=/canada/projects

Default

Not defined

See also

DEFAULT_JOBGROUP in 1 sb. params, the - g option of bsub

LSB_DEFAULTPROJECT

Syntax

LSB_DEFAULTPROJECT=project_name

Description

The name of the project to which resources consumed by a job will be charged.

Default

Not defined

Notes

Project names can be up to 59 characters long.

If the LSF administrator defines a default project in the 1 sb. params configuration file, the system uses this as the default project. You can change the default project by setting LSB_DEFAULTPROJECT or by specifying a project name with the -P option of bsub.

If you submit a job without the -P option of bsub, but you defined LSB_DEFAULTPROJECT, then the job belongs to the project specified in LSB_DEFAULTPROJECT.

If you submit a job with the -P option of bsub, the job belongs to the project specified through the -P option.

Where defined

From the command line, or through the -P option of bsub

Example

LSB_DEFAULTPROJECT=engi neeri ng

See also

DEFAULT_PROJECT in l sb. params, the - P option of bsub

LSB_DEFAULTQUEUE

Syntax

LSB_DEFAULTQUEUE=queue_name

Description

Defines the default LSF queue.

Default

 $\mbox{mbat}\,\mbox{chd}$ decides which is the default queue. You can override the default by defining LSB_DEFAULTQUEUE.

Notes

If the LSF administrator defines a default queue in the 1 sb. params configuration file, then the system uses this as the default queue. Provided you have permission, you can change the default queue by setting LSB_DEFAULTQUEUE to a valid queue (see bqueues for a list of valid queues).

Where defined

From the command line

See also

DEFAULT_QUEUE in 1 sb. params

LSB_DJOB_NUMPROC

Syntax

LSB_DJOB_NUMPROC=num

Description

The number of processors (slots) allocated to the job.

Default

Not defined

Where defined

Set by sbatchd before starting a job on the execution host.

See Also

LSB MCPU HOSTS

LSB_ECHKPNT_METHOD

This parameter can be set as an environment variable and/or in l sf. conf. See LSB_ECHKPNT_METHOD in l sf. conf.

LSB_ECHKPNT_METHOD_DIR

This parameter can be set as an environment variable and/or in $l \ sf. \ conf.$ See LSB_ECHKPNT_METHOD_DIR in $l \ sf. \ conf.$

LSB_ECHKPNT_KEEP_OUTPUT

This parameter can be set as an environment variable and/or in l sf. conf. See LSB_ECHKPNT_KEEP_OUTPUT in l sf. conf.

LSB_ERESTART_USRCMD

Syntax

LSB_ERESTART_USRCMD=command

Description

Original command used to start the job.

This environment variable is set by erestart to pass the job's original start command to a custom erestart method erestart. *method_name*. The value of this variable is extracted from the job file of the checkpointed job.

If a job starter is defined for the queue to which the job was submitted, the job starter is also included in LSB_ERESTART_USRCMD. For example, if the job starter is /bi n/sh -c "%USRCMD" in 1 sb. queues, and the job name is myapp -d, LSB_ERESTART_USRCMD will be set to:

/bin/sh -c "myapp -d"

Where defined

Set by erest art as an environment variable before a job is restarted

See also

LSB_ECHKPNT_METHOD, erestart, echkpnt

LSB_EXEC_RUSAGE

Syntax

LSB_EXEC_RUSAGE="resource_name1 resource_value1 resource_name2 resource_value2..."

Description

Indicates which rusage string is satisfied to permit the job to run. This environment variable is necessary because the OR(| |) operator specifies alternative rusage strings for running jobs.

Valid values

resource_val ue1, resource_val ue2,... refer to the resource values on resource_name1, resource_name2,... respectively.

Default

Not defined

Where defined

Set by LSF after reserving a resource for the job.

LSB_EXECHOSTS

Description

A list of hosts on which a batch job will run.

Where defined

Set by sbatchd

Product

MultiCluster

LSB_EXIT_IF_CWD_NOTEXIST

Syntax

 $LSB_EXIT_IF_CWD_NOTEXIST=Y \mid y \mid N \mid n$

Description

Indicates that the job will exit if the current working directory specified by bsub - cwd or bmod - cwd is not accessible on the execution host.

Default

Not defined

Where defined

From the command line

LSB_EXIT_PRE_ABORT

Description

The queue-level or job-level $pre_exec_command$ can exit with this value if the job is to be aborted instead of being requeued or executed

Where defined

Set by sbatchd

See also

See PRE_EXEC in 1 sb. queues, or the -E option of bsub

LSB_EXIT_REQUEUE

Syntax

LSB_EXIT_REQUEUE="exit_value1 exit_value2..."

Description

Contains a list of exit values found in the queue's REQUEUE_EXIT_VALUES parameter defined in $l\ {\it sb.}$ queues.

Valid values

Any positive integers

Default

Not defined

Notes

If LSB_EXIT_REQUEUE is defined, a job will be requeued if it exits with one of the specified values. LSB_EXIT_REQUEUE is not defined if the parameter REQUEUE_EXIT_VALUES is not defined.

Where defined

Set by the system based on the value of the parameter REQUEUE_EXIT_VALUES in 1 sb. queues

Example

LSB_EXIT_REQUEUE="7 31"

See also

REQUEUE_EXIT_VALUES in 1 sb. queues

LSB_FRAMES

Syntax

LSB_FRAMES=start_number,end_number,step

Description

Determines the number of frames to be processed by a frame job.

Valid values

The values of *start_number*, *end_number*, and *step* are positive integers. Use commas to separate the values.

Default

Not defined

Notes

When the job is running, LSB_FRAMES will be set to the relative frames with the format LSB_FRAMES=*start_number*, *end_number*, *step*.

From the *start_number*, *end_number*, and *step*, the frame job can know how many frames it will process.

Where defined

Set by sbatchd

Example

LSB_FRAMES=10, 20, 1

LSB_HOSTS

Syntax

LSB_HOSTS="host_name..."

Description

A list of hosts selected by LSF to run the job.

Notes

If a job is run on a single processor, the system sets LSB_HOSTS to the name of the host used.

For parallel jobs, the system sets LSB_HOSTS to the names of all the hosts used.

Where defined

Set by \mathtt{sbat} chd when the job is executed. LSB_HOSTS is set only when the list of host names is less than 4096 bytes.

See also

LSB_MCPU_HOSTS

LSB_INTERACTIVE

Syntax

LSB_INTERACTIVE=Y

Description

Indicates an interactive job. When you submit an interactive job using bsub -I, the system sets LSB INTERACTIVE to Y.

Valid values

LSB_INTERACTIVE=Y (if the job is interactive)

Default

Not defined (if the job is not interactive)

Where defined

Set by sbatchd

LSB_JOB_INCLUDE_POSTPROC

Syntax

LSB_JOB_INCLUDE_POSTPROC=Y | y | N | n

Description

Enables the post-execution processing of the job to be included as part of the job.

LSB_JOB_INCLUDE_POSTPROC in the user environment overrides the value of JOB_INCLUDE_POSTPROC in 1 sb. params and 1 sb. appl i cat i ons.

Default

Not defined

Where defined

From the command line

LSB_JOBEXIT_INFO

Syntax

LSB_JOBEXIT_INFO="SIGNAL signal_value signal_name"

Contains information about signal that caused a job to exit.

Applies to post-execution commands. Post-execution commands are set with POST_EXEC in 1 sb. queues.

When the post-execution command is run, the environment variable LSB_JOBEXIT_INFO is set if the job is signalled internally. If the job ends successfully, or the job is killed or signalled externally, LSB_JOBEXIT_INFO is not set.

Examples

 $LSB_JOBEXI\ T_I\ NFO="SI\ GNAL\ -1\ SI\ G_CHKPNT"\ LSB_JOBEXI\ T_I\ NFO="SI\ GNAL\ -14\ SI\ G_TERM_USER"\ LSB_JOBEXI\ T_I\ NFO="SI\ GNAL\ -23\ SI\ G_KI\ LL_REQUEUE"$

Default

Not defined

Where defined

Set by sbatchd

LSB_JOBEXIT_STAT

Syntax

LSB_JOBEXIT_STAT=exit_status

Description

Indicates a job's exit status.

Applies to post-execution commands. Post-execution commands are set with POST_EXEC in $l\ {
m sb.}$ queues.

When the post-execution command is run, the environment variable LSB_JOBEXIT_STAT is set to the exit status of the job. Refer to the man page for the wai t (2) command for the format of this exit status.

The post-execution command is also run if a job is requeued because the job's execution environment fails to be set up, or if the job exits with one of the queue's REQUEUE_EXIT_VALUES. The LSB_JOBPEND environment variable is set if the job is requeued. If the job's execution environment could not be set up, LSB_JOBEXIT_STAT is set to 0.

Valid values

Any positive integer

Where defined

Set by sbatchd

LSB JOBFILENAME

Syntax

LSB_JOBFILENAME=file_name

The path to the batch executable job file that invokes the batch job. The batch executable job file is a / bi n/sh script on UNIX systems or a . BAT command script on Windows systems.

LSB_JOBGROUP

Syntax

LSB_JOBGROUP=job_group_name

Description

The name of the job group associated with the job. When a job is dispatched, if it belongs to a job group, the runtime variable LSB_JOBGROUP is defined as its group. For example, if a dispatched job belongs to job group /X, LSB_JOBGROUP=/X.

Where defined

Set during job execution based on bsub options or the default job group defined in DEFAULT_JOBGROUP in 1 sb. params and the LSB_DEFAULT_JOBGROUP environment variable.

Default

Not defined

LSB_JOBID

Syntax

LSB_JOBID=job_ID

Description

The job ID assigned by sbatchd. This is the ID of the job assigned by LSF, as shown by bj obs.

Valid values

Any positive integer

Where defined

Set by sbatchd, defined by mbatchd

See also

LSB REMOTEJID

LSB_JOBINDEX

Syntax

LSB_JOBINDEX=index

Contains the job array index.

Valid values

Any integer greater than zero but less than the maximum job array size.

Notes

LSB_JOBINDEX is set when each job array element is dispatched. Its value corresponds to the job array index. LSB_JOBINDEX is set for all jobs. For non-array jobs, LSB_JOBINDEX is set to zero (0).

Where defined

Set during job execution based on bsub options.

Example

You can use LSB_JOBINDEX in a shell script to select the job command to be performed based on the job array index.

For example:

```
if [$LSB_JOBINDEX -eq 1]; then cmd1 fi if [$LSB_JOBINDEX -eq 2]; then cmd2 fi
```

See also

LSB_JOBINDEX_STEP, LSB_REMOTEINDEX

LSB JOBINDEX STEP

Syntax

LSB_JOBINDEX_STEP=step

Description

Step at which single elements of the job array are defined.

Valid values

Any integer greater than zero but less than the maximum job array size

Default

1

Notes

LSB_JOBINDEX_STEP is set when a job array is dispatched. Its value corresponds to the step of the job array index. This variable is set only for job arrays.

Where defined

Set during job execution based on bsub options.

Example

The following is an example of an array where a step of 2 is used:

array[1-10:2] elements: 1 3 5 7 9

If this job array is dispatched, then LSB_JOBINDEX_STEP=2

See also

LSB_JOBINDEX

LSB_JOBNAME

Syntax

LSB_JOBNAME=job_name

Description

The name of the job defined by the user at submission time.

Default

The job's command line

Notes

The name of a job can be specified explicitly when you submit a job. The name does not have to be unique. If you do not specify a job name, the job name defaults to the actual batch command as specified on the bsub command line.

The job name can be up to 4094 characters long for UNIX and Linux or up to 255 characters for Windows.

Where defined

Set by sbatchd

Example

When you submit a job using the -J option of bsub, for example:

% bsub -J "myjob" job

sbat chd sets LSB_JOBNAME to the job name that you specified:

LSB_JOBNAME=myj ob

LSB_JOBPEND

Description

Set if the job is requeued.

Where defined

Set by sbatchd for POST_EXEC only

See also

LSB_JOBEXIT_STAT, REQUEUE_EXIT_VALUES, POST_EXEC

LSB_JOBPGIDS

Description

A list of the current process group IDs of the job.

Where defined

The process group IDs are assigned by the operating system, and LSB_JOBPGIDS is set by sbatchd.

See also

LSB_JOBPIDS

LSB_JOBPIDS

Description

A list of the current process IDs of the job.

Where defined

The process IDs are assigned by the operating system, and LSB_JOBPIDS is set by sbatchd.

See also

LSB_JOBPGIDS

LSB_MAILSIZE

Syntax

LSB_MAILSIZE=value

Description

Gives an estimate of the size of the batch job output when the output is sent by email. It is not necessary to configure LSB_MAILSIZE_LIMIT.

LSF sets LSB_MAILSIZE to the size in KB of the job output, allowing the custom mail program to intercept output that is larger than desired.

LSB_MAILSIZE is not recognized by the LSF default mail program. To prevent large job output files from interfering with your mail system, use LSB_MAILSIZE_LIMIT to explicitly set the maximum size in KB of the email containing the job information.

Valid values

A positive integer

If the output is being sent by email, LSB_MAILSIZE is set to the estimated mail size in kilobytes.

-1

If the output fails or cannot be read, LSB_MAILSIZE is set to -1 and the output is sent by email using LSB_MAILPROG if specified in 1 sf. conf.

Not defined

If you use the -o or -e options of bsub, the output is redirected to an output file. Because the output is not sent by email in this case, LSB_MAILSIZE is not used and LSB_MAILPROG is not called.

If the -N option is used with the -o option of bsub, LSB_MAILSIZE is not set.

Where defined

Set by sbatchd when the custom mail program specified by LSB_MAILPROG in 1 sf. conf is called.

LSB_MCPU_HOSTS

Syntax

LSB_MCPU_HOSTS="host_nameA num_processors1 host_nameB num_processors2..."

Description

Contains a list of the hosts and the number of CPUs used to run a job.

Valid values

num_processors1, num_processors2,... refer to the number of CPUs used on host_nameA, host_nameB,..., respectively

Default

Not defined

Notes

The environment variables LSB_HOSTS and LSB_MCPU_HOSTS both contain the same information, but the information is presented in different formats. LSB_MCPU_HOSTS uses a shorter format than LSB_HOSTS. As a general rule, sbatchd sets both these variables. However, for some parallel jobs, LSB_HOSTS is not set.

For parallel jobs, several CPUs are used, and the length of LSB_HOSTS can become very long. sbatchd needs to spend a lot of time parsing the string. If the size of LSB_HOSTS exceeds 4096 bytes, LSB_HOSTS is ignored, and sbatchd sets only LSB_MCPU_HOSTS.

To verify the hosts and CPUs used for your dispatched job, check the value of LSB_HOSTS for single CPU jobs, and check the value of LSB_MCPU_HOSTS for parallel jobs.

Where defined

Set by sbatchd before starting a job on the execution host

Example

When the you submit a job with the -m and -n options of bsub, for example,

% bsub -m "hostA hostB" -n 6 job

sbatchd sets the environment variables LSB_HOSTS and LSB_MCPU_HOSTS as follows:

LSB_HOSTS= "hostA hostA hostA hostB hostB" LSB_MCPU_HOSTS="hostA 3 hostB 3"

Both variables are set in order to maintain compatibility with earlier versions.

See also

LSB HOSTS

LSB_NQS_PORT

This parameter can be defined in 1 sf. conf or in the services database such as /etc/servi ces.

See LSB_NUM_NIOS_CALLBACK_THREADS in 1 sf. conf for more details.

LSB NTRIES

Syntax

LSB_NTRIES=integer

Description

The number of times that LSF libraries attempt to contact mbat chd or perform a concurrent jobs query.

For example, if this parameter is not defined, when you type bj obs, LSF keeps displaying "batch system not responding" if mbat chd cannot be contacted or if the number of pending jobs exceeds MAX_PEND_JOBS specified in l sb. params or l sb. users.

If this parameter is set to a value, LSF only attempts to contact mbat chd the defined number of times and then quits. LSF will wait for a period of time equal to SUB_TRY_INTERVAL specified in 1 sb. params before attempting to contact mbat chd again.

Valid values

Any positive integer

Default

INFINIT_INT (The default is to continue the attempts to contact mbat chd)

LSB_OLD_JOBID

Syntax

LSB_OLD_JOBID=job_ID

Description

The job ID of a job at the time it was checkpointed.

When a job is restarted, it is assigned a new job ID and LSB_JOBID is replaced with the new job ID. LSB_OLD_JOBID identifies the original ID of a job before it is restarted.

Valid values

Any positive integer

Where defined

Set by sbatchd, defined by mbatchd

See also

LSB JOBID

LSB_OUTPUT_TARGETFAILED

Syntax

LSB_OUTPUT_TARGETFAILED=Y

Description

Indicates that LSF cannot access the output file specified for a job submitted the bsub -o option.

Valid values

Set to Y if the output file cannot be accessed; otherwise, it is not defined.

Where defined

Set by sbatchd during job execution

LSB_DJOB_COMMFAIL_ACTION

Syntax

LSB_DJOB_COMMFAIL_ACTION="KILL_TASKS"

Description

Defines the action LSF should take if it detects a communication failure with one or more remote parallel or distributed tasks. If defined, LSF will try to kill all the current tasks of a parallel or distributed job associated with the communication failure. If not defined, the job RES notifies the task RES to terminate all tasks, and shut down the entire job.

Default

Terminate all tasks, and shut down the entire job

Valid values

KILL TASKS

Where defined

Set by the system based on the value of the parameter DJOB_COMMFAIL_ACTION in $l\,sb.$ appl i cat i ons when running bsub - app for the specified application

See also

DJOB_COMMFAIL_ACTION in l sb. appl i cati ons

LSB_DJOB_ENV_SCRIPT

Syntax

LSB_DJOB_ENV_SCRIPT=script_name

Description

Defines the name of a user-defined script for setting and cleaning up the parallel or distributed job environment. This script will be executed by LSF with the argument set up before launching a parallel or distributed job, and with argument cleanup after the parallel job is finished.

The script will run as the user, and will be part of the job.

If a full path is specified, LSF will use the path name for the execution. Otherwise, LSF will look for the executable from \$LSF BINDIR.

Where defined

Set by the system to the value of the parameter DJOB_ENV_SCRIPT in l sb. appl i cat i ons when running bsub - app for the specified application

See also

DJOB_ENV_SCRIPT in l sb. appl i cati ons

LSB QUEUE

Syntax

LSB_QUEUE=queue_name

Description

The name of the queue from which the job is dispatched.

Where defined

Set by sbatchd

LSB_REMOTEINDEX

Syntax

LSB REMOTEINDEX=index

The job array index of a remote MultiCluster job. LSB_REMOTEINDEX is set only if the job is an element of a job array.

Valid values

Any integer greater than zero, but less than the maximum job array size

Where defined

Set by sbatchd

See also

LSB_JOBINDEX, MAX_JOB_ARRAY_SIZE in 1 sb. params

LSB REMOTEJID

Syntax

LSB_REMOTEJID=job_ID

Description

The job ID of a remote MultiCluster job.

Where defined

Set by sbatchd, defined by mbatchd

See also

LSB_JOBID

LSB_RESTART

Syntax

LSB_RESTART=Y

Description

Indicates that a job has been restarted or migrated.

Valid values

Set to Y if the job has been restarted or migrated; otherwise, it is not defined.

Notes

If a batch job is submitted with the -r option of bsub, and is restarted because of host failure, then LSB_RESTART is set to Y. If a checkpointable job is submitted with the -k option of bsub, then LSB_RESTART is set to Y when the job is restarted. If bmi g is used to migrate a job, then LSB_RESTART is set to Y when the migrated job is restarted.

If the job is not a restarted job, then LSB_RESTART is not set.

Where defined

Set by sbatchd during job execution

See also

LSB_RESTART_PGID, LSB_RESTART_PID

LSB_RESTART_PGID

Syntax

LSB_RESTART_PGID=pgid

Description

The process group ID of the checkpointed job when the job is restarted.

Notes

When a checkpointed job is restarted, the operating system assigns a new group process ID to the job. LSF sets LSB_RESTART_PGID to the new group process ID.

Where defined

Set during restart of a checkpointed job.

See also

LSB_RESTART_PID, LSB_RESTART

LSB_RESTART_PID

Syntax

LSB_RESTART_PID=pid

Description

The process ID of the checkpointed job when the job is restarted.

Notes

When a checkpointed job is restarted, the operating system assigns a new process ID to the job. LSF sets LSB_RESTART_PID to the new process ID.

Where defined

Defined during restart of a checkpointed job

See also

LSB RESTART PGID, LSB RESTART

LSB_RTASK_GONE_ACTION

Syntax

LSB_RTASK_GONE_ACTION=task_action...

Description

Defines the actions LSF should take if it detects that a remote task of a parallel job is gone. Where *task action* is:

IGNORE_TASKCRASH

A remote task crashes. The job RES does nothing.

KILLJOB_TASKDONE

A remote task exits with zero value. The job RES notifies the task RES to terminate all tasks in the job.

KILLJOB_TASKEXIT

A remote task exits with non-zero value. The job RES notifies the task RES to terminate all tasks in the job.

Where defined

Set by the system based on the value of the parameter RTASK_GONE_ACTION in $l\ sb.\ appl\ i\ cat\ i\ ons$ when running bsub - app for the specified application

See also

RTASK GONE ACTION in 1 sb. appl i cati ons

LSB_SUB_CLUSTER

Description

Name of submission cluster (MultiCluster only)

Where defined

Set on the submission environment and passed to the execution cluster environment. The parameter will ONLY be valid in Multi Cluster environment. For jobs on a local cluster, the parameter is not set when using any daemon wrappers such as job starter, post-, pre- or eexec scripts.

LSB_SUB_COMMAND_LINE

Description

The job command line.

The job command line can be up to 4094 characters long for UNIX and Linux or up to 255 characters for Windows.

Where defined

Set by esub before a job is submitted.

LSB_SUB_EXTSCHED_PARAM

Description

Value of external scheduling options specified by bsub - extsched, or queue-level MANDATORY_EXTSCHED or DEFAULT_EXTSCHED.

Where defined

Set by esub before a job is submitted.

LSB_SUB_JOB_ACTION_WARNING_TIME

Description

Value of job warning time period specified by bsub -wt.

Where defined

Set by esub before a job is submitted.

LSB_SUB_JOB_WARNING_ACTION

Description

Value of job warning action specified by bsub - wa.

Where defined

Set by esub before a job is submitted.

LSB_SUB_PARM_FILE

Syntax

LSB_SUB_PARM_FILE=file_name

Description

Points to a temporary file that LSF uses to store the bsub options entered in the command line. An esub reads this file at job submission and either accepts the values, changes the values, or rejects the job. Job submission options are stored as name-value pairs on separate lines in the format option_name=value. A typical use of this file is to control job submission options.

Where defined

Set by LSF on the submission host before running esub. Not defined when 1 srun or 1 sgrun are used for interactive remote execution.

LSB_SUCCESS_EXIT_VALUES

Syntax

LSB_SUCCESS_EXIT_VALUES=[exit_code ...]

Description

Specifies the exit values that indicate successful execution for applications that successfully exit with non-zero values. Use spaces to separate multiple exit codes. exit_code should be the value between 0 and 255.

User-defined LSB_SUCCESS_EXIT_VALUES overrides application profile level specification of SUCCESS_EXIT_VALUES in l sb. appl i cat i ons.

LSB_SUSP_REASONS

Syntax

LSB_SUSP_REASONS=integer

Description

An integer representing suspend reasons. Suspend reasons are defined in 1 sbatch. h.

This parameter is set when a job goes to system-suspended (SSUSP) or user-suspended status (USUSP). It indicates the exact reason why the job was suspended.

To determine the exact reason, you can test the value of LSB_SUSP_REASONS against the symbols defined in 1 sbatch. h.

Where defined

Set during job execution

See also

LSB_SUSP_SUBREASONS

LSB_SUSP_SUBREASONS

Syntax

LSB_SUSP_SUBREASONS=integer

Description

An integer representing the load index that caused a job to be suspended.

When the suspending reason SUSP_LOAD_REASON (suspended by load) is set in LSB_SUSP_REASONS, LSB_SUSP_SUBREASONS set to one of the load index values defined in l sf. h.

Use LSB_SUSP_REASONS and LSB_SUSP_SUBREASONS together in you custom job control to determine the exact load threshold that caused a job to be suspended.

Load index values are defined in 1 sf. h.

Load Index	Value
R15S	0
R1M	1
R15M	2
UT	3
PG	4
IO	5
LS	6
IT	7
TMP	8
SWP	9
MEM	10

Default

Not defined

Where defined

Set during job execution

See also

LSB_SUSP_REASONS

LSB_UNIXGROUP

Description

Specifies the UNIX user group of the submitting user.

Notes

This variable is useful if you want pre- or post-execution processing to use the user group of the user who submitted the job, and not sys(1).

Where defined

Set during job execution

LSB_USER_BIND_CPU_LIST

The binding requested at job submission takes effect when LSF_BIND_JOB=USER_CPU_LIST in $l\ sf.\ conf$ or BIND_JOB=USER_CPU_LIST in an application profile in $l\ sb.\ appl\ i\ cat\ i$ ons. LSF makes sure that the value is in the correct format, but does not check that the value is valid for the execution hosts.

The correct format is a list which may contain multiple items, separated by comma, and ranges. For example: 0,5,7,9-11.

LSB_USER_BIND_JOB

The binding requested at job submission takes effect when LSF_BIND_JOB=USER in 1 sf. conf or BIND_JOB=USER in an application profile in 1 sb. appl i cat i ons. This value must be one of Y, N, NONE, BALANCE, PACK, or ANY. Any other value is treated as ANY.

LSF_CMD_LOGDIR

This parameter can be set from the command line or from 1 sf. conf.

See LSF_CMD_LOGDIR in l sf. conf.

LSF_DEBUG_CMD

This parameter can be set from the command line or from 1 sf. conf.

See LSB_DEBUG_MBD in lsf. conf.

LSF_DEBUG_LIM

This parameter can be set from the command line or from 1 sf. conf.

See LSF_DEBUG_LIM in 1 sf. conf.

LSF_DEBUG_RES

This parameter can be set from the command line or from 1 sf. conf.

See LSF_DEBUG_RES in 1 sf. conf.

LSF_EAUTH_AUX_DATA

Syntax

LSF_EAUTH_AUX_DATA=path/file_name

Description

Used in conjunction with LSF daemon authentication, specifies the full path to the temporary file on the local file system that stores auxiliary authentication information (such as credentials required by a remote host for use during job execution). Provides a way for eauth - c, mbatchd, and sbatchd to communicate the location of auxiliary authentication data. Set internally by the LSF libraries in the context of eauth.

For Kerberos authentication, used for forwarding credentials to the execution host.

LSF_EAUTH_AUX_PASS

Syntax

LSF_EAUTH_AUX_PASS=yes

Description

Enables forwarding of credentials from a submission host to an execution host when daemon authentication is enabled. LSF_EAUTH_AUX_PASS=yes indicates that a credential can be added to the

execution context of a job. Set to yes by bsub during job submission or by bmod during job modification so that eauth - c can forward credentials.

LSF_EAUTH_CLIENT

Syntax

LSF_EAUTH_CLIENT=mbatchd | sbatchd | pam | res | user

Description

Used with LSF daemon authentication, specifies the LSF daemon, command, or user that invokes eauth - c. Used when writing a customized eauth executable to set the context for the call to eauth. Set internally by the LSF libraries or by the LSF daemon, command, or user calling eauth - c.

LSF_EAUTH_SERVER

Syntax

LSF_EAUTH_SERVER=mbatchd | sbatchd | pam | res

Description

Used with LSF daemon authentication, specifies the daemon that invokes eauth $\,$ -s. Used when writing a customized eauth executable to set the context for the call to eauth. Set internally by the LSF libraries or by the LSF daemon calling eauth $\,$ -s.

LSF_EAUTH_UID

Syntax

LSF EAUTH UID=user ID

Description

Specifies the user account under which eauth -s runs. Set by the LSF daemon that executes eauth. Set by the LSF daemon that executes eauth.

LSF_EXECUTE_DOMAIN

Syntax

LSF_EXECUTE_DOMAIN=domain_namesetenv LSF_EXECUTE_DOMAIN domain_name

Description

If UNIX/Windows user account mapping is enabled, specifies the preferred Windows execution domain for a job submitted by a UNIX user. The execution domain must be one of the domains listed in LSF_USER_DOMAIN.

 $LSF_EXECUTE_DOMAIN \ is \ defined \ in \ the \ user \ environment \ (.\ cshrc\ or\ .\ profile) \ or \ from \ the \ command \ line. \ Specify \ only \ one \ domain.$

Use this parameter in conjunction with the bsub, l srun, and l sgrun commands to bypass the order of the domains listed in LSF_USER_DOMAIN and run the job using the specified domain. If you do not have a Windows user account in the execution domain, LSF tries to run the job using one of the other domains defined by LSF_USER_DOMAIN. Once you submit a job with an execution domain defined, you cannot change the execution domain for that particular job.

LSF_INTERACTIVE_STDERR

This parameter can be defined in l sf. conf.

See LSF_INTERACTIVE_STDERR in 1 sf. conf for more details.

LSF_INVOKE_CMD

Syntax

LSF_INVOKE_CMD=invoking command name

Description

Indicates the name of the last LSF command that invoked an external executable (for example, esub or eexec).

External executables get called by different LSF commands, such as bsub, bmod, or l srun.

Default

Not defined

Where defined

Set internally within by LSF

LSF_JOB_STARTER

Syntax

LSF_JOB_STARTER=binary

Description

Specifies an executable program that has the actual job as an argument.

Default

Not defined

Interactive Jobs

If you want to run an interactive job that requires some preliminary setup, LSF provides a job starter function at the command level. A command-level job starter allows you to specify an executable file that will run prior to the actual job, doing any necessary setup and running the job when the setup is complete.

If LSF_JOB_STARTER is properly defined, RES will invoke the job starter (rather than the job itself), supplying your commands as arguments.

Batch Jobs

A job starter can also be defined at the queue level using the JOB_STARTER parameter, although this can only be done by the LSF administrator.

Where defined

From the command line

Example: UNIX

The job starter is invoked from within a Bourne shell, making the command-line equivalent:

```
/bin/sh -c "$LSF_JOB_STARTER command [argument...]"
```

where command $\[$ argument... $\]$ are the command line arguments you specified in $\]$ srun, $\]$ sgrun, or ch.

If you define LSF_JOB_STARTER as follows:

```
setenv LSF_JOB_STARTER "/bin/csh -c"
```

and run a simple C-shell job:

```
lsrun "'a.out; echo hi'"
```

The following will be invoked to correctly start the job:

```
/bi n/sh -c "/bi n/csh -c 'a. out; echo hi'"
```

Example: Windows

RES runs the job starter, passing it your commands as arguments:

```
LSF_JOB_STARTER command [argument...]
```

If you define LSF_JOB_STARTER as follows:

```
set LSF_JOB_STARTER=C: \cmd. exe /C
```

and run a simple DOS shell job:

C: \> lsrun dir /p

then the following will be invoked to correctly start the job:

```
C: \cmd. exe /C dir /p
```

See also

JOB_STARTER in 1 sb. queues

LSF_LD_LIBRARY_PATH

Description

When LSF_LD_SECURITY=Y in 1 sf. conf, contains the value of the LD_LIBRARY_PATH environment variable, which is removed from the job environment during job initialization to ensure enhanced security against users obtaining root privileges. LSF_LD_LIBRARY_PATH allows the LD_LIBRARY_PATH environment variable to be put back before the job runs.

Where defined

For jobs submitted using bsub - I s or bsub - I p only.

See also

LSF_LD_PRELOAD, LSF_LD_SECURITY in 1 sf. conf

LSF_LD_PRELOAD

Description

When LSF_LD_SECURITY=Y in 1 sf. conf, contains the value of the LD_PRELOAD evnironment variable, which is removed from the job environment during job initialization to ensure enhanced security against users obtaining root privileges. LSF_LD_PRELOAD allows the LD_PRELOAD environment variable to be put back before the job runs.

Where defined

For jobs submitted using bsub - Is or bsub - Ip only.

See also

 $LSF_LD_LIBRARY_PATH, LSF_LD_SECURITY in 1 sf. conf$

LSF_LIM_API_NTRIES

Syntax

LSF_LIM_API_NTRIES=integer

Description

Defines the number of times LSF commands will retry to communicate with the LIM API when LIM is not available. LSF_LIM_API_NTRIES is ignored by LSF and EGO daemons and EGO commands. The LSF_LIM_API_NTRIES environment variable. overrides the value of LSF_LIM_API_NTRIES in 1 sf. conf.

Valid values

1 to 65535

Where defined

From the command line or from 1 sf. conf

Default

Not defined. If not defined in 1 sf. conf. LIM API exits without retrying.

LSF_LIM_DEBUG

This parameter can be set from the command line or from l sf. conf.

See LSF_LIM_DEBUG in l sf. conf.

LSF_LOGDIR

This parameter can be set from the command line or from 1 sf. conf.

See LSF_LOGDIR in lsf.conf.

LSF_MASTER

Description

Set by the LIM to identify the master host. The value is Y on the master host and N on all other hosts. An el i m executable can use this parameter to check the host on which the el i m is currently running.

Used when the external load indices feature is enabled.

When defined

Set by the LIM when it starts the master external load information manager (MELIM).

See also

LSF_RESOURCES

LSF_NIOS_DEBUG

This parameter can be set from the command line or from l sf. conf.

See LSF_NIOS_DEBUG in l sf. conf.

LSF_NIOS_ERR_LOGDIR

This parameter can be set from the command line or from $l\ sf.\ conf.$

See LSF_NIOS_ERR_LOGDIR in 1 $\rm sf.\ conf.$

LSF_NIOS_DIE_CMD

Syntax

LSF_NIOS_DIE_CMD=command

Description

If set, the command defined by LSF_NIOS_DIE_CMD is executed before NIOS exits.

Default

Not defined

Where defined

From the command line

LSF_NIOS_IGNORE_SIGWINDOW

Syntax

LSF_NIOS_IGNORE_SIGWINDOW=any_value

Description

If defined, the NIOS will ignore the SIGWINDOW signal.

Default

Not defined

Notes

When the signal SIGWINDOW is defined, some tasks appear to die when they receive the SIGWINDOW while doing I/O. By defining LSF_NIOS_IGNORE_SIGWINDOW, these tasks are given the chance to ignore the signal.

Where defined

From the command line

LSF_NIOS_PEND_TIMEOUT

Syntax

LSF_NIOS_PEND_TIMEOUT=minutes

Description

Applies only to interactive batch jobs.

Maximum amount of time that an interactive batch job can remain pending.

If this parameter is defined, and an interactive batch job is pending for longer than the specified time, the interactive batch job is terminated.

Valid values

Any integer greater than zero

Default

Not defined

LSF_NIOS_PORT_RANGE

Syntax

LSF_NIOS_PORT_RANGE=min_port_number-max_port_number

Description

Defines a range of listening ports for NIOS to use.

Example

LSF_NI OS_PORT_RANGE=5000-6000

Default

Not defined. LSF randomly assigns a NIOS port number.

LSF_RESOURCES

Syntax

LSF_RESOURCES=dynamic_external_resource_name...

Description

Space-separated list of dynamic external resources. When the LIM starts a master external load information manager (MELIM) on a host, the LIM checks the resource mapping defined in the ResourceMap section of $l \ sf.\ cl\ uster.\ cl\ uster_name$. Based on the mapping (default, all, or a host list), the LIM sets LSF_RESOURCES to the list of resources expected on the host and passes the information to the MELIM.

Used when the external load indices feature is enabled.

When defined

Set by the MELIM on the host when the MELIM invokes the elim executable.

See also

LSF MASTER

LSF_TS_LOGON_TIME

Syntax

LSF_TS_LOGON_TIME=milliseconds

Description

Specifies the time to create a Windows Terminal Service session. Configure LSF_TS_LOGON_TIME according to the load on your network environment.

The default, 30000 milliseconds, is suitable for most environments. If you set LSF_TS_LOGON_TIME too small, the LSF tries multiple times before it succeeds in making a TS session with the TS server, which can cause the job wait a long time before it runs. For a congested network. set LSF_TS_LOGON_TIME=1000000.

Where defined

From the command line

Default

30000 milliseconds

LSF_USE_HOSTEQUIV

Syntax

LSF_USE_HOSTEQUIV=y | Y

Used for authentication purposes. If LSF_USE_HOSTEQUIV is defined, RES and mbatchd call the ruserok(3) function to decide if a user is allowed to run remote jobs. LSF trusts all hosts configured in the LSF cluster that are defined in hosts. equi v, or in . rhosts in the user's home directory.

The ruserok(3) function checks in the /etc/hosts. equi v file and the user's \$HOME/. rhosts file to decide if the user has permission to execute remote jobs.

If LSF_USE_HOSTEQUIV is not defined, all normal users in the cluster can execute remote jobs on any host.

If LSF_ROOT_REX is set, root can also execute remote jobs with the same permission test as for normal users.

Default

Not defined

See also

LSF ROOT REX and LSF AUTH in 1 sf. conf

LSF_USER_DOMAIN

Syntax

LSF_USER_DOMAIN=domain_name /.

Description

Set during LSF installation or setup. If you modify this parameter in an existing cluster, you probably have to modify passwords and configuration files also.

Windows or mixed UNIX-Windows clusters only.

Enables default user mapping, and specifies the LSF user domain. The period (.) specifies local accounts, not domain accounts.

- A user name specified without a domain is interpreted (on a Windows host) as belonging to the LSF user domain
- A user name specified with the domain name of the LSF user domain is not valid
- In a mixed cluster, this parameter defines a 2-way, 1:1 user map between UNIX user accounts and
 Windows user accounts belonging to the specified domain, as long as the accounts have the same user
 name. This means jobs submitted by the Windows user account can run on a UNIX host, and jobs
 submitted by the UNIX account can run on any Windows host that is available to the Windows user
 account.

If this parameter is not defined, the default user mapping is not enabled. You can still configure user mapping at the user or system level. User account mapping is required to run cross-platform jobs in a UNIX-Windows mixed cluster.

Where defined

1sf.conf

Default

- If you upgrade from LSF 4.0.1 or earlier, the default is the existing LSF user domain.
- For a new, Windows-only cluster, this parameter is not defined (no LSF user domain, no default user mapping).
- For a new, mixed UNIX-Windows cluster, the default is the domain that the Windows installation account belongs to. This can be modified during LSF installation.

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

Intellectual Property Law

Mail Station P3002455

South Road, Poughkeepsie, NY 12601-5400

USA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurement may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright notice as follows:

^{© (}your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_.

Trademarks

IBM, the IBM logo, and ibm.com[®] are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

LSF, Platform, and Platform Computing are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide.

InfiniBand is a trademark and/or service mark of the InfiniBand Trade Association.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Index

.lsftask file 475	automatic time-based configuration
	Isb.hosts 123
A	lsb.params 130
ABS_RUNLIMIT	lsb.queues 234
lsb.params file 39, 131	lsb.resources 263
ACCESS_CONTROL	lsb.users 283
lsb.serviceclasses file 266	lsf.licensescheduler 461
ACCINUSE_INCLUDES_OWNERSHIP	
Isf.licensescheduler file Parameters section 455	В
ACCT_ARCHIVE_AGE	DA OVELLI
lsb.params file 131	BACKFILL
ACCT_ARCHIVE_SIZE	lsb.queues file 185
lsb.params file 132	bconf
ACCT_ARCHIVE_TIME	enable 385
lsb.params file 132	BIND_JOB 40
ADJUST_DURATION	BLC_HEARTBEAT_FACTOR
Isf.cluster file 288	lsf.licensescheduler file Parameters section 434
ADMIN	bld
lsb.hosts file 121	License Scheduler daemon 436
Isf.licensescheduler file Parameters section 421	bld.stream file 430, 431
administrator	BSUB_BLOCK variable 492
user group 278	BSUB_QUIET variable 492, 493
ADMINISTRATORS	BSUB_QUIET2 variable 493
lsb.queues file 184	BSUB_STDERR variable 494
lsf.cluster file 295	
ADVRSV_USER_LIMIT	C
lsb.params file 133	CACHE_INTERVAL
ALLOC_BUFFER	lsf.cluster file 302
Isf.licensescheduler file Features section 446	CHKPNT
ALLOCATION	lsb.hosts file 110
Isf.licensescheduler file Feature section 440	Isb.queues file 185
APS_PRIORITY	CHKPNT_DIR
lsb.queues file 184	Isb.applications file 40
ARCHITECTURE	CHKPNT_INITPERIOD
lsf.shared file 465	Isb.applications file 41
AUTH	CHKPNT_METHOD
lsf.licensescheduler file Parameters section 421	Isb.applications file 42
AUTO_ATTACH	CHKPNT_PERIOD
lsb.serviceclasses file 267	CHIM INI_I LIMOD

Isb.applications file 41	CORELIMIT
chunk jobs	Isb.applications file 43
CHKPNT parameter in Isb.queues 186	Isb.queues file 187
MIG parameter in Isb.queues 53, 210	CPU_TIME_FACTOR
rerunnable 60, 220	lsb.params file 136
CHUNK_JOB_DURATION	lsb.queues file 189
lsb.params file 133	CPUFACTOR
CHUNK_JOB_SIZE	lsf.shared file 465
Isb.applications file 42	CPULIMIT
Isb.queues file 186	lsb.applications file 43
CLEAN_PERIOD	Isb.queues file 188
Isb.params file 134	Cray checkpointing 110
CLEARCASE_DRIVE variable 494	cross-cluster account mapping 282
CLEARCASE_MOUNTDIR variable 495	cross-cluster account mapping in MultiCluster 282
CLEARCASE_ROOT variable 495	cross-cluster user account mapping in MultiCluster 282
CLOSE_ON_DEMAND	CSA (IRIX Comprehensive System Accounting)
Isb.resources file GuaranteedResourcePool section 253	configuring and using 368
cluster mode	cshrc.lsf file
CLUSTER_MODE parameter 422, 438	description 7
CLUSTER_DISTRIBUTION	setting the LSF environment 8
Isf.licensescheduler file Feature section 444	CUMULATIVE_RUSAGE
CLUSTER_MODE	LSF HPC extensions parameter 373
Isf.licensescheduler file Parameters section 422, 438	custom resources
ClusterName	reserving 262
lsf.shared file 463	3
CLUSTERNAME	D
Isf.cluster file 302	В
CLUSTERS	daemons
CLUSTENS	dacinons
	automatic shut down 306
Isf.licensescheduler file Clusters section 435	
	automatic shut down 306
lsf.licensescheduler file Clusters section 435 Clusters section lsf.licensescheduler file	automatic shut down 306 security 410
Isf.licensescheduler file Clusters section 435 Clusters section Isf.licensescheduler file description 434	automatic shut down 306 security 410 DATALIMIT
Isf.licensescheduler file Clusters section 435 Clusters section Isf.licensescheduler file description 434 COMMITTED_RUN_TIME_FACTOR	automatic shut down 306 security 410 DATALIMIT Isb.applications file 44
Isf.licensescheduler file Clusters section 435 Clusters section Isf.licensescheduler file description 434 COMMITTED_RUN_TIME_FACTOR Isb.params file 134	automatic shut down 306 security 410 DATALIMIT Isb.applications file 44 Isb.queues file 189
Isf.licensescheduler file Clusters section 435 Clusters section Isf.licensescheduler file description 434 COMMITTED_RUN_TIME_FACTOR Isb.params file 134 Isb.queues file 187	automatic shut down 306 security 410 DATALIMIT Isb.applications file 44 Isb.queues file 189 dedicated resource. <i>See</i> exclusive resource 298
Isf.licensescheduler file Clusters section 435 Clusters section Isf.licensescheduler file description 434 COMMITTED_RUN_TIME_FACTOR Isb.params file 134 Isb.queues file 187 COMPUTE_UNIT_TYPES	automatic shut down 306 security 410 DATALIMIT Isb.applications file 44 Isb.queues file 189 dedicated resource. <i>See</i> exclusive resource 298 DEFAULT_APPLICATION
Isf.licensescheduler file Clusters section 435 Clusters section Isf.licensescheduler file description 434 COMMITTED_RUN_TIME_FACTOR Isb.params file 134 Isb.queues file 187 COMPUTE_UNIT_TYPES Isb.params file 134	automatic shut down 306 security 410 DATALIMIT Isb.applications file 44 Isb.queues file 189 dedicated resource. <i>See</i> exclusive resource 298 DEFAULT_APPLICATION Isb.params file 136
Isf.licensescheduler file Clusters section 435 Clusters section Isf.licensescheduler file description 434 COMMITTED_RUN_TIME_FACTOR Isb.params file 134 Isb.queues file 187 COMPUTE_UNIT_TYPES Isb.params file 134 CONDENSE	automatic shut down 306 security 410 DATALIMIT Isb.applications file 44 Isb.queues file 189 dedicated resource. <i>See</i> exclusive resource 298 DEFAULT_APPLICATION Isb.params file 136 DEFAULT_EXTSCHED
Isf.licensescheduler file Clusters section 435 Clusters section Isf.licensescheduler file description 434 COMMITTED_RUN_TIME_FACTOR Isb.params file 134 Isb.queues file 187 COMPUTE_UNIT_TYPES Isb.params file 134 CONDENSE Isb.hosts file 114, 120	automatic shut down 306 security 410 DATALIMIT Isb.applications file 44 Isb.queues file 189 dedicated resource. <i>See</i> exclusive resource 298 DEFAULT_APPLICATION Isb.params file 136 DEFAULT_EXTSCHED Isb.queues file 189
Isf.licensescheduler file Clusters section 435 Clusters section Isf.licensescheduler file description 434 COMMITTED_RUN_TIME_FACTOR Isb.params file 134 Isb.queues file 187 COMPUTE_UNIT_TYPES Isb.params file 134 CONDENSE Isb.hosts file 114, 120 CONDENSE_PENDING_REASONS	automatic shut down 306 security 410 DATALIMIT Isb.applications file 44 Isb.queues file 189 dedicated resource. <i>See</i> exclusive resource 298 DEFAULT_APPLICATION Isb.params file 136 DEFAULT_EXTSCHED Isb.queues file 189 DEFAULT_HOST_SPEC
Isf.licensescheduler file Clusters section 435 Clusters section Isf.licensescheduler file description 434 COMMITTED_RUN_TIME_FACTOR Isb.params file 134 Isb.queues file 187 COMPUTE_UNIT_TYPES Isb.params file 134 CONDENSE Isb.hosts file 114, 120 CONDENSE_PENDING_REASONS Isb.params file 135	automatic shut down 306 security 410 DATALIMIT Isb.applications file 44 Isb.queues file 189 dedicated resource. <i>See</i> exclusive resource 298 DEFAULT_APPLICATION Isb.params file 136 DEFAULT_EXTSCHED Isb.queues file 189 DEFAULT_HOST_SPEC Isb.params file 136
Isf.licensescheduler file Clusters section 435 Clusters section Isf.licensescheduler file description 434 COMMITTED_RUN_TIME_FACTOR Isb.params file 134 Isb.queues file 187 COMPUTE_UNIT_TYPES Isb.params file 134 CONDENSE Isb.hosts file 114, 120 CONDENSE_PENDING_REASONS Isb.params file 135 configurable job ID limit 160	automatic shut down 306 security 410 DATALIMIT Isb.applications file 44 Isb.queues file 189 dedicated resource. See exclusive resource 298 DEFAULT_APPLICATION Isb.params file 136 DEFAULT_EXTSCHED Isb.queues file 189 DEFAULT_HOST_SPEC Isb.params file 136 Isb.queues file 190
Isf.licensescheduler file Clusters section 435 Clusters section Isf.licensescheduler file description 434 COMMITTED_RUN_TIME_FACTOR Isb.params file 134 Isb.queues file 187 COMPUTE_UNIT_TYPES Isb.params file 134 CONDENSE Isb.hosts file 114, 120 CONDENSE_PENDING_REASONS Isb.params file 135 configurable job ID limit 160 CONSUMABLE	automatic shut down 306 security 410 DATALIMIT Isb.applications file 44 Isb.queues file 189 dedicated resource. See exclusive resource 298 DEFAULT_APPLICATION Isb.params file 136 DEFAULT_EXTSCHED Isb.queues file 189 DEFAULT_HOST_SPEC Isb.params file 136 Isb.queues file 190 DEFAULT_JOBGROUP
Isf.licensescheduler file Clusters section 435 Clusters section Isf.licensescheduler file description 434 COMMITTED_RUN_TIME_FACTOR Isb.params file 134 Isb.queues file 187 COMPUTE_UNIT_TYPES Isb.params file 134 CONDENSE Isb.hosts file 114, 120 CONDENSE_PENDING_REASONS Isb.params file 135 configurable job ID limit 160 CONSUMABLE Isf.shared file 467	automatic shut down 306 security 410 DATALIMIT Isb.applications file 44 Isb.queues file 189 dedicated resource. <i>See</i> exclusive resource 298 DEFAULT_APPLICATION Isb.params file 136 DEFAULT_EXTSCHED Isb.queues file 189 DEFAULT_HOST_SPEC Isb.params file 136 Isb.queues file 190 DEFAULT_JOBGROUP Isb.params file 137
Isf.licensescheduler file Clusters section 435 Clusters section Isf.licensescheduler file description 434 COMMITTED_RUN_TIME_FACTOR Isb.params file 134 Isb.queues file 187 COMPUTE_UNIT_TYPES Isb.params file 134 CONDENSE Isb.hosts file 114, 120 CONDENSE_PENDING_REASONS Isb.params file 135 configurable job ID limit 160 CONSUMABLE Isf.shared file 467 CONSUMER	automatic shut down 306 security 410 DATALIMIT Isb.applications file 44 Isb.queues file 189 dedicated resource. See exclusive resource 298 DEFAULT_APPLICATION Isb.params file 136 DEFAULT_EXTSCHED Isb.queues file 189 DEFAULT_HOST_SPEC Isb.params file 136 Isb.queues file 190 DEFAULT_JOBGROUP Isb.params file 137 DEFAULT_PROJECT
Isf.licensescheduler file Clusters section 435 Clusters section Isf.licensescheduler file description 434 COMMITTED_RUN_TIME_FACTOR Isb.params file 134 Isb.queues file 187 COMPUTE_UNIT_TYPES Isb.params file 134 CONDENSE Isb.hosts file 114, 120 CONDENSE_PENDING_REASONS Isb.params file 135 configurable job ID limit 160 CONSUMABLE Isf.shared file 467	automatic shut down 306 security 410 DATALIMIT Isb.applications file 44 Isb.queues file 189 dedicated resource. See exclusive resource 298 DEFAULT_APPLICATION Isb.params file 136 DEFAULT_EXTSCHED Isb.queues file 189 DEFAULT_HOST_SPEC Isb.params file 136 Isb.queues file 190 DEFAULT_JOBGROUP Isb.params file 137 DEFAULT_PROJECT Isb.params file 138

Isf.licensescheduler file Feature section 454 Isb.params file 138 DEFAULT_USER_GROUP lsb.params file 139 Ε **DESCRIPTION** EADMIN_TRIGGER_DURATION Isb.applications file 44 Isb.params file 140 Isb.queues file 190 EGO_BINDIR Isb.resources file GuaranteedResourcePool section 253 cshrc.lsf and profile.lsf files 12 Isb.serviceclasses file 269 EGO_CONF_RETRY_INT parameter in ego.conf 357 Isf.licensescheduler file Project section 461 EGO_CONF_RETRY_MAX parameter in ego.conf 357 Isf.licensescheduler file ProjectGroup section 459 EGO_CONFDIR Isf.shared file 468 cshrc.lsf and profile.lsf files 13 DETECT_IDLE_JOB_AFTER EGO_DAEMON_CONTROL Isb.params file 139 install.config file 20, 481 **DIRECTION** EGO_DEBUG_LIM parameter in ego.conf 362 Isb.users file 282 EGO_DHCP_ENV parameter in ego.conf 364 DISABLE_UACCT_MAP EGO_DYNAMIC_HOST_TIMEOUT parameter in ego.conf Isb.params file 140 DISP_RES_USAGE_LIMITS EGO_ENABLE_AUTO_DAEMON_SHUTDOWN 306 LSF HPC extensions parameter 373 EGO_ENABLE_DUALCORE parameter in ego.conf 369 DISPATCH_ORDER EGO_ESLIM_TIMEOUT 306 Isb.queues file 190 EGO_ESRVDIR DISPATCH_WINDOW cshrc.lsf and profile.lsf files 13 Isb.hosts file 110 EGO_LIBDIR Isb.queues file 191 cshrc.lsf and profile.lsf files 14 **DISTRIBUTION** EGO_LIM_CONNTIMEOUT parameter in ego.conf 352 Isb.resources file GuaranteedResourcePool section 253 EGO_LIM_DEBUG parameter in ego.conf 383 Isb.resources file HostExport section 255 EGO_LIM_PORT parameter in eqo.conf 384 Isb.resources file SharedResourceExport section 258 EGO_LIM_RECVTIMEOUT parameter in ego.conf 353 Isf.licensescheduler file Feature section 439 EGO_LOCAL_CONFDIR DISTRIBUTION_POLICY_VIOLATION_ACTION cshrc.lsf and profile.lsf files 14 Isf.licensescheduler file Parameters section 422 EGO_LOCAL_RESOURCES parameter in ego.conf 386 DJOB_COMMFAIL_ACTION EGO_LOG_MASK parameter in ego.conf 362, 388 Isb.applications file 45 EGO_MASTER_LIST parameter in ego.conf 393 DJOB_DISABLED EGO_PIM_INFODIR parameter in ego.conf 400 lsb.applications file 45 EGO_PIM_SLEEPTIME parameter in ego.conf 401 DJOB_ENV_SCRIPT EGO_PIM_SLEEPTIME_UPDATE parameter in ego.conf 401 Isb.applications file 45 EGO_RES_REQ DJOB_HB_INTERVAL Isb.serviceclasses file 269 Isb.applications file 46 EGO_RSH parameter in ego.conf 407 DJOB_RU_INTERVAL EGO_SERVERDIR Isb.applications file 46 cshrc.lsf and profile.lsf files 14 dual-core CPUs EGO_STATIC_LIM_TIMEOUT 306 enabling detection 369 EGO_STRIP_DOMAIN parameter in ego.conf 412 dual-stack hosts EGO_TIME_LIM parameter in ego.conf 412 setting to IPv6 only 365 EGO_TOP **DURATION**

cshrc.lsf and profile.lsf files 15

ego.conf file

DYNAMIC

Isb.resources file GuaranteedResourcePool section 253

corresponding lsf.conf parameters 304 LS_EXEC_T 496 LSF parameter migration for upgrade 304 LS_JOBPID 497 LS_SUBCWD 497 managing error logs 362 ELIM_ABORT_VALUE LSB_CHKPNT_DIR 497 Isf.cluster file 288 LSB DEBUG 498 ELIM_ABORT_VALUE variable 496 LSB_DEBUG_CMD 498 ELIM POLL INTERVAL LSB DEBUG MBD 498 Isf.cluster file 288 LSB_DEBUG_NQS 498 **ELIMARGS** LSB_DEBUG_SBD 498 Isf.cluster file 289 LSB_DEBUG_SCH 498 email LSB_DEFAULT_JOBGROUP 498 configuring on UNIX 329 LSB_DEFAULTPROJECT 499 ENABLE_DEFAULT_EGO_SLA LSB_DEFAULTQUEUE 500 LSB_DJOB_COMMFAIL_ACTION 513 Isb.params file 140 ENABLE_DYNAMIC_HOSTS LSB_DJOB_ENV_SCRIPT 514 install.config file 20 LSB_DJOB_NUMPROC 500 ENABLE_DYNAMIC_RUSAGE LSB_ECHKPNT_KEEP_OUTPUT 501 Isf.licensescheduler file Feature section 454 LSB_ECHKPNT_METHOD 501 **ENABLE EGO** LSB_ECHKPNT_METHOD_DIR 501 install.config file 20, 482 LSB_ERESTART_USRCMD 501 ENABLE_EVENT_STREAM LSB_EXEC_RUSAGE 502 Isb.params file 141 LSB_EXECHOSTS 502 ENABLE_HIST_RUN_TIME LSB_EXIT_IF_CWD_NOTEXIST 502 LSB_EXIT_PRE_ABORT 503 lsb.params file 142 Isb.queues file 191 LSB_EXIT_REQUEUE 503 ENABLE_HOST_INTERSECTION LSB_FRAMES 504 lsb.params¶142 LSB_HOSTS 504 ENABLE_HPC_INST LSB_INTERACTIVE 505 install.config file 21 LSB_JOB_INCLUDE_POSTPROC 505 ENABLE_INTERACTIVE LSB_JOBEXIT_INFO 505 Isf.licensescheduler file Parameters section 423 LSB_JOBEXIT_STAT 506 ENABLE MINJOB PREEMPTION LSB_JOBFILENAME 506 Isf.licensescheduler file Feature section 455 LSB_JOBGROUP 507 ENABLE_USER_RESUME LSB_JOBID 507 LSB_JOBINDEX 507 Isb.params file 142 ENFORCE_ONE_UG_LIMITS LSB_JOBINDEX_STEP 508 Isb.params file 143 LSB_JOBNAME 509 ENFORCE_UG_TREE LSB_JOBPEND 509 lsb.params file 143 LSB_JOBPGIDS 510 environment variables LSB_JOBPIDS 510 BSUB_BLOCK 492 LSB_MAILSIZE 510 BSUB_QUIET 492, 493 LSB_MCPU_HOSTS 511 BSUB QUIET2 493 LSB_NQS_PORT 512 BSUB_STDERR 494 LSB_NTRIES 512 CLEARCASE_DRIVE 494 LSB_OLD_JOBID 512 **CLEARCASE MOUNTDIR 495** LSB_OUTPUT_TARGETFAILED 513 LSB_QUEUE 514 CLEARCASE_ROOT 495 ELIM_ABORT_VALUE 496 LSB_REMOTEINDEX 514

LSB_REMOTEJID 515 **EOUIV** LSB_RESTART 515 Isf.cluster file 302 LSB_RESTART_PGID 516 error logs LSB_RESTART_PID 516 EGO_LOG_MASK parameter 362 LSB_RTASK_GONE_ACTION 517 EVENT_ADRSV_FINISH record LSB_SUB_CLUSTER 517 Isb.acct 36 LSB SUB COMMAND LINE 517 **EVENT STREAM FILE** LSB_SUB_EXTSCHED_PARAM 518 Isb.params file 144 EVENT_UPDATE_INTERVAL LSB_SUB_JOB_ACTION_WARNING_TIME 518 LSB_SUB_JOB_WARNING_ACTION 518 Isb.params file 144 LSB_SUB_PARM_FILE 518 **EXCLUSIVE** LSB_SUCCESS_EXIT_VALUES 519 Isb.queues file 191 LSB_SUSP_REASONS 519 exclusive resource 298 LSB_SUSP_SUBREASONS 519 **EXINTERVAL** Isf.cluster file 289 LSB_UNIXGROUP 520 LSB_USER_BIND_CPU_LIST 520 EXIT RATE Isb.hosts file 110 LSB_USER_BIND_JOB 521 LSF_CMD_LOGDIR 521 EXIT_RATE_TYPE LSF_DEBUG_CMD 521 Isb.params file 145 LSF_DEBUG_LIM 521 EXTEND_JOB_EXCEPTION_NOTIFY LSF_DEBUG_RES 521 Isb.params file 145 LSF_EAUTH_AUX_DATA 521 external authentication LSF_EAUTH_AUX_PASS 521 LSF_AUTH parameter 353 LSF_EAUTH_CLIENT 522 LSF_EAUTH_SERVER 522 F LSF_EAUTH_UID 522 **FAIRSHARE** LSF_EXECUTE_DOMAIN 522 Isb.queues file 192 LSF_INTERACTIVE_STDERR 523 FAIRSHARE_ADJUSTMENT_FACTOR LSF_INVOKE_CMD 523 Isb.params file 146 LSF_JOB_STARTER 523 Isb.queues file 193 LSF_LD_LIBRARY_PATH 524, 525 FAIRSHARE_QUEUES LSF_LIM_API_NTRIES 525 Isb.queues file 193 LSF_LIM_DEBUG 525 Feature section LSF_LOGDIR 525 Isf.licensescheduler file LSF_MASTER 526 description 437 LSF_NIOS_DEBUG 526 FeatureGroup LSF_NIOS_DIE_CMD 526 Isf.licensescheduler 456 LSF_NIOS_ERR_LOGDIR 526 **FILELIMIT** LSF_NIOS_IGNORE_SIGWINDOW 526 lsb.applications file 48 LSF_NIOS_PEND_TIMEOUT 527 Isb.queues file 194 LSF_NIOS_PORT_RANGE 527 files LSF_RESOURCES 528 adding default system lists 476 LSF_TS_LOGON_TIME 528 removing default system lists 476 LSF_USE_HOSTEQUIV 528 viewing task lists 476 LSF_USER_DOMAIN 529 FLEX_NAME EP BACKUP Isf.licensescheduler file Feature section 439 install.config file 21 slave.config file 482

G	lsb.hosts file 109
CLODAL EVIT DATE	HOST_RUSAGE
GLOBAL_EXIT_RATE	LSF HPC extensions parameter 373
lsb.params file 141, 146	HostExport section
GOALS	Isb.resources 254
Isb.serviceclasses file 269	HOSTNAME
GROUP	Isf.cluster file 297
Isf.licensescheduler file Feature section 443	hosts
lsf.licensescheduler file ProjectGroup section 458	exclusive resource 298
GROUP_ADMIN	HOSTS
lsb.hosts file 115	lsb.hosts file 118
GROUP_DISTRIBUTION	lsb.queues file 195
Isf.licensescheduler file Feature section 444	Isb.resources file GuaranteedResourcePool section 252
GROUP_MEMBER	lsb.resources file Limit section 238
lsb.hosts file 114	lsb.resources file ResourceReservation section 259
lsb.users file 277	Isf.licensescheduler file Parameters section 424
GROUP_NAME	hosts file 16
lsb.hosts file 113	HPART_NAME
lsb.users file 277	Isb.hosts file 118
GRP_ADD record	130.1103(31)16 110
lsb.events 103	
GRP_MOD record	
lsb.events 104	identd 353
GuaranteedResourcePool section	identification daemon authentication
lsb.resources 250	LSF_AUTH parameter 353
	identification daemons 353
Н	IGNORE_DEADLINE
	Isb.queues file 198
hierarchical fairshare user groups 279	IMPT_JOBBKLG
HIST_HOURS	Isb.queues file 198
lsb.params file 146	INCREASING
lsb.queues file 194	Isf.shared file 467
Isf.licensescheduler file Parameters section 423, 424	install.config file
HJOB_LIMIT	description 19
lsb.queues file 195	INTERACTIVE
host groups	Isb.queues file 198
EGO enabled 196	INTERRRUPTIBLE_BACKFILL
host management	_
daemon clean up 306	lsb.queues file 199 INTERVAL
host models	
automatic detection 465	Isf.shared file 467
host types	INUSE_FROM_RUSAGE
automatic detection 465	Isf.licensescheduler file Features section 445
HOST_CTRL record	Isf.licensescheduler file Parameters section 424
Isb.events 84	i0
HOST_INACTIVITY_LIMIT	Isb.hosts file 112
Isf.cluster file 289	Isb.queues file 204
HOST_NAME	IPv6
	dual-stack hosts 365

enable 370	Isb.events 96
example 16, 18	JOB_FINISH record
in LSF_HOST_ADDR_RANGE 292	lsb.acct 30
IRIX ULDB (User Limits Database)	JOB_FORCE record
description 414	lsb.events 102
jlimit.in file 414	JOB_FORWARD record
it	lsb.events 78
lsb.hosts file 112	JOB_GROUP_CLEAN
lsb.queues file 204	lsb.params file 149
•	JOB IDLE
J	lsb.queues file 202
J	JOB_INCLUDE_POSTPROC parameter
JL/P	Isb.applications 47
lsb.users file 281	lsb.params 149
JL/U	JOB_MODIFY2 record
lsb.hosts file 111	lsb.events 88
jlimit.in file	JOB_MOVE record
IRIX ULDB 414	lsb.events 83
job ID	JOB_NEW record
limit 160	lsb.events 73
rollover 160	JOB_OVERRUN
sequencing 160	lsb.queues file 202
job migration	JOB_POSITION_CONTROL_BY_ADMIN
absolute job priority scheduling 185	lsb.params file 150
JOB_ACCEPT record	JOB_POSTPROC_TIMEOUT parameter
Isb.events 79	Isb.applications 47
JOB_ACCEPT_INTERVAL	lsb.params 150
lsb.params file 147	JOB_PRIORITY_OVER_TIME
lsb.queues file 200	lsb.params file 151
JOB_ACTION_WARNING_TIME	JOB_REQUEUE record
Isb.queues file 200	lsb.events 94
JOB_ATTA_DATA record	JOB_RUNLIMIT_RATIO
Isb.events 96	lsb.params file 151
JOB_ATTA_DIR	JOB_SCHEDULING_INTERVAL
lsb.params file 148	lsb.params file 153
JOB_CHUNK record	JOB_SIGACT record
Isb.events 97	lsb.events 86
JOB_CLEAN record	JOB_SIGNAL record
Isb.events 94	lsb.events 92
JOB_CONTROLS	JOB_SPOOL_DIR
lsb.queues file 201	lsb.params file
JOB_DEP_LAST_SUB	description 153
lsb.params file 148	JOB_START record
JOB_EXECUTE record	lsb.events 79
Isb.events 93	JOB_START_ACCEPT record
JOB_EXIT_RATE_DURATION	lsb.events 80
Isb.params file 149	JOB_STARTER
JOB_EXT_MSG record	Isb.applications file 48
	isp.applications file 40

lsb.queues file 203	load_index
JOB_STATUS record	lsb.hosts file 112
lsb.events 81	lsb.queues file 204
JOB_SWITCH record	LOAD_INDEX record
Isb.events 82	Isb.events 86
JOB_TERMINATE_INTERVAL	LOAN_POLICIES
Isb.params file 154	Isb.resources file GuaranteedResourcePool section 253
JOB_UNDERRUN	LOCAL
Isb.queues file 203	lsb.users file 282
JOB_WARNING_ACTION	local tasks in task files 477
Isb.queues file 204	LOCAL_MAX_PREEXEC_RETRY
jobs	lsb.applications file 49
allowing preemption of 214	lsb.params file 154
preempting by run time 176	lsb.queues file 205
JOBSS	LOCAL_TO
Isb.resources file Limit section 239	lsf.licensescheduler file Features section 447
L	LOCATION
LIB_CONNTIMEOUT	Isf.cluster file 300
Isf.licensescheduler file Parameters section 425	log files
LIB_RECVTIMEOUT	nios.log.host_name 395
Isf.licensescheduler file Parameters section 425	LOG_EVENT
LIC_COLLECTOR	lsf.licensescheduler file Parameters section 427
Isf.licensescheduler file ServiceDomain section 436	s
LIC_SERVERS	Isb.hosts file 112
lsf.licensescheduler file ServiceDomain section 436	lsb.queues file 204
lim.acct file 28	LS_ACTIVE_PERCENTAGE
LIMIT	Isf.licensescheduler file Features section 449
	LS_ADMIN
lsf.licensescheduler file ProjectGroup section 458 limit number of hosts 332	setup.config file 478
Limit section	LS_DEBUG_BLC
Isb.resources 235	lsf.licensescheduler file Parameters section 427
limits	LS_DEBUG_BLD
	lsf.licensescheduler file Parameters section 428
enforced with overlapping members 143	LS_ENABLE_MAX_PREEMPT
job ID 160	lsf.licensescheduler file Parameters section 429
live reconfiguration	LS_EXEC_T variable 496
directory 385	LS_FEATURE_PERCENTAGE
LSF_LIVE_CONFDIR 385	lsf.licensescheduler file Features section 449
LM_REMOVE_INTERVAL	LS_HOSTS
Isf.licensescheduler file Features section 454	setup.config file 479
Isf.licensescheduler file Parameters section 425	LS_JOBPID variable 497
LM_STAT_INTERVAL	
Isf.licensescheduler file Parameters section 426	LS_LMSTAT_PATH
Isf.licensescheduler file ServiceDomain section 436	setup.config file 479
LM_STAT_TIMEOUT	LS_LOG_MASK Isf.licensescheduler file Parameters section 429
Isf.licensescheduler file Parameters section 426	
Isf.licensescheduler file ServiceDomain section 437	LS_MAX_STREAM_FILE_NUMBER
LMSTAT_PATH	Isf.licensescheduler file Parameters section 430
Isf.licensescheduler file Parameters section 426, 427	LS_MAX_STREAM_SIZE

Isf.licensescheduler file Parameters section 430 LSB_DEBUG_NQS LS_MAX_TASKMAN_PREEMPTS Isf.conf file 317 Isf.licensescheduler file Parameters section 431 variable 498 LS MAX TASKMAN SESSIONS LSB DEBUG SBD Isf.licensescheduler file Parameters section 431 Isf.conf file 317 LS_PREEMPT_PEER variable 498 Isf.licensescheduler file Parameters section 432 LSB DEBUG SCH LS_STREAM_FILE Isf.conf file 318 Isf.licensescheduler file Parameters section 431 variable 498 LS SUBCWD variable 497 LSB DEFAULT JOBGROUP variable 498 LS_TOP LSB_DEFAULTPROJECT variable 499 setup.config file 480 LSB_DEFAULTQUEUE variable 500 LS_WAIT_TO_PREEMPT LSB_DISABLE_LIMLOCK_EXCL Isf.licensescheduler file 455 Isf.conf file 177, 319 LSB_API_CONNTIMEOUT LSB_DISABLE_RERUN_POST_EXEC Isf.conf file 307 Isf.conf file 319 LSB_API_RECVTIMEOUT LSB_DISPLAY_YEAR Isf.conf file 307 Isf.conf file 320 LSB API VERBOSE LSB_DJOB_COMMFAIL_ACTION variable 513 Isf.conf file 308 LSB_DJOB_ENV_SCRIPT variable 514 LSB_DJOB_NUMPROC variable 500 LSB_BJOBS_CONSISTENT_EXIT_CODE LSB_ECHKPNT_KEEP_OUTPUT Isf.conf file 308 LSB_BLOCK_JOBINFO_TIMEOUT Isf.conf file 320 Isf.conf file 310 LSB_ECHKPNT_KEEP_OUTPUT variable 501 LSB_BPEEK_REMOTE_OUTPUT LSB_ECHKPNT_METHOD Isf.conf file 310 Isf.conf file 320 LSB_CHKPNT_DIR variable 497 LSB_ECHKPNT_METHOD variable 501 LSB_CHUNK_RUSAGE LSB_ECHKPNT_METHOD_DIR Isf.conf file 311 Isf.conf file 321 LSB_CMD_LOG_MASK LSB_ECHKPNT_METHOD_DIR variable 501 Isf.conf file 311 LSB_ERESTART_USRCMD variable 501 LSB CMD LOGDIR LSB_ESUB_METHOD Isf.conf file 312 Isf.conf file 320, 322 LSB_CONFDIR LSB_EXEC_RUSAGE variable 502 LSB_EXECHOSTS variable 502 Isf.conf file 313 LSB_CPUSET_BESTCPUS LSB_EXIT_IF_CWD_NOTEXIST variable 502 Isf.conf file 313 LSB_EXIT_PRE_ABORT variable 503 LSB_CRDIR LSB_EXIT_REQUEUE variable 503 Isf.conf file 313 LSB_FRAMES variable 504 LSB DEBUG LSB_HCLOSE_BY_RES Isf.conf file 314 LSF HPC extensions parameter 374 variable 498 LSB_HJOB_PER_SESSION LSB DEBUG CMD Isf.conf file 322 LSB HOSTS variable 504 Isf.conf file 314 variable 498 LSB_INDEX_BY_JOB LSB DEBUG MBD Isf.conf file 323 LSB_INTERACT_MSG_ENH Isf.conf file 316

Isf.conf file 323

variable 498

Isf.conf file 334 LSB_INTERACT_MSG_INTVAL Isf.conf file 324 LSB_MBD_BUSY_MSG LSB_INTERACTIVE variable 505 Isf.conf file 335 LSB_JOB_CPULIMIT LSB_MBD_CONNECT_FAIL_MSG Isf.conf file 324 Isf.conf file 335 LSB_JOB_INCLUDE_POSTPROC variable 505 LSB_MBD_DOWN_MSG LSB JOB MEMLIMIT Isf.conf file 336 Isf.conf file 325 LSB_MBD_MAX_SIG_COUNT 336 LSB_JOB_OUTPUT_LOGGING LSB_MBD_PORT Isf.conf file 327 Isf.conf file 336, 384 LSB_JOBEXIT_INFO variable 505 LSB_MC_CHKPNT_RERUN LSB_JOBEXIT_STAT variable 506 Isf.conf file 337 LSB_JOBFILENAME variable 506 LSB_MC_INITFAIL_MAIL LSB_JOBGROUP variable 507 Isf.conf file 337 LSB_JOBID variable 507 LSB_MC_INITFAIL_RETRY LSB_JOBID_DISP_LENGTH Isf.conf file 337 LSB_MCPU_HOSTS variable 511 Isf.conf file 327 LSB_JOBINDEX variable 507 LSB_MEMLIMIT_ENFORCE LSB JOBINDEX STEP variable 508 Isf.conf file 338 LSB_JOBNAME variable 509 LSB_MIG2PEND LSB_JOBPEND variable 509 Isf.conf file 338 LSB_JOBPGIDS variable 510 LSB_MIXED_PATH_DELIMITER LSB_JOBPIDS variable 510 Isf.conf 339 LSB_KEEP_SYSDEF_RLIMIT LSB_MOD_ALL_JOBS Isf.conf file 328 Isf.conf file 340 LSB_LIMLOCK_EXCLUSIVE parameter 319 LSB_NCPU_ENFORCE LSB_LOCALDIR Isf.conf file 340 Isf.conf file 328 LSB_NQS_PORT LSB_MAIL_FROM_DOMAIN Isf.conf file 341 Isf.conf file 329 LSB_NQS_PORT variable 512 LSB MAILPROG LSB_NTRIES environment variable 161 Isf.conf file 329 LSB_NTRIES variable 512 LSB_MAILSERVER LSB_NUM_NIOS_CALLBACK_THREADS Isf.conf file 330 Isf.conf file 341 LSB_MAILSIZE variable 510 LSB_OLD_JOBID variable 512 LSB_MAILSIZE_LIMIT LSB_OUTPUT_TARGETFAILED variable 513 Isf.conf file 331 LSB_PACK_MESUB LSB_MAILTO Isf.conf file 341 LSB_PACK_SKIP_ERROR Isf.conf file 342 Isf.conf file 331 LSB_MAX_ASKED_HOSTS_NUMBER LSB_PRE_POST_EXEC_USER Isb.params 332 Isf.sudoers file 471 LSB_MAX_JOB_DISPATCH_PER_SESSION LSB_PSET_BIND_DEFAULT Isf.conf file 333 Isf.conf file 342

LSB_MAX_NQS_QUEUES

Isf.conf file 333

Isf.conf file 334

LSB MAX PACK JOBS

LSB_MAX_PROBE_SBD

LSB_QUERY_PORT

Isf.conf file 343

LSB REMOTEJID variable 515 LSB_TIME_MBD LSB_REQUEUE_TO_BOTTOM Isf.conf file 349 Isf.conf file 344 LSB_TIME_RESERVE_NUMJOBS LSB RESTART variable 515 Isf.conf file 350 LSB_RESTART_PGID variable 516 LSB_TIME_SBD LSB_RESTART_PID variable 516 Isf.conf file 350 LSB RLA PORT LSB TIME SCH Isf.conf file 344 Isf.conf file 349 LSB_RLA_UPDATE LSB_UNIXGROUP Isf.conf file 344 variable 520 LSB_RLA_WORKDIR LSB_USER_BIND_CPU_LIST Isf.conf file 345 variable 520 LSB_RTASK_GONE_ACTION variable 517 LSB_USER_BIND_JOB LSB_SACCT_ONE_UG variable 521 LSB_UTMP Isf.conf 345 LSB_SBD_PORT Isf.conf file 351 Isb.acct file 29 Isf.conf file 345, 384 LSB_SET_TMPDIR Isb.applications Isf.conf file 345 JOB_INCLUDE_POSTPROC parameter 47 LSB_SHAREDIR JOB_POSTPROC_TIMEOUT parameter 47 Isf.conf file 346 POST_EXEC parameter 55 LSB_SHORT_HOSTLIST PRE_EXEC parameter 57 Isf.conf file 346 Isb.applications file 40 LSB_SIGSTOP description 39 Isf.conf file 346 Isb.events file 72 LSB_SSH_XFORWARD_CMD Isb.hosts file Isf.conf file 347 description 109 LSB_STDOUT_DIRECT time-based configuration 123 Isf.conf file 347 user group administrator 278 LSB_STOP_IGNORE_IT Isb.modules file 125 Isf.conf file 348 lsb.params LSB_SUB_CLUSTER variable 517 SUB_TRY_INTERVAL parameter 161 LSB_SUB_COMMAND_LINE variable 517 Isb.params file LSB_SUB_COMMANDNAME description 130 time-based configuration 130 Isf.conf file 348 LSB_SUB_EXTSCHED_PARAM variable 518 Isb.queues LSB_SUB_JOB_ACTION_WARNING_TIME variable 518 POST_EXEC parameter 212 LSB_SUB_JOB_WARNING_ACTION variable 518 PRE_EXEC parameter 213 Isb.queues file LSB_SUB_PARM_FILE variable 518 LSB_SUBK_SHOW_EXEC_HOST description 184 Isf.conf file 349 time-based configuration 234 Isb.resources file LSB_SUCCESS_EXIT_VALUES variable 519 description 235 LSB_SUSP_REASONS variable 519 LSB_SUSP_SUBREASONS variable 519 time-based configuration 263 LSB_SYNC_HOST_STAT_LIM Isb.serviceclasses file 265 lsb.params 155 Isb.users file LSB_TIME_CMD description 276 Isf.conf file 350 time-based configuration 283

LSF_ADD_CLIENTS install.config file 22 LSF_ADD_SERVERS install.config file 21 LSF_ADMINS install.config file 23 slave.config file 483 LSF_AFS_CELLNAME Isf.conf file 351 LSF_AM_OPTIONS Isf.conf file 352 LSF_API_CONNTIMEOUT Isf.conf file 352 LSF_API_RECVTIMEOUT Isf.conf file 353 LSF ASPLUGIN Isf.conf file 353 LSF_AUTH Isf.conf file 353 LSF_AUTH parameter 353 LSF_AUTH_DAEMONS Isf.conf file 354 LSF_BIND_JOB Isf.conf file 40, 354 LSF_BINDIR cshrc.lsf and profile.lsf files 10 Isf.conf file 355 LSF_BMPLUGIN Isf.conf file 355 LSF_CLUSTER_NAME install.config file 23 LSF_CMD_LOG_MASK Isf.conf file 355 LSF_CMD_LOGDIR Isf.conf file 356 variable 521 LSF_CONF_RETRY_INT Isf.conf file 357 LSF_CONF_RETRY_MAX Isf.conf file 357 LSF_CONFDIR Isf.conf file 358 LSF CPUSETLIB Isf.conf file 358

LSF_CRASH_LOG

Isf.conf file 358

Isf.conf file 359

LSF_DAEMON_WRAP

LSF_DAEMONS_CPUS Isb.params file 359 LSF_DAEMONS_CPUS parameter in ego.conf 360 LSF_DEBUG_CMD Isf.conf file 360 LSF_DEBUG_CMD variable 521 LSF DEBUG LIM Isf.conf file 361 variable 521 LSF_DEBUG_RES Isf.conf file 363 variable 521 LSF_DHCP_ENV Isf.conf file 363 LSF_DISABLE_LSRUN Isf.conf file 364 LSF_DISPATCHER_LOGDIR Isf.conf file 364 LSF_DUALSTACK_PREFER_IPV6 Isf.conf file 365 LSF_DYNAMIC_HOST_TIMEOUT Isf.conf file 366 LSF_DYNAMIC_HOST_WAIT_TIME install.config file 24 Isf.conf file 366 LSF_EAUTH_AUX_DATA variable 521 LSF_EAUTH_AUX_PASS variable 521 LSF_EAUTH_CLIENT variable 522 LSF_EAUTH_KEY Isf.sudoers file 471 LSF_EAUTH_SERVER variable 522 LSF_EAUTH_UID variable 522 LSF_EAUTH_USER Isf.sudoers file 471 LSF_EEXEC_USER Isf.sudoers file 472 LSF_EGO_ADMIN_PASSWD Isf.sudoers file 472 LSF_EGO_ADMIN_USER Isf.sudoers file 472 LSF_EGO_DAEMON_CONTROL Isf.conf file 367 LSF EGO ENVDIR Isf.conf file 368 LSF_ELIM_BLOCKTIME

Isf.cluster file 290

Isf.cluster file 290

LSF_ELIM_DEBUG

LSF_ELIM_RESTARTS Isf.conf file 380 Isf.cluster file 291 LSF_LIC_SCHED_HOSTS LSF_ENABLE_CSA Isf.conf file 381 LSF_LIC_SCHED_PREEMPT_REQUEUE Isf.conf file 368 LSF_ENABLE_DUALCORE Isf.conf file 381 Isf.conf file 369 LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE LSF ENABLE EGO Isf.conf file 381 LSF_LIC_SCHED_PREEMPT_STOP Isf.conf file 370 LSF_ENABLE_EXTSCHEDULER Isf.conf file 382 Isf.conf file 370 LSF_LIC_SCHED_STRICT_PROJECT_NAME LSF_ENABLE_SUPPORT_IPV6 Isf.conf file 382 LSF_LIM_API_NTRIES Isf.conf 370 LSF_ENTITLEMENT_FILE Isf.conf file 383 install.config file 24 variable 525 LSF_ENVDIR LSF_LIM_DEBUG cshrc.lsf and profile.lsf files 10 Isf.conf file 383 Isf.conf file 371 variable 525 LSF_EVENT_PROGRAM LSF_LIM_IGNORE_CHECKSUM Isf.conf file 371 Isf.conf file 384 LSF_EVENT_RECEIVER LSF_LIM_PORT Isf.conf file 371 Isf.conf file 384 LSF_EXECUTE_DOMAIN variable 522 slave.config file 483 LSF_HOST_ADDR_RANGE LSF_LIVE_CONFDIR Isf.conf 385 Isf.cluster file 292 LSF_HOST_CACHE_NTTL LSF_LOAD_PLUGINS Isf.conf file 372 Isf.sudoers file 473 LSF_HOST_CACHE_PTTL LSF_LOAD_USER_PROFILE Isf.conf file 373 Isf.conf 385 LSF_HPC_EXTENSIONS LSF_LOCAL_RESOURCES Isf.conf file 386 Isf.conf file 373 LSF_HPC_PJL_LOADENV_TIMEOUT LSF_LOG_MASK Isf.conf file 377 Isf.conf file 387, 388 LSF_ID_PORT LSF_LOGDIR Isf.conf file 378 Isf.conf file 389, 390 LSF INCLUDEDIR variable 525 Isf.conf file 378 LSF_LSLOGIN_SSH LSF_INDEP Isf.conf file 391 LSF_MACHDEP Isf.conf file 378 LSF_INTERACTIVE_STDERR Isf.conf file 391 Isf.conf file 379 LSF MANDIR variable 523 Isf.conf file 392 LSF_INVOKE_CMD variable 523 LSF_MASTER variable 526 LSF_JOB_STARTER variable 523 LSF_MASTER_LIST LSF_LD_LIBRARY_PATH variable 524, 525 install.config file 25 LSF_LD_SECURITY Isf.conf file 392 Isf.conf 380 LSF_MASTER_NSLOOKUP_TIMEOUT LSF_LIBDIR Isf.conf file 393

LSF_MAX_TRY_ADD_HOST

cshrc.lsf and profile.lsf files 11

Isf.conf file 394 install.config file 25 LSF_MC_NON_PRIVILEGED_PORTS LSF_REMOTE_COPY_CMD 402 Isf.conf file 394 LSF_RES_ACCT LSF MISC Isf.conf file 403 Isf.conf file 394 LSF_RES_ACCTDIR LSF_NIOS_DEBUG Isf.conf file 404 Isf.conf file 395 LSF RES ACTIVE TIME variable 526 Isf.conf file 404 LSF_NIOS_DIE_CMD variable 526 LSF_RES_CLIENT_TIMEOUT LSF_NIOS_ERR_LOGDIR Isf.conf 404 Isf.conf file 395 LSF_RES_CONNECT_RETRY variable 526 Isf.conf file 405 LSF_NIOS_IGNORE_SIGWINDOW variable 526 LSF_RES_DEBUG LSF_NIOS_JOBSTATUS_INTERVAL Isf.conf file 405 Isf.conf file 396 LSF_RES_PORT LSF_NIOS_MAX_TASKS Isf.conf file 384 Isf.conf file 396 LSF_RES_RLIMIT_UNLIM LSF_NIOS_PEND_TIMEOUT variable 527 Isf.conf file 406 LSF_NIOS_PORT_RANGE variable 527 LSF RES TIMEOUT LSF_NIOS_RES_HEARTBEAT Isf.conf file 406 LSF_RESOURCES variable 528 Isf.conf file 397 LSF_NON_PRIVILEGED_PORTS LSF_ROOT_REX Isf.conf file 406 Isf.conf file 397 LSF_PAM_APPL_CHKPNT 398 LSF_RSH Isf.conf 398 Isf.conf file 407 LSF_PAM_CLEAN_JOB_DELAY LSF_SECUREDIR Isf.conf file 398 Isf.conf file 408 LSF_PAM_HOSTLIST_USE LSF_SERVER_HOSTS Isf.conf file 398 Isf.conf file 408 LSF_PAM_PLUGINDIR slave.config file 484 Isf.conf file 399 LSF_SERVERDIR LSF_PAM_USE_ASH cshrc.lsf and profile.lsf files 11 Isf.conf file 399 Isf.conf file 409 LSF_PASSWD_DIR LSF_SHELL_AT_USERS Isf.conf file 399 Isf.conf file 409 LSF_PIM_INFODIR LSF_SHIFT_JIS_INPUT Isf.conf file 400 Isf.conf file 410 LSF_PIM_LINUX_ENHANCE LSF_STARTUP_PATH Isf.conf file 400 Isf.sudoers file 473 LSF_PIM_SLEEPTIME LSF_STARTUP_USERS Isf.conf file 401 Isf.sudoers file 473 LSF_PIM_SLEEPTIME_UPDATE LSF_STRICT_CHECKING Isf.conf file 401 Isf.conf file 410 LSF_POE_TIMEOUT_BIND LSF_STRICT_RESREQ Isf.conf file 402 Isf.conf file 411 LSF POE TIMEOUT SELECT LSF STRIP DOMAIN Isf.conf file 402 Isf.conf file 411 LSF_QUIET_INST LSF_TARDIR

install.config file 26		mail
slave.config file 484		configuring on UNIX 329
LSF_TIME_CMD		MANDATORY_EXTSCHED
lsf.conf file 412		lsb.queues file 206
LSF_TIME_LIM		MASTER_INACTIVITY_LIMIT
lsf.conf file 412		lsf.cluster file 294
LSF_TIME_RES		MAX_ACCT_ARCHIVE_FILE
lsf.conf file 412		lsb.params file 155
LSF_TMPDIR		MAX_CONCURRENT_JOB_QUERY
Isf.conf file 413		lsb.params file 156
LSF_TOP		MAX_EVENT_STREAM_FILE_NUMBER
install.config file 26		lsb.params file 156
slave.config file 486		MAX_EVENT_STREAM_SIZE
LSF_TS_LOGON_TIME		lsb.params file 157
variable 528		MAX_HOST_IDLE_TIME
LSF_ULDB_DOMAIN		lsb.serviceclasses file 271
Isf.conf file 414		MAX_INFO_DIRS
LSF_UNIT_FOR_LIMITS		lsb.params file 157
Isf.conf file 415		MAX_JOB_ARRAY_SIZE
LSF_USE_HOSTEQUIV		lsb.params file 158
Isf.conf file 416		MAX_JOB_ATTA_SIZE
variable 528		lsb.params file 158
LSF_USER_DOMAIN		MAX_JOB_MSG_NUM
Isf.conf file 417		lsb.params file 172
variable 529		MAX_JOB_NUM
LSF_USER_DOMAIN parameter	417	lsb.params file 159
LSF_VPLUGIN		MAX_JOB_PREEMPT
lsf.conf file 418		Isb.applications file 49
lsf.cluster file 287		lsb.params file 159
lsf.conf		lsb.queues file 206
LSB_LIMLOCK_EXCLUSIVE	parameter 319	MAX_JOB_REQUEUE
LSB_MBD_MAX_SIG_COUN	√T 336	lsb.applications file 49
LSB_SACCT_ONE_UG 345		lsb.params file 159
LSF_AUTH parameter 353		lsb.queues file 206
LSF_USER_DOMAIN param	eter 417	MAX_JOBID
lsf.conf file 304		lsb.params file 160
corresponding ego.conf pa	rameters 304	MAX_JOBINFO_QUERY_PERIOD
LSB_DISPLAY_YEAR 320		lsb.params file 160
LSB_QUERY_PORT parame	ter 156	MAX_JOBS
LSB_SUBK_SHOW_EXEC_H	OST 349	lsb.users file 281
lsf.licensescheduler file		MAX_PEND_JOBS
time-based configuration 4	161	lsb.params file 161
lsf.shared file 463		lsb.users file 282
lsf.sudoers file 469		MAX_PREEXEC_RETRY
lsf.task file 475		lsb.applications file 50
lsf.task.cluster file 475		lsb.params file 161
		lsb.queues file 207
M		MAX_RSCHED_TIME

lsb.queues file 207	lsb.params file 169
MAX_SBD_CONNS	MC_RECLAIM_DELAY
lsb.params file 162	lsb.params file 169
MAX_SBD_FAIL	MC_RUSAGE_UPDATE_INTERVAL
lsb.params file 162	lsb.params file 170
MAX_SLOTS_IN_POOL	mem
Isb.queues file 208	lsb.hosts file 112
MAX_TOTAL_TIME_PREEMPT	Isb.queues file 204
lsb.applications file 50	MEM
lsb.params file 163	Isb.resources file HostExport section 256
Isb.queues file 208	lsb.resources file Limit section 240
MAX_USER_PRIORITY	MEMBER
lsb.params file 163	Isb.hosts file 120
maximum	MEMLIMIT
job ID 160	Isb.applications file 51, 52
mbatchd	Isb.queues file 208
how to fix when busy 336	per parallel task 375
MBD_DIE record	per-job limit 325
Isb.events 85	MERGE_BY_SERVICE_DOMAIN
MBD_EGO_CONNECT_TIMEOUT	Isf.licensescheduler file Parameters section 433
lsb.params file 164	METHOD
MBD_EGO_READ_TIMEOUT	lsb.resources file ReservationUsage section 262
lsb.params file 164	MIG
MBD_EGO_TIME2LIVE	lsb.hosts file 111
lsb.params file 164	lsb.queues file 53, 210
MBD_HEARTBEAT_INTERVAL	MIG record
Isf.licensescheduler file Parameters section 432	lsb.events 87
MBD_QUERY_CPUS	migrated jobs
lsb.params file 164	absolute job priority scheduling 185
MBD_REFRESH_INTERVAL	MIN_SWITCH_PERIOD
Isf.licensescheduler file Parameters section 432	lsb.params file 170
MBD_REFRESH_TIME	mixed cluster
lsb.params file 165	specifying paths 339
MBD_SLEEP_TIME	model
lsb.params file 167	Isf.cluster file 297
MBD_START record	MODELNAME
lsb.events 84	lsf.shared file 465
MBD_USE_EGO_MXJ	MXJ
lsb.params file 167	lsb.hosts file 112
MC_PENDING_REASON_PKG_SIZE	
lsb.params file 167	N
MC_PENDING_REASON_UPDATE_INTERVAL	IV
Isb.params file 168	NAME
MC_PLUGIN_REMOTE_RESOURCE	Isb.hosts file 120
Isf.conf file 418	lsb.resources file GuaranteedResourcePool section 257
MC_PLUGIN_SCHEDULE_ENHANCE	lsb.resources file Limit section 240
lsb.params file 168	lsb.resources file ResourceReservation section 260
MC_PLUGIN_UPDATE_INTERVAL	lsb.resources file SharedResourceExport section 257
IVIO_I EUUIIV_UI DATE_IIVIERVAE	•

	Isb.serviceclasses file 272	Parameters section
	Isf.licensescheduler file Feature section 438	lsf.licensescheduler file
	Isf.licensescheduler file ServiceDomain section 435	description 420
nd		PATCH_BACKUP_DIR
	lsf.cluster file 297	install.config file 26
NEW	/_JOB_SCHED_DELAY	PATCH_HISTORY_DIR
	Isb.queues file 210	install.config file 27
NHC	•	PEAK_INUSE_PERIOD
	lsb.resources file HostExport section 255	lsf.licensescheduler file Feature section 451
NICE	•	lsf.licensescheduler file Parameters section 433
	Isb.applications file 53	PEND_REASON_MAX_JOBS 174
	Isb.queues file 210	PEND_REASON_UPDATE_INTERVAL 174
NIN	STANCES	PER_HOST
	Isb.resources file SharedResourceExport section 258	lsb.resources file HostExport section 255
NIO:		lsb.resources file Limit section 241
1410.	standard message format 380	PER_PROJECT
nios	.log.host_name 395	lsb.resources file Limit section 242
	PREEMPT_FINISH_TIME	PER_QUEUE
NO_	Isb.applications file 54	Isb.resources file Limit section 242
МО	PREEMPT_INTERVAL	
NO_	Isb.applications file 54	PER_USER Isb.resources file Limit section 243
	• •	
	Isb.params file 172	PERSISTENT_HOST_ORDER
NO	Isb.queues file 211	lsb.applications 55
NO_	PREEMPT_RUN_TIME	pg
	lsb.applications file 55	lsb.hosts file 112
	lsb.params file 172	lsb.queues file 204
NON	N_SHARED	PG_SUSP_IT
	Isf.licensescheduler file ProjectGroup section 458	lsb.params file 175
NON	N_SHARED_DISTRIBUTION	PJOB_LIMIT
	Isf.licensescheduler file Feature section 450	lsb.queues file 212
NQS	S_QUEUES	PORT
	Isb.queues file 211	Isf.licensescheduler file Parameters section 433
NQS	S_QUEUES_FLAGS	POST_EXEC
	Isb.params file 173	Isb.applications file
NQS	S_REQUESTS_FLAGS	bsub -Ep 55
	lsb.params file 173	Isb.queues file
		bsub -Ep 55
O		POST_EXEC parameter
OS t	ypes	lsb.applications 55
03 (automatic detection 306	lsb.queues 212
OMI	NERSHIP	PRE_EXEC
OVVI		lsb.applications file 57
	lsf.licensescheduler file ProjectGroup section 458	Isb.queues file 213
D		PRE_EXEC parameter
Р		lsb.applications 57
para	ıllel jobs	lsb.queues 213
-	optimizing preemption of 176	PRE_EXEC_START record
PAR	ALLEL_SCHED_BY_SLOT 174	lsb.events 101

pre- and post-execution processing	PRIORITY
application level	lsb.queues file 216
POST_EXEC parameter 55	lsb.serviceclasses file 272
PRE_EXEC parameter 57	lsf.licensescheduler file ProjectGroup section 459
JOB_INCLUDE_POSTPROC parameter 47, 149	Isf licensescheduler file Projects section 461
JOB_POSTPROC_TIMEOUT parameter 47, 150	privileged ports authentication
queue level	LSF_AUTH parameter 353
POST_EXEC parameter 212	PROBE_TIMEOUT
PRE_EXEC parameter 213	Isf.cluster file 294
PREEMPT_ACTION	PROCESSLIMIT
Isf.licensescheduler file Parameters section 433	lsb.applications file 57
PREEMPT_FINISH_TIME	lsb.queues file 217
Isb.params file 171	PROCLIMIT
PREEMPT_FOR	lsb.applications file 58
Isb.params file 175	Isb.queues file 217
PREEMPT_JOBTYPE	profile.lsf file
Isb.params file 176	description 7
PREEMPT_RESERVE	setting the LSF environment 8
Isf.licensescheduler file Feature section 452	project mode
preemptable queue	CLUSTER_MODE parameter 422, 438
defining 214	ProjectGroup section
PREEMPTABLE_RESOURCES	Isf.licensescheduler file
Isb.params file 177	
preemption	description 457
·	Projects 450 PROJECTS
jobs by run time 176	lsb.resources file Limit section 243
of parallel jobs 176 PREEMPTION	
	Isf.licensescheduler file Projects section 461
Isb.queues file 214	Projects section
PREEMPTION_WAIT_TIME	Isf.licensescheduler file
lsb.params file 177	description 460
preemptive queue	
defining 214	Q
preemptive scheduling	QJOB_LIMIT
backfill jobs 177	lsb.queues file 217
enabling 214	QUEUE_CTRL record
exclusive jobs 177	lsb.events 83
jobs by run time 176	QUEUE_GROUP
LSB_LIMLOCK_EXCLUSIVE parameter 319	lsb.queues file 218
per-host job slot limit for users and user groups 176	·
per-processor job slot limit for a user 176	QUEUE_NAME
per-processor job slot limit for user groups 175	lsb.applications file 53
PREEMPT_FOR parameter 175	lsb.queues file 218
PREEMPT_JOBTYPE parameter 176	queues
total job slot limit for user groups 175	making preemptable 214
PREEXEC_EXCLUDE_HOST_EXIT_VALUES	making preemptive 214
lsb.params file 177	setting priority of 216
priority	QUEUES
queues 216	Isb.resources file GuaranteedResourcePool section 253

Isb.resources file Limit section 244 **RESOURCE** Isb.resources file Limit section 245 Isb.resources file ReservationUsage section 262 R RESOURCE_RESERVE r15m Isb.queues file 220 Isb.hosts file 112 RESOURCE_RESERVE_PER_SLOT Isb.queues file 204 Isb.params file 179 r15s RESOURCENAME Isb.hosts file 112 Isf.cluster file 301 Isb.queues file 204 Isf.shared file 466 r1m ResourceReservation section Isb.hosts file 112 lsb.resources 258 Isb.queues file 204 **RESOURCES RB_PLUGIN** Isf.cluster file 297 lsb.modules file 128 RESRSV_LIMIT RCVJOBS_FROM Isb.queues file 223 Isb.queues file 218 RESUME_COND RECV_FROM Isb.queues file 224 Isf.cluster file 303 RETENTION FACTOR **RELEASE** Isf.licensescheduler file Feature section 452 Isf.shared file 468 RETRY_LIMIT **REMOTE** Isf.cluster file 294 Isb.users file 282 **REXPRI** remote task list 475 Isf.cluster file 298 remote tasks in task files 477 rollover REMOTE_MAX_PREEXEC_RETRY job IDs 160 Isb.applications file 58 RTASK_GONE_ACTION Isb.params file 178 Isb.applications file 65 Isb.queues file 219 RUN_JOB_FACTOR REQUEUE_EXIT_VALUES Isb.params file 179 Isb.applications file 59 Isb.queues file 224 Isb.queues file 219 RUN_TIME_DECAY **RERUNNABLE** Isb.params file 179 Isb.applications file 59 Isb.queues file 225 Isb.queues file 220 RUN_TIME_FACTOR RES_REQ Isb.params file 180 Isb.applications file 60 Isb.queues file 225 Isb.queues file 221 **RUN_WINDOW RES SELECT** Isb.queues file 226 Isb.resources file GuaranteedResourcePool section 252 **RUNLIMIT** Isb.resources file HostExport section 255 Isb.applications file 66 ReservationUsage section Isb.queues file 226 Isb.resources 262 **RUNTIME** reserve Isb.applications file 67 custom resources 262 **RUNWINDOW** reserve resources 263 Isf.cluster file 299 RESERVE_BY_STARTTIME

LSF HPC extensions parameter 374

S	service classes
CDD CLEED TIME	examples 273
SBD_SLEEP_TIME	SLA_GUARANTEES_IGNORE
lsb.params file 180, 181	lsb.queues file 227
SBD_UNREPORTED_STATUS record	SLA_TIMER
lsb.events 98	lsb.params file 181
SCH_DISABLE_PHASES	slave.config file 481
lsb.modules file 128	SLOT_POOL
SCH_PLUGIN	lsb.queues file 227
lsb.modules file 126	SLOT_RESERVE
schmod_advrsv scheduler plugin 127	Isb.queues file 228
schmod_aps scheduler plugin 127	SLOT_SHARE
schmod_cpuset scheduler plugin 127	
schmod_default scheduler plugin 126	Isb.queues file 229
schmod_fairshare scheduler plugin 126	SLOTS
schmod_fcfs scheduler plugin 126	lsb.resources file HostExport section 256
schmod_jobweight scheduler plugin 127	lsb.resources file Limit section 245
schmod_limit scheduler plugin 126	SLOTS_PER_HOST
schmod_mc scheduler plugin 127	Isb.resources file GuaranteedResourcePool section 254
schmod_parallel scheduler plugin 126	SLOTS_PER_PROCESSOR
	lsb.resources file Limit section 246
schmod_preemption scheduler plugin 127	SNDJOBS_TO
schmod_ps scheduler plugin 127	Isb.queues file 229
schmod_pset scheduler plugin 127	STACKLIMIT
schmod_reserve scheduler plugin 126	lsb.applications file 67
security	Isb.queues file 229
daemons	STANDBY_CONNTIMEOUT
increasing 410	Isf.licensescheduler file Parameters section 434
sendmail program 329	STOP_COND
server	Isb.queues file 230
lsf.cluster file 299	STRICT_UG_CONTROL
Servers	lsb.params file 182
lsf.shared file 463	STRICT_UG_CONTROL parameter
service class	lsb.params file 277, 278
examples 273	SUB_TRY_INTERVAL
SERVICE_DOMAINS	lsb.params file 182
Isf.licensescheduler file Feature section 453	SUB_TRY_INTERVAL parameter in lsb.params 161
ServiceDomain section	·
lsf.licensescheduler file	SUCCESS_EXIT_VALUES
description 435	Isb.applications file 67
setup.config file 478	SUSPEND_CONTROL
seven-digit job ID 160	lsb.applications file 64, 68, 69
SharedResourceExport section	SWAP
Isb.resources 257	Isb.resources file HostExport section 256
SHARES	SWAPLIMIT
	Isb.applications file 69
Isf.licensescheduler file ProjectGroup section 458	Isb.queues file 230
SHORT_PIDLIST	per parallel task 375
LSF HPC extensions parameter 374	swp
SLA scheduling	lsb.hosts file 112

Isb.queues file 204	TYPE
SWP	Isb.hosts file 121
Isb.resources file Limit section 248	Isb.resources file GuaranteedResourcePool section 251
SYSTEM_MAPPING_ACCOUNT	Isb.resources file HostExport section 257
lsb.params file 182	Isf.shared file 467
	TYPENAME
T	lsf.shared file 464
task files	U
description 475	LUOD LINET
format 477	UJOB_LIMIT
permissions 476	Isb.queues file 232
sections 477	ULDB (IRIX User Limits Database)
task lists	description 414
files 475	jlimit.in file 414
remote 475	UNFULFILL record
viewing 476	Isb.events 85
TASK_MEMLIMIT	UNIX/Windows user account mapping
LSF HPC extensions parameter 375	LSF_EXECUTE_DOMAIN parameter 522
TASK_SWAPLIMIT	LSF_USER_DOMAIN parameter 417
LSF HPC extensions parameter 375	untrusted environments 410
TERMINATE_WHEN	USE_PRIORITY_IN_POOL
Isb.queues file 230	lsb.queues file 232
THREADLIMIT	USE_SUSP_SLOTS
Isb.applications file 70	lsb.params file 183
Isb.queues file 231	user group administrator 278
time windows	user groups
syntax 260	hierarchical fairshare 279
TIME_WINDOW	user profiles
Isb.resources file ResourceReservation section 260	loading for a job 385
time-based configuration	User section
lsb.hosts 123	Isb.users file 280
lsb.params 130	USER_NAME
Isb.queues 234	Isb.users file 281
lsb.resources 263	USER_SHARES
lsb.users 283	Isb.hosts file 119
lsf.licensescheduler 461	Isb.users file 279
tmp	UserGroup section
Isb.hosts file 112	Isb.users file 276
Isb.queues file 204	UserMap section
TMP	Isb.users file 282
Isb.resources file Limit section 248	users
troubleshoot	overlapping members 143
host groups 196	USERS
troubleshooting	lsb.queues file 233
cluster performance 336	lsb.resources file Limit section 249
type	Isb.resources file ResourceReservation section 261
lsf.cluster file 299	lsb.serviceclasses file 272

ut enable mixed paths 339

Isb.hosts file 112

Isb.queues file 204

WORKLOAD_DISTRIBUTION

Isf.licensescheduler file Feature section 453

V

variables. See environment variables

XLSF_APPDIR

Isf.conf file 419

XLSF_UIDDIR

windows

cshrc.lsf and profile.lsf files 12

Isf.conf file 419

time 260

Windows and UNIX